Chapter 6 : Regulation of Transcription and Replication by Human Papillomaviruses

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Regulation of Transcription and Replication by Human Papillomaviruses, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818289/9781555811303_Chap06-1.gif /docserver/preview/fulltext/10.1128/9781555818289/9781555811303_Chap06-2.gif


This chapter concentrates on the mechanisms by which human papillomaviruses (HPVs) regulate viral transcription and replication during the productive life cycle. The first studies which examined papillomaviruses concentrated on the bovine papillomaviruses (BPVs) with the hope that BPV-1 would serve as a useful model for the high-risk human viruses. While many similarities exist between the two viral types, a significant number of differences are also present. For this reason, the author concentrates the discussion on the HPV types and refers to BPVs only when no information is available in the human system. In order to understand how viral gene expression is regulated during a productive infection, it is first important to describe the transcripts which are synthesized. One of the most remarkable features of HPV transcription is that all early and late transcripts are polycistronic. The E1 and E2 proteins function in viral replication and may also modulate viral expression. A detailed discussion of the role of these proteins in replication is provided in the chapter. In order to further understand the interplay of these two viral functions, the chapter discusses the control of viral replication in detail. Given the tight linkage of late gene expression and amplification to epithelial differentiation, it is likely that cellular factors play important roles.

Citation: Laimins L. 1998. Regulation of Transcription and Replication by Human Papillomaviruses, p 201-223. In McCance D (ed), Human Tumor Viruses. ASM Press, Washington, DC. doi: 10.1128/9781555818289.ch6
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Genomic map of high-risk HPV-31. ORFs designated E indicate ORFs expressed early during infection as well as in basal cells. ORFs designated L indicate late capsid genes. Small black boxes indicate E2 binding sites in the URR. This genomic organization is similar to those of other genital papillomaviruses.

Citation: Laimins L. 1998. Regulation of Transcription and Replication by Human Papillomaviruses, p 201-223. In McCance D (ed), Human Tumor Viruses. ASM Press, Washington, DC. doi: 10.1128/9781555818289.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Cartoon of differentiating epithelia and a table of viral functions which are induced upon epithelial differentiation. The various epithelial layers are indicated.

Citation: Laimins L. 1998. Regulation of Transcription and Replication by Human Papillomaviruses, p 201-223. In McCance D (ed), Human Tumor Viruses. ASM Press, Washington, DC. doi: 10.1128/9781555818289.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Transcript map of HPV-31. Transcripts expressed constitutively throughout the epithelia initiate at the early p97 promoter and terminate at the early polyadenylation signal located at the end of the E5 ORF. Late transcripts initiate at the late promoter, p742, and terminate at either the early or the late polyadenylation signals.

Citation: Laimins L. 1998. Regulation of Transcription and Replication by Human Papillomaviruses, p 201-223. In McCance D (ed), Human Tumor Viruses. ASM Press, Washington, DC. doi: 10.1128/9781555818289.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Origin of replication of HPV-31, indicating the E1 binding site and the two flanking E2 sites. E1 proteins bind to E1 sites as multimeric complexes which can form larger complexes with adjacent E2 dimers.

Citation: Laimins L. 1998. Regulation of Transcription and Replication by Human Papillomaviruses, p 201-223. In McCance D (ed), Human Tumor Viruses. ASM Press, Washington, DC. doi: 10.1128/9781555818289.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Androphy, E.,, D. R. Lowy,, and J. T. Schiller. 1987. Bovine papillomavirus E2 trans-activating gene binds to specific sites in papillomavirus DNA product. Nature 325: 70 73.
2. Apt, D.,, T. Chong,, Y. Liu,, and H.-U. Bernard. 1993. Nuclear factor I and epithelial cell-specific transcription of human papillomavirus type 16. J. Virol. 67: 4455 4463.
3. Apt, D.,, R. Watts,, G. Suske,, and H. -U. Bernard. 1996. High Spl/Sp3 levels in epithelial cells during epithelial differentiation and cellular transformation correlate with the activation of the HPV16 promoter. Virology 224: 281 291.
4. Asselineau, D.,, B. A. Bernard,, C. Bailly,, M. Darmon,, and M. Prunieras. 1986. Human epidermis reconstructed by culture: is it normal? J. Invest. Dermatol. 86: 181 186.
5. Baker, C. C, W. C. Phelps, V. Lindgren, M. J. Braun, M. A. Gonda, and P. M. Howley. 1987. Structural and transcriptional analyses of human papillomavirus type 16 sequences in cervical carcinoma cell lines. J. Virol. 61: 962 971.
6. Barsoum, J.,, S. S. Prakash,, P. Han,, and E. J. Androphy. 1992. Mechanism of action of the papillomavirus E2 repressor: repression in the absence of DNA binding. J. Virol. 66: 3941 3945.
7. Bauknecht, T.,, P. Angel,, H.-D. Royer,, and H. zur Hausen. 1992. Identification of a negative regulatory domain in the human papillomavirus type 18 promoter: interaction with the transcriptional repressor YY1. EMBO J. 11: 4607 4617.
8. Bauknecht, T.,, R. H. See,, and Y. Shi. 1996. A novel C/EBP β-YYl complex controls the cell-type-specific activity of the human papillomavirus type 18 upstream regulatory region. J. Virol. 70: 7695 7705.
9. Bedell, M. A.,, J. B. Hudson,, T. R. Golub,, M. E. Turyk,, M. Hosken,, G. D. Wilbanks,, and L. A. Laimins. 1991. Amplification of human papillomavirus genomes in vitro is dependent on epithelial differentiation. J. Virol. 65: 2254 2260.
10. Bensen, J. D.,, and P. M. Howley. 1995. Amino-terminal domains of the bovine papillomavirus type 1 E1 and E2 protein participate in complex formation. J. Virol. 69: 4364 4372.
11. Bernard, B. A.,, C. Bailly,, M. -C. Lenoir,, M. Darmon,, F. Thierry,, and M. Yaniv. 1989. The human papillomavirus type 18 (HPV18) E2 gene product is a repressor of the HPV18 regulatory region in human keratinocytes. J. Virol. 63: 4317 4324.
12. Bonne-Andrea, C.,, F. Tillier,, G. McShan,, V. Wilson,, and P. Clertant. 1997. Bovine papillomavirus type 1 DNA replication: the transcriptional activator E2 acts in vitro as a specificity factor. J. Virol. 71: 6805 6815.
13. Brokaw, J. L.,, M. Blanco,, and A. A. McBride. 1996. Amino acids critical for the functions of the bovine papillomavirus type 1 E2 transactivator. J. Virol. 70: 23 29.
14. Burnett, S.,, U. Kiessling,, and U. Petterson. 1989. Loss of bovine papillomavirus DNA replication control in growth-arrested transformed cells. J. Virol. 63: 2215 2225.
15. Burnett, S.,, A. C. Strom,, N. Jaerbourg,, A. Alderborn,, J. Dillner,, L. Moreno,, U. Petterson,, and U. Kiessling. 1990. Induction of bovine papillomavirus E2 gene expression and early region transcription by cell growth arrest: correlation with viral DNA amplification and evidence for differential promoter induction. J. Virol. 64: 5529 5541.
16. Butz, K.,, and F. Hoppe-Seyler. 1993. Transcriptional control of human papillomavirus (HPV) oncogene expression: composition of the HPV type 18 upstream regulatory region. J. Virol. 67: 6476 6486.
17. Chan, W. K.,, T. Chong,, H.-U. Bernard,, and G. Klock. 1990. Transcription of the transforming genes of the oncogenic human papillomavirus type 16 is stimulated by tumor promoters through API binding. Nucleic Acids Res. 18: 763 769.
18. Chang, T.,, W. Chan,, and U. Bernard. 1989. Transcriptional activation of HPV 16 by the nuclear factor 1, AP-1, steroid receptors and possibly a novel transcription factor. Nucleic Acids Res. 18: 465 470.
19. Cheng, S.,, S.-D. Schimdt-Grimminger,, T. Murant,, T. R. Broker,, and L. T. Chow. 1995. Differentiation-dependent up-regulation of the HPV E7 gene reactivates cellular DNA replication in suprabasal differentiated keratinocytes. Genes Dev. 9: 2335 2349.
20. Chiang, C.-M.,, G. Dong,, T. R. Broker,, and L. T. Chow. 1992. Control of human papillomavirus type 11 origin of replication by the E2 family of transcription regulatory factors. J. Virol. 66: 5224 5231.
21. Chiang, C.-M.,, M. Usatv,, A. Stenlund,, T. F. Ho,, T. R. Broker,, and L. T. Chow. 1992. Viral E1 and E2 proteins support replication of homologous and heterologous papillomaviral origins. Proc. Natl. Acad. Sci. USA 89: 5799 5803.
22. Chin, M. T.,, T. R. Broker,, and L. T. Chow. 1989. Identification of a novel constitutive enhancer element and an associated binding protein: implications for human papillomavirus type 11 enhancer regulation. J. Virol. 63: 2967 2976.
23. Chow, L. T.,, M. Nasseri,, S. M. Wolinsky,, and T. R. Broker. 1987. Human papillomavirus types 6 and 11 mRNAs from genital condylomata acuminata. J. Virol. 61: 2581 2588.
24. Clertant, P.,, and I. Seif. 1984. A common function for polyoma virus large T-antigen and papillomavirus E1 proteins? Nature 311: 276 279.
25. Cripe, T. P.,, T. H. Haugen,, J. P. Turk,, F. Tatabai,, P. G. Schmid,, M. Durst,, L. Gissman,, A. Roman,, and L. Turek. 1987. Transcriptional regulation of the HPV 16 E6/E7 promoter by a keratinocyte-dependent enhancer and by E2 transactivator and repressor gene products: implications for cervical cancer. EMBO J. 6: 3745 3753.
26. Crook, T.,, J. A. Tidy,, and K. H. Vousden. 1991. Degradation of p53 can be targeted by HPV E6 sequences distinct from those required for p53 binding and transactivation. Cell 67: 547 556.
27. Crum, C. P.,, G. Nuovo,, D. Friedman,, and S. J. Silverstein. 1988. Accumulation RNA homologous to human papillomavirus type 16 open reading frames in genital precancers. J. Virol. 62: 84 90.
28. Del Vecchio, A. M.,, H. Romanczuk,, P. M. Howley,, and C. C. Baker. 1992. Transient replication of human papillomavirus DNAs. J. Virol. 66: 5949 5958.
29.Desaintes, C, C. Demeret, S. Goyat, M. Yaniv, and F. Thierry. 1997. Expression of papillomavirus E2 protein in Hela cells leads to apoptosis. EMBO J. 16: 504514.
30. de Villiers, E.-M. 1989. Heterogeneity of the human papillomavirus group. J. Virol. 63: 4898 4903.
31. Dietrich, G.,, I. Kennedy,, B. Levins,, M. Stanley,, and J. Clements. 1997. A cellular 65 kDa protein recognizes the negative element of human papillomavirus late mRNAs. Proc. Natl. Acad. Sci. USA 94: 163 168.
32. Dollard, S. C, J. L. Wilson, L. M. Demeter, W. Bonnez, R. C. Reichman, T. R. Broker, and L. T. Chow. 1992. Production of human papillomavirus and modulation of the infectious program in epithelial raft cultures. Genes Dev. 6: 1131 1142.
33. Doorbar, J.,, S. E1y,, J. Sterling,, C. McLean,, and L. Crawford. 1991. Specific interaction between HPV-16 E1-E4 and cytokeratins results in collapse of the epithelial cell intermediate filament network. Nature 352: 824 827.
34. Dvorestsky, I.,, R. Shober,, S. Chattopadhyay,, and D. Lowy. 1980. A quantitative in vitro focus assay for bovine papillomavirus. Virology 103: 369 375.
35. Dyson, N.,, P. M. Howley,, K. Munger,, and E. Harlow. 1989. The human papillomavirus 16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243: 934 937.
36. Edwalds-Gilbert, G.,, and C. Milcarek. 1995. Regulation of poly(A) site use during mouse B-cell development involves a change in the binding of a general polyadenylation factor in a B-cell stage-specific manner. Mol. Cell. Biol. 15: 6420 6429.
37. Frattini, M.,, S. D. Hurst,, H. Lim,, S. Swaminathan,, and L. A. Laimins. 1997. Abrogation of a mitotic checkpoint by E2 proteins from oncogenic human papillomaviruses correlates with increased turnover of the p53 tumor suppressor protein. EMBO J. 16: 318 331.
38. Frattini, M.,, H. Lim,, and L. A. Laimins. 1996. In vitro synthesis of oncogenic human papillomaviruses requires episomal templates for differentiation-dependent late expression. Proc. Natl. Acad. Sci. USA 93: 3062 3067.
39. Frattini, M. G.,, and L. A. Laimins. 1994. Binding of the human papillomavirus E1 origin-recognition protein is regulated through complex formation with the E2 enhancer-binding protein. Proc. Natl. Acad. Sci. USA 91: 12398 12402.
40. Frattini, M. G.,, and L. A. Laimins. 1994. The role of the E1 and E2 proteins in the replication of human papillomavirus type 31b. Virology 204: 799 804.
41. Frattini, M. G.,, H. B. Lim,, J. Doorbar,, and L. A. Laimins. 1997. Induction of human papillomavirus type 18 late gene expression and genomic amplification in organotypic cultures from transfected DNA templates. J. Virol. 71: 7068 7072.
42. Furth, P. A.,, and C. C. Baker. 1991. An element in the bovine papillomavirus late 3' untranslated region reduces polyadenylated cytoplasmic RNA levels. J. Virol. 65: 5806 5812.
43. Furth, P. A.,, W.-T. Choe,, J. H. Rex,, J. C. Byrne,, and C. C. Baker. 1994. Sequences homologous to 5' splice sites are required for the inhibitory activity of papillomavirus late 3' untranslated regions. Mol. Cell. Biol. 14: 5278 5289.
44. Gilbert, D.,, and S. Cohen. 1987. Bovine papillomavirus plasmids replicate randomly in mouse fibroblasts throughout S phase of the cell cycle. Cell 50: 59 68.
45. Gius, D.,, S. Grossman,, M. A. Bedell,, and L. A. Laimins. 1988. Inducible and constiturive enhancers in the noncoding region of human papillomavirus type 18. J. Virol. 62: 665 672.
46. Gloss, B.,, H. U. Bernard,, K. Seedorf,, and G. Klock. 1987. The upstream regulatory region of the human papillomavirus-16 contains an E2 protein-independent enhancer which is specific for cervical carcinoma cells and is regulated by glucocorticoid hormones. EMBO J. 6: 3735 3743.
47. Gopalakrishan, V.,, and S. A. Kahn. 1994. E1 protein of human papillomavirus type la is sufficient for viral DNA replication. Proc. Natl. Acad. Sci. USA 91: 9597 9601.
48. Grassmann, K.,, B. Rapp,, H. Maschek,, K. U. Petry,, and T. Iftner. 1996. Identification of a differentiation-inducible promoter in the E7 open reading frame of human papillomavirus type 16 (HPV-16) in raft cultures of a new cell line containing high copy numbers of episomal HPV-16 DNA. J. Virol. 70: 2339 2349.
49. Grossel, M.,, J. Barsoum,, S. Prakash,, and E. A. Androphy. 1996. The BPV-1 E2 DNA-contact helix is required for transcriptional activation but not replication in mammalian cells. Virology 217: 301 310.
50. Grussendorf-Conen, E.-I., 1987. Papillomavirus-induced tumors of the skin: cutaneous warts and epidermodysplasia verruciformis, p. 158 181. In K. Syrjanen,, L. Gissmann,, and L. Koss (ed.), Papillomaviruses and Human Disease. Springer-Verlag, Berlin.
51. Heck, D. V.,, C. L. Yee,, P. M. Howley,, and K. M. Munger. 1992. Efficiency of binding the retinoblastoma protein correlates with the transforming capacity of the E7 oncoproteins of human papillomaviruses. Proc. Natl. Acad. Sci. USA 89: 4442 4446.
52. Hegde, R. S.,, S. Grossman,, L. A. Laimins,, and P. Sigler. 1992. Crystal structure at 1.7A of the BPV-1 E2 DNA-binding domain bound to its target DNA. Nature 359: 505 512.
53. Higgins, G. D.,, D. M. Uzelin,, G. E. Phillips,, P. McEvoy,, R. Marin,, and C. J. Burrell. 1992. Transcription patterns of human papillomavirus type 16 in genital intraepithelial neoplasia: evidence for promoter usage within the E7 open reading frame during epithelial differentiation. J. Gen. Virol. 73: 2047 2057.
54. Holt, S. E.,, and V. G. Wilson. 1995. Mutational analysis of the 18-base-pair inverted repeat element at the bovine papillomavirus origin of replication: identification of critical sequences for E1 for binding and in vivo replication. J. Virol. 69: 6525 6532.
55. Howley, P. M., 1996. Papillomavirinae: the viruses and their replication, p. 947 978. In B. N. Fields,, D. M. Knipe,, P. M. Howley,, and R. M. Chanock (ed.), Fundamental Virology. Raven Press, New York.
56. Hubbert, N. L.,, J. T. Schiller,, D. R. Lowy,, and E. J. Androphy. 1988. BPV-transformed cells contain multiple E2 proteins. Proc. Natl. Acad. Sci. USA 85: 5864 5868.
57. Hummel, M.,, J. B. Hudson,, and L. A. Laimins. 1992. Differentiation-induced and constitutive transcription of human papillomavirus type 31b in cell lines containing viral episomes. J. Virol. 66: 6070 6080.
58. Hummel, M.,, H. B. Lim,, and L. A. Laimins. 1995. Human papillomavirus 31b late gene expression is regulated through protein kinase C-mediated changes in RNA processing. J. Virol. 69: 3381 3388.
59. Hwang, E.-S.,, L. Naeger,, and D. DiMaio. 1996. Activation of the endogenous p53 growth inhibitory pathway in Hela cervical carcinoma cells by expression of BPV-1 E2. Oncogene 12: 795 803.
60. Hwang, E.-S.,, D. J. Riese II,, J. Settleman,, L. A. Nilson,, J. Honig,, S. Flynn,, and D. DiMaio. 1993. Inhibition of cervical carcinoma cell line proliferation by the introduction of a bovine papillomavirus regulatory gene. J. Virol. 67: 3720 3729.
61. Ishiji, T.,, M. Lace,, S. Parkinnen,, R. Anderson,, T. Haugen,, T. Cripe,, J. Xiao,, I. Davidson,, P. Chambon,, and L. Turek. 1992. Transcriptional enhancer factor (TEF-1) and its cell-specific co-activator activate HPV-16 E6 and E7 oncogene transcription in keratinocytes and cervical carcinoma cells. EMBO J. 11: 2271 2281.
62. Kennedy, I. M.,, J. K. Haddow,, and J. B. Clements. 1991. A negative regulatory element in the human papillomavirus type 16 genome acts at the level of late mRNA stability. J. Virol. 65: 2093 2097.
63. Klumpp, D. J. F. Stubenrauch, and L. A. Laimins. 1997. Differential effects of the splice acceptor at nucleotide 3295 of human papillomavirus type 31 on stable and transient viral replication. J. Virol. 71: 8186 8194.
64. Koss, L. G. 1987. Cytologic and histologic manifestations of HPV infection of the female genital tract and their clinical significance. Cancer 60: 1942 1950.
65. Kreider, J. W.,, M. K. Howett,, A. E. Leure-Dupree,, R. J. Zaino,, and J. A. Weber. 1987. Laboratory production in vivo of infectious human papillomavirus type 11. J. Virol. 61: 590 593.
66. Kuo, S. -R.,, J. -S. Liu,, T. R. Broker,, and L. T. Chow. 1994. Cell-free replication of human papillomavirus DNA with homologous viral E1 and E2 proteins and human cell extracts. J. Biol. Chem. 269: 24058 24065.
67. Kyo, S.,, D. Klumpp,, M. Inoue,, T. Kanaya,, and L. A. Laimins. 1997. Expression of Ap-1 during cellular differentiation determines HPV E6/E7 expression in stratified epithelial cells. J. Gen. Virol. 78: 401 411.
68. Kyo, S.,, A. Tarn,, and L. A. Laimins. 1995. Transcriptional activity of HPV 31b enhancer is regulated through synergistic interactions of API with two novel cellular factors. Virology 211: 184 197.
69. Laimins, L. A. 1993. The biology of human papillomaviruses: from warts to cancer. Infect. Agents Dis. 2: 74 86.
70. Lambert, P.,, B. Spalholtz,, and P. M. Howley. 1987. A transcriptional repressor encoded by BPV-1 shares a common carboxyl terminal domain with the E2 transactivator. Cell 50: 69 78.
71. Law, M. -F.,, D. R. Lowy,, I. Dvoretsky,, and P. M. Howley. 1981. Mouse cells transformed by bovine papillomavirus contain only extrachromosomal viral DNA sequences. Proc. Natl. Acad. Sci. USA 78: 2727 2731.
72. Le Moal, M. A.,, M. Yaniv,, and F. Thierry. 1994. The bovine-papillomavirus type 1 (BPV1) replication protein E1 modulates transcriptional activation by interacting with BPV1 E2. J. Virol. 68: 1085 1093.
73. Li, R.,, and M. Botchan. 1993. The acidic transcriptional activation domains of VP16 and p53 bind the replication protein A and stimulate in vitro BPV-1 replication. Cell 73: 1207 1221.
74. Li, R.,, J. Knight,, G. Bream,, A. Stenlund,, and M. Botchan. 1989. Specific recognition nucleotides and their DNA context determine the affinity of E2 protein for 17 binding sites in the BPV-1 genome. Genes Dev. 3: 510 526.
75. Lowy, D. R.,, L. Dvoretsky,, and R. Shober. 1980. In vitro tumorigenic transformation by a defined sub-genomic fragment of bovine papilloma virus DNA. Nature 287: 72 74.
76. Lu, J. Z.-J.,, Y.-N. Sun,, R. C. Rose,, W. Bonnez,, and D. J. McCance. 1993. Two E2 binding sites (E2BS) alone or one E2BS plus an A/T-rich region are minimal requirements for the replication of the human papillomavirus type II origin. J. Virol. 67: 7131 7139.
77. Lusky, M.,, and M. Botchan. 1986. Transient replication of bovine papillomavirus type 1: cis and trans requirements. Proc. Natl. Acad. Sci. USA 83: 3609 3613.
78. Lusky, M.,, and E. Fontaine. 1991. Formation of the complex of BPV-1 E1 and E2 proteins is modulated by E2 phosphorylation and depends upon sequences. Proc. Natl. Acad. Sci. USA 88: 6363 6367.
79. Lusky, M.,, J. Hurwitz,, and Y.-S. Seo. 1994. The bovine papillomavirus E2 protein modulates the assembly but is not stably maintained in a replication-competent multimetric E1-replication origin complex. Proc. Natl. Acad. Sci. USA 91: 8895 8899.
80. Mack, D.,, and L. A. Laimins. 1991. Keratinocyte-specific transcription factor, KRF-1, interacts with AP-1 to activate HPV 18 expression in squamous epithelial cells. Proc. Natl. Acad. Sci. USA 88: 9102 9106.
81. Mastrangelo, I.,, P. Hough,, J. Wall,, M. Dodson,, F. Dean,, and J. Hurwitz. 1989. ATP-dependent assembly of double hexamers of SV40 T antigen at the viral origin of replication. Nature 338: 658 662.
82. McBride, A. A.,, J. B. Bolen,, and P. M. Howley. 1989. Phosphorylation sites of the E2 transcriptional regulatory proteins of bovine papillomavirus type 1. J. Virol. 63: 5076 5085.
83. McBride, A. A.,, J. C. Byrne,, and P. M. Howley. 1989. E2 polypeptides encoded by BPV-1 form dimers through the common carboxyl-terminal domain: transactivation is mediated by the conserved ammo-terminal domain. Proc. Natl. Acad. Sci. USA 86: 510 514.
84. McBride, A. A.,, R. Schlegel,, and P. M. Howley. 1988. The carboxyl-terminal domain shared by the BPV-1 E2 transactivator and repressor proteins contains a specific DNA binding activity. EMBO J. 7: 533 539.
85. McCance, D.,, R. Kopan,, E. Fuchs,, and L. A. Laimins. 1988. Human papillomavirus type 16 alters human epithelial cell differentiation in vitro. Proc. Natl. Acad. Sci. USA 85: 7169 7173.
86.Meyers, C, M. G. Frattini, J. B. Hudson, and L. A. Laimins. 1992. Biosynthesis of human papillomavirus from a continuous cell line upon epithelial differentiation. Science 257: 971973.
87. Mohr, I. J.,, R. Clark,, S. Sun,, E. Androphy,, P. MacPherson,, and M. Bothchan. 1990. Targeting the E1 replication factor to the papillomavirus origin of replication by complex formation with the E2 transactivator. Science 250: 1694 1699.
88. Mul, Y.,, and P. van der Vliet. 1992. Nuclear factor I enhances adenovirus DNA replication by increasing the stability of a preinitiation complex. EMBO J. 11: 751 760.
89. Nasseri, M.,, R. Hirochika,, T. R. Broker,, and L. T. Chow. 1987. A human papillomavirus type II transcript encoding an E1-E4 protein. Virology 159: 433 439.
90. O'Conner, M.,, and H. U. Bernard. 1995. Oct-1 activates the epithelial-specific enhancer of HPV 16 via synergistic interaction with NF1 at a conserved composite regulatory element. Virology 207: 77 88.
91. Ozbun, M. A.,, and C. Meyers. 1997. Characterization of late transcripts expressed during vegetative replication of human papillomavirus type 31b. J. Virol. 71: 5161 5172.
92. Park, P.,, W. Copeland,, L. Yang,, T. Wang,, M. Botchan,, and I. Mohr. 1994. The cellular DNA polymerase alpha-primase is required for papillomavirus replication and associates with the viral E1 helicase. Proc. Natl. Acad. Sci. USA 91: 8700 8704.
93. Pattison, S.,, D. G. Skalnik,, and A. Roman. 1997. CCAAT displacement protein, a regulator of differentiation-specific gene expression, binds a negative regulatory element within the 5' end of the human papillomavirus type 6 long control region. J. Virol. 71: 2013 2022.
94. Pierrefite, V.,, and F. Cuzin. 1995. Replication efficiency of bovine papillomavirus type 1 DNA depends on cis-acting sequences distinct from the replication origin. J. Virol. 69: 7682 7687.
95. Piirsoo, M.,, E. Ustav,, T. Mandel,, A. Stenlund,, and M. Ustay. 1996. Cis and trans requirements for stable episomal maintenance of the BPV-1 replicator. EMBO J 15: 1 11.
96. Pipas, J. M. 1992. Common and unique features of T antigens encoded by the poly-omavirus group. J. Virol. 66: 3979 3985.
97. Roberts, S.,, I. Ashmole,, G. Johnson,, J. Kreider,, and P. Gallimore. 1993. Cutaneous and mucosal HPV E4 proteins form intermediate filament-like structures in epithelial cells. Virology 197: 176 187.
98. Sakai, H.,, T. Yasugi,, J. D. Benson,, J. J. Dowhanick,, and P. M. Howley. 1996. Targeted mutagenesis of the human papillomavirus type 16 E2 transactivation domain reveals separable transcriptional activation and DNA replication functions. J. Virol. 70: 1602 1611.
99. Sarver, N.,, P. Grass,, M. F. Law,, G. Khoury, and P. M. Howley. 1981. Bovine papillomavirus deoxyribonucleic acid: a novel eukaryotic cloning vector. Mol. Cell. Biol. 1: 486 496.
100. Scheffner, M.,, B. A. Werness,, J. M. Huibregste,, A. J. Levine,, and P. M. Howley. 1990. The E6 oncoprotein encoded by HPV 16 and 18 promotes the degradation of p53. Cell 63: 1129 1136.
101. Schwarz, E.,, U. Freese,, L. Gissman,, W. Mayer,, A. Roggenbauch,, A. Stremlau,, and H. zur Hausen. 1985. Structure and transcription of HPV sequences in cervical carcinoma cells. Nature 314: 111 119.
102. Sedman, J.,, and A. Stenlund. 1995. Co-operative interaction between the E1 initiator and the transcriptional activator E2 is required for replicator specific DNA replication in vivo and in vitro. EMBO J. 14: 6218 6228.
103. Seo, Y. -S.,, F. Muller,, M. Lusky,, E. Gibbs,, H. -Y. Kim,, B. Phillips,, and J. Hurwitz. 1993. BPV-1 encoded E2 proteins enhance binding of E1 to the BPV replication origin. Proc. Natl. Acad. Sci. USA 90: 2865 2869.
104. Sherman, L.,, N. Alloul,, I. Golan,, M. Durst,, and A. Baram. 1992. Expression and splice patterns of HPV 16 mRNAs in pre-cancerous lesions and carcinomas of the cervix in keratinocytes immortalized by HPV 16 and in lines established from cervical cancer. Int. J. Cancer 50: 356 364.
105. Singer, A.,, L. Ho,, G. Terry,, and T. S. Kwie,. 1995. Association of human papillomavirus with cervical cancer and precancer, p. 105 129. In A. Mindel (ed.), Genital Warts: Human Papillomavirus Infection. Edward Arnold, London.
106. Spalholz, B.,, Y. C. Yang,, and P. M. Howley. 1985. Transactivation of a bovine papillomavirus transcriptional regulatory element by the E2 gene product. Cell 42: 183 191.
107. Steinberg, B. M.,, K. J. Auborn,, J. L. Brandsma,, and L. B. Taichman. 1989. Tissue site-specific enhancer function of the upstream regulatory region of human papillomavirus type 11 in cultured keratinocytes. J. Virol. 63: 957 960.
108. Sterling, J.,, M. Stanley,, G. Gatward,, and T. Minson. 1990. Production of human papillomavirus type 16 virions in a keratinocyte cell line. J. Virol. 64: 6305 6307.
109. Staler, M. H.,, S. M. Wolinsky,, A. Whitbeck,, T. R. Broker,, and L. T. Chow. 1989. Differentiation-linked human papillomavirus types 6 and 11 transcription in genital condylomata revealed by in situ hybridization with message-specific RNA probes. Virology 172: 331 340.
110. Stubenrauch, F.,, and L. A. Laimins. Unpublished data.
111. 110a. Stubenrauch, F., H. B. Lim, and L. A. Laimins. 1998. Differential requirements for conserved E2 binding sites in the life cycle of oncogenic human papillomavirus type 31. J. Virol. 72: 10711077.
111. Stubenrauch, F.,, J. Malejczyk,, P. G. Fuchs,, and H. Pfister. 1992. Late promoter of human papillomavirus type 8 and its regulation. J. Virol. 66: 3485 3493.
112. Sverdrup, F.,, and S. A. Khan. 1995. Two E2 binding sites alone are sufficient to function as the minimal origin of replication of human papillomavirus type 18 DNA. J. Virol. 69: 1319 1323.
113. Tan, S.-H.,, E. C. Leong,, P. A. Walker,, and H.-U. Bernard. 1994. The human papillomavirus type 16 E2 transcription factor binds with low cooperativity to two flanking sites and represses the E6 promoter through displacement of Sp1 and TFIID. J. Virol. 68: 6411 6420.
114. Tan, W.,, and S. Schwartz. 1995. The Rev protein of human immunodeficiency virus type 1 counteracts the effect of an AU-rich negative element in the human papillomavirus type 1 late 3' untranslated region. J. Virol. 69: 2932 2945.
115. Thierry, F.,, G. Spyrou,, M. Yaniv,, and P. Howley. 1992. Two AP-1 sites binding JunB are essential for human papillomavirus type 18 transcription in keratinocytes. J. Virol. 66: 3740 3748.
116. Thierry, F.,, and M. Yaniv. 1987. The BPV-1 E2 trans-acting protein can be either an activator or a repressor of the HPV18 regulatory region. EMBO J. 6: 3391 3397.
117. Thorner, L. K.,, D. A. Lim,, and M. R. Botchan. 1993. DNA-binding domain of bovine papillomavirus type 1 E1 helicase: structural and functional aspects. J. Virol. 67: 6000 6014.
118. Ustav, M.,, and A. Stenlund. 1991. Transient replication of BPV-1 requires two poly peptides encoded by the E1 and E2 open reading frames. EMBO J. 10: 449 457.
119. Ustav, M.,, E. Ustav,, P. Szymanski,, and A. Stenlund. 1991. Identification of the origin of replication of BPV-1 and characterization of the viral origin recognition factor E1. EMBO J. 10: 4321 4329.
120. Vande Pol, S. B.,, and P. M. Howley. 1990. A bovine papillomavirus constitutive enhancer is negatively regulated by the E2 repressor through competitive binding for a cellular factor. J. Virol. 64: 5420 5429.
121. Wang, H.,, K. Liu,, F. Yuan,, L. Berdichevsky,, L. B. Taichman, and K. Auborn. 1996. C/EBP(3 is a negative regulator of human papillomavirus type 11 in keratinocytes. J. Virol. 70: 4839 4844.
122. Wiley, S. R. R. Kraus, F., Zuo, E. Murray, K. Loritz, and J. E. Mertz. 1993. SV40 early to late switch involves titration of cellular transcriptional repressors. Genes Dev. 7: 2206 2219.
123. Yang, L.,, R. Li,, I. Mohr,, R. Clark,, and M. Botchan. 1991. Activation of BPV-1 replication in vitro by the transcription factor E2. Nature 353: 628 632.
124. Yang, L.,, I. Mohr,, R. Li,, S. Nottoli,, S. Sun,, and M. Botchan. 1993. The E1 protein of BPV-1 is an ATP-dependent DNA helicase. Proc. Natl. Acad. Sci. USA 90: 5086 5090.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error