Chapter 1 : Historical Perspectives on RNA Nucleoside Modifications

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Historical Perspectives on RNA Nucleoside Modifications, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818296/9781555811334_Chap01-1.gif /docserver/preview/fulltext/10.1128/9781555818296/9781555811334_Chap01-2.gif


This chapter provides the historical roots of current avenues of research on RNA nucleoside modifications by describing some functional sites, structural environments, and biosynthetic strategies with which the modifications are associated. It describes selected examples of nucleoside modifications in ribosomal, transfer, messenger, and small nuclear RNAs. Emphasis is placed on conspicuous association of the most abundant nucleoside modifications in eukaryotic rRNA with the peptidyl transfer site in the ribosome. The chapter also recounts the historical and chronological development of general knowledge about RNA structure and function. The early identifications of modified nucleosides relied heavily on application of the same "new" approaches (anion-exchange and filter-paper chromatography and UV spectrophotometry) that were described in considerable detail in the first volume of . In Ross Hall's monograph (1971), progress could already be reported about the biogenesis of base-and sugar-methylated nucleosides. When 2'- and 3'--aminoacyladenosines were prepared from the aminoacylated termini of tRNAs, they were among the first modified nucleosides to be identified as RNA constituents. Aminoacyladenosines, corresponding to the 20 (unmodified) amino acids found in proteins, have never previously been classified as modified nucleosides. The first hypermodified nucleoside to be reported and later correctly identified was described in a report in 1965. It seems fitting to remark that the direct functional consequence (frameshifting) of the first reported RNA editing event was instantly transparent, whereas the functional consequence of the first reported, and by far the most abundant, RNA modification (Ψ), has for more than 40 years remained all but opaque.

Citation: Lane B. 1998. Historical Perspectives on RNA Nucleoside Modifications, p 1-20. In Grosjean H, Benne R (ed), Modification and Editing of RNA. ASM Press, Washington, DC. doi: 10.1128/9781555818296.ch1
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Adler, M.,, B. Weissmann,, and A. B. Gutman. 1958. Occurrence of methylated purine bases in yeast ribonucleic acid. J. Biol. Chem. 230: 717 723.
2. Alberty, H.,, M. Raba,, and H. J. Gross. 1978. Isolation from rat liver and sequence of a RNA fragment containing 32 nucleotides from position 5 to 36 from the 3' end of ribosomal 18S RNA. Nucleic Acids Res. 5: 425 434.
3. Allen, F. W. 1954. Nucleic acids. Annu. Rev. Biochem. 23: 99 124.
4. Allen, F. W. 1962. Ribonucleoproteins and Ribonucleic Acids. Elsevier Publishing Co., Amsterdam, The Netherlands.
5. Alix, J.-H. 1988. Post-translational methylations of ribosomal proteins. Adv. Exp. Med. Biol. 231: 371 385.
6. Altman, S.,, L. Kirsebom,, and S. Talbot,. 1995. Recent studies of RNase P, p. 67 78. In D. Soil, and U. L. RajBhandary (ed.), tRNA: Structure, Biosynthesis, and Function. ASM Press, Washington, D.C.
7. Bachellerie, J.-P.,, B. Michot,, M. Nicoloso,, A. Balakin,, J. Ni,, and M. J. Fournier. 1995a. Antisense snoRNAs: a family of nucleolar RNAs with long complementarities to rRNA. Trends Biochem. Sci. 20: 261 264.
8. Bachellerie, J.-P.,, M. Nicoloso,, L.-H. Qu,, B. Michot,, M. Caizergues-Ferrer,, J. Cavaille,, and M.-H. Renalier. 1995b. Novel introN-encoded small nucleolar RNAs with long sequence complementarities to mature rRNAs involved in ribosome biogenesis. Biochem. Cell Biol. 73: 835 843.
9. Bacher, J. E.,, and F. W. Allen. 1950. A comparison of pentose nucleic acid from pancreas with ribonucleic acid from yeast. J. Biol. Chem. 183: 641 645.
10. Baczynskyj, L.,, K. Biemann,, and R. H. Hall. 1968. Sulfur-containing nucleoside from yeast transfer ribonucleic acid: 2-thiO-5(or 6)-uridine acetic acid methyl ester. Science 159: 1481 1483.
11. Bakin, A.,, B. G. Lane,, and J. Ofengand. 1994. Clustering of pseudouridine residues around the peptidyltransferase center of yeast cytoplasmic and mitochondrial ribosomes. Biochemistry 33: 13475 13483.
12. Bakin, A.,, and J. Ofengand. 1993. Four newly located pseudouridylate residues in Escherichia coli 23S ribosomal RNA are all at the peptidyltransferase center: analysis by the application of a new sequencing technique. Biochemistry 32: 9754 9762.
13. Benne, R.,, J. Van Den Burg,, J. P. J. Brakenhoff,, P. Sloof,, J. H. Van Boom,, and M. C. Tromp. 1986. Major transcript of the frameshifted coxII gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA. Cell 46: 819 826.
14. Bennett, T. P., 1988. Lipmann and "NotStrictly Biochemistry," p. 85 93. In H. Kleinkauf,, H. von Dohren,, and L. Jaenicke (ed.), The Roots of Modern Biochemistry. Walter de Gruyter, Berlin, Germany.
15. Biemann, K.,, S. Tsunakawa,, J. Sonnenbichler,, H. Feldmann,, D. Dutting,, and H. G. Zachau. 1966. Structure of an odd nucleoside from serine-specific transfer ribonucleic acid. Angew. Chem. Intl. Ed. 5: 590 591.
16. Binkley, F. 1951. Metabolism of glutathione. Nature (London) 167: 888 889.
17. Björk, G. R., 1995. Biosynthesis and function of modified nucleosides, p. 165 205. In D. Söll, and U. L. RajBhandary (ed.), tRNA: Structure, Biosynthesis, and Function. ASM Press, Washington, D.C.
18. Björk, G. R.,, and L. A. Isaksson. 1970. Isolation of mutants of Escherichia coli lacking 5-methyluracil in transfer ribonucleic acid or 1-methylguanine in ribosomal RNA. J. Mol. Biol. 51: 83 100.
19. Björk, G. R.,, and F. C. Neidhardt. 1975. Physiological and biochemical studies on the function of 5-methyIuridine in the transfer ribonucleic acid of Escherichia coli. J. Bacteriol. 124: 99 111.
20. Borek, E. 1980>. Transfer RNA and its by-products as tumor markers, p. 445 462. In S. Sell (ed.), Cancer Markers: Diagnostic and Developmental Significance. Humana Press, Clifton, N.J.
21. Brachet, J., 1955. The biological role of pentose nucleic acids, p. 475 519. In E. Chargaff, and J. N. Davidson (ed.), The Nucleic Acids: Chemistry and Biology, vol. 2. Academic Press Inc., New York, N.Y.
22. Brand, R. C.,, J. Klootwijk,, T. J. M. Van Steenbergen,, A. J. De Kok,, and R. J. Planta. 1977. Secondary methylation of yeast ribosomal precursor RNA. Eur. J. Biochem. 75: 311 318.
23. Brandhorst, B. P.,, and E. H. McConkey. 1974. Stability of nuclear RNA in mammalian cells. J. Mol. Biol. 85: 451 463.
24. Branlant, C.,, A. Krol,, M. A. Machatt,, J. Pouyet,, and J.-P. Ebel. 1981. Primary and secondary structures of Escherichia coli MRE 600 23S ribosomal RNA. Comparison with models of secondary structure for maize chloroplast 23S rRNA and for large portions of mouse and human 16S mitochondrial rRNAs. Nucleic Acids Res. 9: 4303 4324.
25. Breathnach, R.,, J. L. Mandel,, and P. Chambon. 1977. Ovalbumin gene is split in chicken DNA. Nature (London) 270: 314 319.
26. Brimacombe, R.,, P. Mitchell,, M. Osswald,, K. Stade,, and D. Bochkariov. 1993. Clustering of modified nucleotides at the functional center of bacterial ribosomal RNA. FASEB J. 7: 161 167.
27. Bronskill, P.,, T. D. Kennedy,, and B. G. Lane. 1972. Cell-free enzymic esterification of 5-carboxymethyluridine residues in bulk yeast transfer RNA. Biochim. Biophys. Acta 262: 275 282.
28. Brosius, J.,, M. L. Palmer,, P. J. Kennedy,, and H. F. Noller. 1978. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc. Natl. Acad. Sci. USA 75: 4801 4805.
29. Brown, R. A.,, K. A. O. Ellem,, and J. S. Colter. 1960. Reversible dissociation of ribonucleic acid. Nature (London) 187: 509 511.
30. Busch, H.,, R. Reddy,, L. Rothblum,, and Y. C. Choi. 1982. SN-RNAs, snRNPs, and RNA processing. Annu. Rev. Biochem. 51: 617 654.
31. Caboche, M.,, and J.-P. Bachellerie. 1977. RNA methylation and control of eukaryotic RNA biosynthesis. Effects of cycloleucine, a specific inhibitor of methylation, on ribosomal RNA maturation. Eur. J. Biochem. 74: 19 29.
32. Cavaille, J.,, and J.-P. Bachellerie. 1996. Processing of fibrillariN-associated snoRNAs from pre-mRNA introns: an exonucleolytic process exclusively directed by the common stem-box terminal structure. Biochimie 78: 443 456.
33. Cavaille, J.,, M. Nicoloso,, and J.-P. Bachellerie. 1996. Targeted ribose methylation of RNA in vivo directed by tailored antisense RNA guides. Nature (London) 383: 732 735.
34. Cech, T. R. 1990. Self-splicing of Group I introns. Annu. Rev. Biochem. 59: 543 568.
35. Chambers, R. W. 1966. The chemistry of pseudouridine. Prog. Nucleic Acid Res. Mol. Biol. 5: 349 397.
36. Chantrenne, H. 1961. International Series of Monographs on Pure and Applied Biology. Modern Trends in Physiological Sciences. The Biosynthesis of Proteins. Pergamon Press, New York, N.Y.
37. Chapeville, F.,, F. Lipmann,, G. Von Ehrenstein,, B. Weisblum,, W. J. Ray, Jr.,, and S. Benzer. 1962. On the role of soluble ribonucleic acid in coding for amino acids. Proc. Natl. Acad. Sci. USA 48: 1086 1092.
38. Chargaff, E., 1955. Isolation and composition of the deoxypentose nucleic acids and of the correspondingnucleoproteins, p. 307 371. In E. Chargaff, and J. N. Davidson (ed.), The Nucleic Acids: Chemistry and Biology, vol. 1. Academic Press Inc., New York, N.Y.
39. Chargaff, E.,, and J. N. Davidson (ed.). 1955. The Nucleic Acids: Chemistry and Biology, vol. 1. Academic Press Inc., New York, N.Y.
40. Chargaff, E.,, and J. N. Davidson (ed). 1960. The Nucleic Acids, vol. 3. Academic Press Inc., New York, N.Y.
41. Cohn, W. E. 1959. 5-Ribosyl uracil, a carboN-carbon ribofuranosyl nucleoside in ribonucleic acids. Biochim. Biophys. Acta 32: 569 571.
42. Cohn, W. E. 1960. Pseudouridine, a carboN-carbon linked ribonucleoside in ribonucleic acids: isolation, structure, and chemical characteristics.;. Biol. Chem. 235: 1488 1498.
43. Cohn, W. E.,, and E. Volkin. 1951. Nucleoside-5'-phosphates from ribonucleic acid. Nature (London) 167: 483 484.
44. Cohn, W. E.,, and E. Volkin. 1953. On the structure of ribonucleic acids. I. Degradation with snake venom diesterase and the isolation of pyrimidine diphosphates. J. Biol. Chem. 203: 319 332.
45. Colter, J. S.,, and R. A. Brown. 1956. Preparation of nucleic acids from Ehrlich ascites tumor cells. Science 124: 1077 1078.
46. Correll, C. C.,, B. Freeborn,, P. B. Moore,, and T. A. Steitz. 1997. Metals, motifs and recognition: 5S rRNA domain crystal structure. The Second Annual Meeting of the RNA Society Abstracts, p. 46.
47. Crestfield, A. M.,, and F. W. Allen. 1956. Studies on the enzymatic liberation of diphosphonucleosides from the ribonucleic acids of yeast.J. Biol. Chem. 219: 103 110.
48. Crestfield, A. M.,, and F. W. Allen. 1958. Terminal components of ribonucleic acids. Arch. Biochem. Biophys. 78: 334 337.
49. Crestfield, A. M.,, K. C. Smith,, and F. W. Allen. 1955. The preparation and characterization of ribonucleic acids from yeast. J. Biol. Chem. 216: 185 193.
50. Cunningham, P. R.,, K. Nurse,, A. Bakin,, C. J. Weitzmann,, M. Pflumm,, and J. Ofengand. 1992. Interaction between the two conserved single-stranded regions at the decoding site of small subunit ribosomal RNA is essential for ribosome function. Biochemistry 31: 12012 12022.
51. Cunningham, P. R.,, K. Nurse,, C. J. Weitzmann,, and J. Ofengand. 1993. Functional effects of base changes which further define the decoding center of Escherichia coli 16S ribosomal RNA: mutation of C1404, G1405, C1496, G1497, and U1498. Biochemistry 32: 7172 7180.
52. Davis, F. F.,, and F. W. Allen. 1957. Ribonucleic acids from yeast which contain a fifth nucleotide. J. Biol. Chem. 227: 907 915.
53. Dekker, C. A.,, and H. K. Schachman. 1954. On the macromolecular structure of deoxyribonucleic acid: an interrupted twO-strand model. Proc. Natl. Acad. Sci. USA 40: 894 909.
54. Diemer, J.,, B. McLennan,, and B. G. Lane. 1966. Studies of the primary structure of 18-S + 28-S ribonucleates. Biochim. Biophys. Acta 114: 191 194.
55. Dintzis, H., 1958. Cited by R. B. Roberts. 1967. Ribosome synthesis, p. 441. In H. J. Vogel,, J. O. Lampen,, and V. Bryson (ed.), Organizational Biosynthesis. Academic Press, New York, N.Y..
56. Dounce, A. 1956. Nucleoproteins. Round-table discussion. J. Cell. Comp. Physiol. 47(Suppl. 1): 103 112.
57. Dubin, D. T.,, and R. H. Taylor. 1978. Modification of mitochondrial ribosomal RNA from hamster cells: the presence of GmG and late-methylated UmGmU in the large subunit (17S) RNA. J. Mol. Biol. 121: 523 540.
58. Dubos, R. J. 1976. The Professor, the Institute, and DNA. Oswald T. Avery, His Life and Scientific Achievements. The Rockefeller University Press, New York, N.Y..
59. Dudock, B. S.,, G. Katz,, E. K. Taylor,, and R. W. Holley. 1969. Primary structure of wheat germ phenylalanine transfer RNA. Proc. Natl. Acad. Sci. USA 62: 941 945.
60. Dugaiczyk, A.,, S. L. C. Woo,, E. C. Lai,, M. L. Mace, Jr.,, L. McReynolds,, and B. W. O'Malley. 1978. The natural ovalbumin gene contains seven intervening sequences. Nature (London) 274: 328 333.
61. Dunn, D. B. 1959. Additional components in ribonucleic acid of rat-liver fractions. Biochim. Biophys. Acta 34: 286 288.
62. Dunn, D. B.,, and R. H. Hall,. 1975. Purines, pyrimidines, nucleosides, and nucleotides: physical constants and spectral properties, and natural occurrence of the modified nucleosides, p. 65 250. In G. D. Fasman (ed.), CRC Handbook of Biochemistry and Molecular Biology, Nucleic Acids, 3rd ed., vol. 1. CRC Press, Cleveland, Ohio.
63. Dunn, D. B.,, J. H. Hitchborn,, and A. R. Trim. 1963. Studies on the ribonucleic acid from soluble and particulate fractions of plant leaves. Biochem. J. 88: 34P.
64. Dunn, D. B., and M. D. M. Trigg. 1975. 5-Carbamoylmethyl-uridine: a new minor nucleoside of transfer ribonucleic acid. Biochem. Soc. Trans. 3: 656 659.
65. Edqvist, J.,, K. B. Straby,, and H. Grosjean. 1995. Enzymatic formation of N2,N2-dimethylguanosine in eukaryotic tRNA: importance of the tRNA architecture. Biochimie 77: 54 61.
66. Edsall, J. T. 1995. On the hazards of whistleblowers and on some problems of young biomedical scientists in our time. Sci. Eng. Ethics 1: 329 340.
67. Eichler, D. C. 1994. Characterization of a nucleolar 2'-O-methyltransferase and its involvement in the methylation of mouse precursor ribosomal RNA. Biochimie 76: 1115 1122.
68. Ehresmann, C.,, P. Fellner,, and J.-P. Ebel. 1971. The 3'-terminal nucleotide sequence of the 16S ribosomal RNA from Escherichia coli. FEBS Lett. 13: 325 328.
69. Eladari, M.-E.,, A. Hampe,, and F. Galibert. 1977. Nucleotide sequence neighbouring a late modified guanylic residue within the 28S ribosomal RNA of several eukaryotic cells. Nucleic Acids Res. 4: 1759 1767.
70. Ellis, S. R.,, M. J. Morales,, J.-M. Li,, A. K. Hopper,, and N. C. Martin. 1986. Isolation and characterization of the TRM1 locus, a gene essential for the N2,N2-dimethylguanosine modification of both mitochondrial and cytoplasmic tRNA in Saccharomyces cerevisiae. J. Biol. Chem. 261: 9703 9709.
71. Fellner, P. 1969. Nucleotide sequences from specific areas of the 16S and 23S ribosomal RNAs of E. coli. Eur. J. Biochem. 11: 12 27.
72. Fleissner, E.,, and E. Borek. 1963. Studies on the enzymatic methylation of soluble RNA. I. Methylation of the s-RNA polymer. Biochemistry 2: 1093 1100.
73. Fresco, J. R.,, B. M. Alberts,, and P. Doty. 1960. Some molecular details of the secondary structure of ribonucleic acid. Nature (London) 188: 98 101.
74. Ganot, P.,, M.-L. Bortolin,, and T. Kiss. 1997. Site-specific pseudouridine formation in preribosomal RNA is guided by small nucleolar RNAs. Cell 89: 799 809.
75. Gilbert, W. 1986. The RNA world. Nature (London) 319: 618.
76. Gray, M. W. 1974. The presence of O2' -methylpseudouridine in the 18S + 26S ribosomal ribonucleates of wheat embryo. Biochemistry 13: 5453 5463.
77. Gray M. W.,, and B. G. Lane. 1967. Studies of the sequence distribution of 2'-O-methylribose in yeast soluble ribonucleates. Biochim. Biophys. Acta 134: 243 257.
78. Gray, M. W.,, and B. G. Lane. 1968. 5-Carboxymethyluridine, a novel nucleoside derived from yeast and wheat embryo transfer ribonucleates. Biochemistry 7: 3441 3453.
79. Green, R.,, and H. F. Noller. 1996. In vitro complementation analysis localizes 23S rRNA posttranscriptional modifications that are required for Escherichia coli 50S ribosomal subunit assembly and function. RNA 2: 1011 1021.
80. Green, R.,, R. R. Samaha,, and H. F. Noller. 1997a. Mutations at nucleotides G2251 and U2585 of 23S rRNA perturb the peptidyl transferase center of the ribosome. J. Mol. Biol. 266: 40 50.
81. Green, R.,, C. Switzer,, and H. F. Noller. 1997b. Localization of the A site on the 50S subunit of the ribosome, p. 87. In The Second Annual Meeting of the RNA Society Abstracts.
82. Grosjean, H.,, J. Edqvist,, K. B. Straby,, and R. Giege. 1996. Enzymatic formation of modified nucleosides in tRNA: dependence on tRNA architecture. J. Mol. Biol. 255: 67 85.
83. Grosjean, H.,, Z. Szweykowska-Kulinska,, Y. Motorin,, F. Fasiolo,, and G. Simos. 1997. IntroN-dependent enzymatic formation of modified nucleosides in eukaryotic tRNAs: a review. Biochimie 79: 293 302.
84. Gutell, R. R. 1994. Collection of small subunit (16S- and 16S-like) ribosomal RNA structures: 1994. Nucleic Acids Res. 22: 3502 3507.
85. Gutell, R. R.,, M. W. Gray,, and M. N. Schnare. 1993. A compilation of large subunit (23S and 23S-like) ribosomal RNA structures: 1993. Nucleic Acids Res. 21: 3055 3074.
86. Haffner, M. H.,, M. B. Chin,, and B. G. Lane. 1978. Wheat embryo ribonucleates. XII. Formal characterization of terminal and penultimate nucleoside residues at the 5'-ends of 'capped' RNA from imbibing wheat embryos. Can. J. Biochem. 56: 729 733.
87. Hagervall, T. G.,, J. U. Ericson,, K. B. Esberg,, L. Ji-nong,, and G. R. Björk. 1990. Role of tRNA modification in translational fidelity. Biochim. Biophys. Acta 1050: 263 266.
88. Hall, B. D.,, and P. Doty. 1959. The preparation and physical chemical properties of ribonucleic acid from microsomal particles. J. Mol. Biol. 1: 111 126.
89. Hall, R. H. 1971. The Modified Nucleosides in Nucleic Acids. Columbia University Press, New York, N.Y..
90. Hanes, C. S. 1953. The formation of peptides in enzymic reactions. Br. Med. Bull. 9: 131 134.
91. Harris, H. 1974. Nucleus and Cytoplasm. Clarendon Press, Oxford, United Kingdom.
92. Hoagland, M. B., 1960. The relationship of nucleic acid and protein synthesis as revealed by studies in cell-free systems, p. 349 408. In E. Chargaff, and J. N. Davidson (ed.), The Nucleic Acids, vol. 3. Academic Press Inc., New York, N.Y..
93. Hoagland, M. B.,, M. L. Stephenson,, J. F. Scott,, L. I. Hecht,, and P. C. Zamecnik. 1958. A soluble ribonucleic acid intermediate in protein synthesis. J. Biol. Chem. 231: 241 257.
94. Holley, R. W. 1957. An alanine-dependent, ribonuclease-inhibited conversion of AMP to ATP, and its possible relationship to protein synthesis. J. Am. Chem. Soc. 79: 658 662.
95. Holley, R. W.,, J. Apgar,, G. A. Everett,, J. T. Madison,, M. Marquisee,, S. H. Merrill,, J. R. Penswick,, and A. Zamir. 1965. Structure of a ribonucleic acid. Science 147: 1462 1465.
96. Hotchkiss, R. D. 1948. The quantitative separation of purines, pyrimidines, and nucleosides by paper chromatography. J. Biol. Chem. 175: 315 332.
97. Hudson, L.,, M. Gray,, and B. G. Lane. 1965. The alkali-stable dinucleotide sequences and the chain termini in soluble ribonucleates from wheat germ. Biochemistry 4: 2009 2016.
98. James, W. O., 1950. Alkaloids in the plant, p. 15 90. In R. H. F. Manske, and H. L. Holmes (ed.), The Alkaloids. Chemistry and Physiology, vol. 1. Academic Press Inc., New York, N.Y..
99. Johnson, L.,, and D. Soll. 1970. In vitro biosynthesis of pseudouridine at the polynucleotide level by an enzyme extract from Escherichia coli. Proc. Natl. Acad. Sci. USA 67: 943 950.
100. Joyce, G. F.,, and L. E. Orgel,. 1993. Prospects for understanding the origin of the RNA world, p. 1 25. In R. F. Gesteland, and J. F. Atkins (ed.), The RNA World. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y..
101. Judson, H. F. 1979. The Eighth Day of Creation. Makers of the Revolution in Biology, p. 327. Simon and Schuster, New York, N.Y..
102. Kennedy, T. D.,, T. C. Kwong,, and B. G. Lane. 1977. Wheat embryo ribonucleates. IX. Generation of N2-dimethylguanylate when bulk wheat embryo tRNA is used as substrate for wheat embryo S-adenosylmethionine-tRNA methyltransferases, in vitro. Can. J. Biochem. 55: 1039 1048.
103. Kennedy, T. D.,, and B. G. Lane. 1979. Wheat embryo ribonucleates. XIII. Methyl-substituted nucleoside constituents and 5'-terminal dinucleotide sequences in bulk poly(A)-rich RNA from imbibing wheat embryos. Can. J. Biochem. 57: 927 931.
104. Kennedy, T. D.,, and B. G. Lane. 1984. Wheat-embryo ribonucleates. XV. Characterization of a fraction of RNA subject to conspicuous terminal labeling during early germination of wheat embryos. Can. J. Biochem. Cell Biol. 62: 321 328.
105. Klootwijk, J.,, I. Klein,, and L. A. Grivell. 1975. Minimal posttranscriptional modification of yeast mitochondrial ribosomal RNA. J. Mol. Biol. 97: 337 350.
106. Kruger, M.,, and G. Salomon. 1898. Epiguanin. Hoppe-Seyler's Z. Physiol. Chem. 26: 389 394.
107. Krzyzosiak, W.,, R. Denman,, K., Nurse,, W. Hellmann,, M. Boublik,, C. W. Gehrke,, P. F. Agris,, and J. Ofengand. 1987. In vitro synthesis of 16S ribosomal RNA containing single base changes and assembly into a functional 30S ribosome. Biochemistry 26: 2353 2364.
108. Kuchino, Y.,, T. Seno,, and S. Nishimura. 1971. Fragmented E. coli methionine tRNA^as methyl acceptor for rat liver tRNA methylase: alteration of the site of methylation by the conformational change of tRNA structure resulting from fragmentation. Biochem. Biophys. Res. Commun. 43: 476 483.
109. Kuntzel, B.,, J. Weissenbach,, R. E. Wolff,, T. D. Tumaitis-Kennedy,, B. G. Lane,, and G. Dirheimer. 1975. Presence of the methylester of 5-carboxymethyl uridine in the wobble position of the anti-codon of tRNAArg111IU from brewer's yeast. Biochimie 57: 61 70.
110. Kurland, C. G. 1960. Molecular characterization of ribonucleic acid from Escherichia coli ribosomes. Isolation and molecular weights. J. Mol. Biol. 2: 83 91.
111. Kwong, T. C.,, and B. G. Lane. 1975. Wheat embryo ribonucleates. V. Generation of N2-dimethylguanylate when 'fully sequenced' homogeneous species of transfer RNA are used as substrates for wheat embryo methyltransferases. Can. J. Biochem. 53: 690 697.
112. Lafontaine, D.,, J. Delcour,, A-L. Glasser,, J. Desgres,, and J. Vandenhaute. 1994. The DIM1 gene responsible for the conserved m62Am62A dimethylation in the 3'-terminal loop of 18S rRNA is essential in yeast. J. Mol. Biol. 241: 492 497.
113. Lafontaine, D. L. J.,, T. Preiss,, and D. Tollervey. 1997. The yeast 18S rRNA dimethylase Dim1p; quality control in ribosome synthesis, p. 327. In The Second Annual Meeting of the RNA Society Abstracts.
114. Lane, B. G. 1962. Studies of the terminal residues of high molecular weight ribonucleates. Can. J. Biochem. Physiol. 40: 1071 1078.
115. Lane, B. G. 1963. The separation of adenosine, guanosine, cytidine and uridine by one-dimensional filter-paper chromatography. Biochim. Biophys. Acta 72: 110 112.
116. Lane, B. G. 1965. The alkali-stable trinucleotide sequences and the chain termini in 18S + 28S ribonucleates from wheat germ. Biochemistry 4: 212 219.
117. Lane, B. G. 1979a. Nucleate research in Toronto. Trends Biochem. Sci. 4: N124 N125.
118. Lane, B. G. 1979b. The language of biochemistry. Can. Res. 12 (4): 31 34.
119. Lane, B. G. 1985. Sequences in the 3'-terminal coding regions of 5S and 18S rRNA genes may contribute to cO-ordinated expression of 5S rRNA and pre(18S/5.8S/26S) rRNA genes. FEBS Lett. 186: 11 12.
120. Lane, B. G., 1988. The wheat embryo, then and now, p. 457 476. In H. Kleinkauf,, H. von Dohren,, and L. Jaenicke (ed.), The Roots of Modem Biochemistry. Walter de Gruyter, Berlin, Germany.
121. Lane, B. G. 1991. Cellular desiccation and hydration: developmentally regulated proteins, and the maturation and germination of seed embryos. FASEB J. 5: 2893 2901.
122. Lane, B. G. 1994. Oxalate, germin, and the extracellular matrix of higher plants. FASEB J. 8: 294 301.
123. Lane, B. G.,, and F. W. Allen. 1961. The terminal residues of wheat germ ribonucleates. Biochim. Biophys. Acta 47: 36 46.
124. Lane, B. G.,, and G. C. Butler. 1959a. The isolation, identification, and properties of dinucleotides from alkali hydrolyzates of ribonucleic acids. Can. J. Biochem. Physiol. 37: 1329 1350.
125. Lane, B. G.,, and G. C. Butler. 1959b. The exceptional resistance of certain oligoribonucleotides to alkaline degradation. Biochim. Biophys. Acta 33: 281 283.
126. Lane, B. G.,, J. Diemer,, and C. A. Blashko. 1963. End group and sedimentation data on fragmented high molecular weight ribonucleates. Can. J. Biochem. Physiol. 41: 1927 1941.
127. Lane, B. G.,, and F. Lipmann. 1961. Nonparticipation of ribonucleic acid in glutathione and ophthalmic acid synthesis. J. Biol. Chem. 236: PC80 PC81.
128. Lane, B. G.,, J. Ofengand,, and M. W. Gray. 1992. Pseudouridine in the large-subunit (23S-like) ribosomal RNA. The site of peptidyl transfer in the ribosome? FEBS Lett. 302: 1 4.
129. Lane, B. G.,, J. Ofengand,, and M. W. Gray. 1995. Pseudouridine and O2 -methylated nucleosides. Significance of their selective occurrence in rRNA domains that function in ribosomecatalyzed synthesis of the peptide bonds in proteins. Biochimie 77: 7 15.
130. Lane, B. G.,, and T. Tamaoki. 1967. Studies of the chain termini and alkali-stable dinucleotide sequences in 16S and 28S ribosomal RNA from L cells. J. Mol. Biol. 27: 335 348.
131. Lane, B. G.,, and T. Tamaoki. 1969. Methylated bases and sugars in 16-S and 28-S RNA from L cells. Biochim. Biophys. Acta 179: 332 340.
132. Lau, R. Y.,, T. D. Kennedy,, and B. G. Lane. 1974. Wheat embryo ribonucleates. III. Modified nucleotide constituents in each of the 5.8S, 18S and 26S ribonucleates. Can. J. Biochem. 52: 1110 1123.
133. Lee, Y.,, D. W. Kindelberger,, J.-Y. Lee,, S. McClennen,, J. Chamberlain,, and D. R. Engelke. 1997. Nuclear pre-tRNA terminal structure and RNase P recognition. RNA 3: 175 185.
134. Lerner, M. R.,, J. A. Boyle,, S. M. Mount,, S. L. Wolin,, and J. A. Steitz. 1980. Are snRNPs involved in splicing? Nature (London) 283: 220 224.
135. Levene, P. A.,, and L. W. Bass. 1931. Nucleic acids. T he Chemical Catalogue Co., Inc., New York, N.Y..
136. Li, J.,, R. R. Gutell,, S. H. Damberger,, R. A. Wirtz,, J. C. Kissinger,, M. J. Rogers,, J. Sattabongkot,, and T. F. McCutchan. 1997. Regulation and trafficking of three distinct 18S ribosomal RNAs during development of the malaria parasite. J. Mol. Biol. 269: 203 213.
137. Limbach, P. A.,, P. F. Crain,, and J. A. McCloskey. 1994. Summary: the modified nucleosides of RNA. Nucleic Acids Res. 22: 2183 2196.
138. Littlefield, J. W.,, and D. B. Dunn. 1958. The occurrence and distribution of thymine and three methylated-adenine bases in ribonucleic acids from several sources. Biochem. J. 70: 642 651.
139. Loftfield, R. B. 1972. The mechanism of aminoacylation of transfer RNA. Prog. Nucleic Acid Res. Mol. Biol. 12: 87 128.
140. Maden, B. E. H. 1988. Locations of methyl groups in 28S rRNA of Xenopus laevis and man. Clustering in the conserved core of molecule. J. Mol. Biol. 201: 289 314.
141. Maden, B. E. H. 1990. The numerous modified nucleotides in eukaryotic ribosomal RNA. Prog. Nucleic Acid Res. Mol. Biol. 39: 241 303.
142. Maden, B. E. H.,, R. R. Traut,, and R. E. Monro. 1968. Ribosome-catalyzed peptidyl transfer: the polyphenylalanine system. J. Mol. Biol. 35: 333 345.
143. Madison, J. T.,, and S. J. Boguslawski. 1976. Partial digestion of a yeast lysine transfer ribonucleic acid and reconstitution of the nucleotide sequence. Biochemistry 13: 524 527.
144. Magasanik, B., 1955. Isolation and composition of the pentose nucleic acids and of the corresponding nucleoproteins, p. 373 407, 474 475. In E. Chargaff, and J. N. Davidson (ed.), The Nucleic Acids: Chemistry and Biology, vol. 1. Academic Press Inc., New York, N.Y..
145. Mandel, L. R.,, and E. Borek. 1963. The nature of the RNA synthesized during conditions of unbalanced growth in E coli KI2W-6. Biochemistry 2: 560 566.
146. Marko, A. M.,, and G. C. Butler. 1951. The isolation of sodium deoxyribonucleate with sodium dodecyl sulphate. J. Biol. Chem. 190: 165 176.
147. Mason, T. L.,, C. Pan,, M. E. Sanchirico,, and K. Sirum-Connolly. 1996. Molecular genetics of the peptidyl transferase center and the unusual Var1 protein in yeast mitochondrial ribosomes. Experientia 52: 1148 1157.
148. Matheson, A. T.,, and C. S. Hanes. 1959. The chemical nature of intracellular peptidases. Biochim. Biophys. Acta 33: 292 294.
149. Maxwell, E. S.,, and M. J. Fournier. 1995. The small nucleolar RNAs. Annu. Rev. Biochem. 64: 897 934.
150. McConkey, E. H.,, and J. W. Hopkins. 1969. Molecular weights of some HeLa ribosomal RNAs. J. Mol. Biol. 39: 545 550.
151. Messing, J. 1988. M13, the universal primer and polylinker. Focus 10: 21 26.
152. Moore, M. J.,, C. C. Query,, and P. A. Sharp,. 1993. Splicing of precursors to mRNA by the spliceosome, p. 303 357. In R. F. Gesteland, and J. F. Atkins (ed.), The RNA World. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y..
153. Munholland, J. M.,, and R. N. Nazar. 1987. Methylation of ribosomal RNA as a possible factor in cell differentiation. Cancer Res. 47: 169 172.
154. Nazar, R. N. 1984. The ribosomal 5.8S RNA: eukaryotic adaptation or processing variant? Can. J. Biochem. Cell Biol. 62: 311 320.
155. Nevins, J. R. 1983. The pathway of eukaryotic mRNA formation. Annu. Rev. Biochem. 52: 441 466.
156. Ni, J.,, A. L. Tien,, and M. J. Fournier. 1997. Small nucleolar RNAs direct site-specific synthesis of pseudouridine in ribosomal RNA. Cell 89: 565 573.
157. Nichols, J. L.,, and B. G. Lane. 1966a. The characteristic alkali-stable dinucleotide sequences in each of the 16S and 23S components of ribosomal ribonucleates from Escherichia coli. Can. J. Biochem. 44: 1633 1645.
158. Nichols, J. L.,, and B. G. Lane. 1966b. N4-methyl-2'-O-methyl cytidine and other methyl-substituted nucleoside constituents of Escherichia coli ribosomal and soluble RNA. Biochim. Biophys. Acta 119: 649 651.
159. Nichols, J. L.,, and B. G. Lane. 1967. In vivo incorporation of methyl groups into the ribose of Escherichia coli ribosomal RNA. J. Mol. Biol. 30: 477 489.
160. Nichols, J. L.,, and B. G. Lane. 1968a. The in vitro O2-methylation of RNA in the ribonucleoprotein precursor-particles from a Relaxed mutant of Escherichia coli. Can. J. Biochem. 46: 109 115.
161. Nichols, J. L.,, and B. G. Lane. 1968b. In vitro O2'-methylation of sugars in E. coli RNA. II. Methylation of ribosomal and transfer RNA by homologous methylases in crude cell-free extracts and particulate suspensions from a relaxed mutant of E. coli. Can. J. Biochem. 46: 1487 1495.
162. Nichols, J. L.,, and B. G. Lane. 1968c. Characterization of N4,O2-dimethylcytidine, a rare nucleoside constituent of Escherichia coli 16-S RNA. Biochim. Biophys. Acta 166: 605 615.
163. Nichols, J. L.,, and B. G. Lane. 1969. In vitro O2'-methylation of sugars in E. coli RNA. III. Methylation of E. coli transfer RNA by heterologous methylases in particulate-free extracts of wheat embryo. Can. J. Biochem. 47: 863 869.
164. Nishikura, K.,, and E. M. de Robertis. 1981. RNA processing in microinjected Xenopus oocytes. Sequential addition of base modifications in a spliced transfer RNA. J. Mol. Biol. 145: 405 420.
165. Noller, H. F. 1993. tRNA-rRNA interactions and peptidyl transferase. FASEB J. 7: 87 89.
166. Noller, H. F.,, V. Hoffarth,, and L. Zimniak. 1992. Unusual resistance of peptidyl transferase to protein extraction procedures. Science 256: 1416 1419.
167. Nurse, K.,, J. Wrzesinski,, A. Bakin,, B. G. Lane,, and J. Ofengand. 1995. Purification, cloning, and properties of the tRNA ψ55 synthase from Escherichia coli. RNA 1: 102 112.
168. Oakden, K. M.,, A. A. Azad,, R. Y. Lau,, and B. G. Lane. 1972. Aqueous denaturation of wheat embryo ribonucleates. Biochim. Biophys. Acta 272: 252 261.
169. Oakden, K. M.,, and B. G. Lane. 1973. Chain termini of the satellite RNA from yeast ribosomes. Can. J. Biochem. 51: 520 528.
170. Oakden, K. M.,, and B. G. Lane. 1976. Wheat embryo ribonucleates. VI. Comparison of the 3'-hydroxy! termini in 'rapidly labeled' RNA from metabolizing wheat embryos with the corresponding termini in ribosomal RNA from differentiating embryos of wheat, barley, corn and pea. Can. J. Biochem. 54: 261 271.
171. O'Connor, M.,, C. L. Thomas,, R. A. Zimmermann,, and A. E. Dahlberg. 1997. Decoding fidelity at the ribosomal A and P sites: influence of mutations in three different regions of the decoding domain in 16S rRNA. Nucleic Acids Res. 25: 1185 1193.
172. Ofengand, J., and A. Bakin. 1997. Mapping to nucleotide resolution of pseudouridine residues in large subunit ribosomal RNAs from representative eukaryotes, prokaryotes, archaebacteria, mitochondria and chloroplasts. J. Mol. Biol. 266: 246 268.
173. Ofengand, J.,, A. Bakin,, J. Wrzesinski,, K. Nurse,, and B. G. Lane. 1995. The pseudouridine residues of ribosomal RNA. Biochem. Cell Biol. 73: 915 924.
174. Orgel, L. E.,, and F. H. C. Crick. 1993. Anticipating an RNA world. Some past speculations on the origin of life: where are they to-day? FASEB J. 7: 238 239.
175. Otaka, E.,, Y. Oota,, and S. Osawa. 1961. Sub-unit of ribosomal ribonucleic acid from yeast. Nature (London) 191: 598 599.
176. Pene, J. J.,, E. Knight, Jr.,, and J. E. Darnell, Jr. 1968. Characterization of a new low molecular weight RNA in HeLa cell ribosomes. J. Mol. Biol. 33: 609 623.
177. Perret, V.,, A. Garcia,, H. Grosjean,, J.-P. Ebel,, C. Florentz,, and R. Giege. 1990. Relaxation of a transfer RNA specificity by removal of modified nucleotides. Nature (London) 344: 787 789.
178. Perry, R. P.,, and D. E. Kelley. 1974. Existence of methylated messenger RNA in mouse L cells. Cell 1: 37 42.
179. Perry, R. P.,, D. E. Kelley,, K. Friderici,, and F. Rottman. 1975. The methylated constituents of L cell messenger RNA: evidence for an unusual cluster at the 5' terminus. Cell 4: 387 394.
180. Persson, B. C.,, C. Gustafsson,, D. E. Berg,, and G. R. Björk. 1992. The gene for a tRNA modifying enzyme, m5U54-methyl-transferase, is essential for viability in E. coli. Proc. Natl. Acad. Sci. USA 89: 3995 3998.
181. Phillips, J. H.,, and K. KjelliN-Straby. 1967. Studies on microbial ribonucleic acid. IV. Two mutants of Saccharomyces cerevisiae lacking N2-dimethylguanosine in soluble ribonucleic acid. J. Mol. Biol. 26: 509 518.
182. Porse, B. T.,, and Garrett, R. A. 1995. Mapping important nucleotides in the peptidyl transferase centre of 23S rRNA using a random mutagenesis approach. J. Mol. Biol. 249: 1 10.
183. Prince, J. B.,, B. H. Taylor,, D. L. Thurlow,, J. Ofengand,, and R. A. Zimmermann. 1982. Covalent crosslinking of tRNAVal1 to 16S RNA at the ribosomal P site: identification of cross-linked residues. Proc. Natl. Acad. Sci. USA 79: 5450 5454.
184. RajBhandary, U. L.,, S. H. Chang,, A. Stuart,, R. D. Faulkner,, R. M. Hoskinson,, and H. G. Khorana. 1967. Studies on polynucleotides. LXVIII. The primary structure of yeast phenylalanine transfer RNA. Proc. Natl. Acad. Sci. USA 57: 751 758.
185. RajBhandary, U. L.,, R. J. Young,, and H. G. Khorana. 1964. Studies on polynucleotides. XXXII. The labeling of end groups in polynucleotide chains: the selective phosphorylation of phosphomonoester groups in amino acid acceptor ribonucleic acids. J. Biol. Chem. 239: 3875 3884.
186. Rhoads, R. E., 1991. Initiation: mRNA and 60S subunit binding, p. 109 148. In H. Trachsel (ed.), Translation in Eukaryotes. CRC Press, Boca Raton, Fla..
187. Robertson, H. D.,, S. Altman,, and J. D. Smith. 1972. Purification and properties of a specific Escherichia coli ribonuclease which cleaves a tyrosine transfer ribonucleic acid precursor. J . Biol. Chem. 247: 5243 5251.
188. Robertus, J. D.,, J. E. Ladner,, J. T. Finch,, D. Rhodes,, R. S. Brown,, B. F. C. Clark,, and A. Klug. 1974. Structure of yeast phenylalanine tRNA at 3 A resolution. Nature (London) 250: 546 551.
189. Rogers, J.,, and R. Wall. 1980. A mechanism for RNA splicing. Proc. Natl. Acad. Sci. USA 77: 1877 1879.
190. Roop, D. R.,, J. L. Nordstrom,, S. Y. Tsai,, M.-J. Tsai,, and B. W. O'Malley. 1978. Transcription of structural and intervening sequences in the ovalbumin gene and identification of potential ovalbumin mRNA precursors. Cell 15: 671 685.
191. Rosbash, M.,, and S. Penman. 1972. The precipitation of precursor tRNA in high salt. Biochem. Biophys. Res. Commun. 46: 1469 1475.
192. Samaha, R. R.,, R. Green,, and H. F. Noller. 1995. A base pair between tRNA and 23S rRNA in the peptidyl transferase centre of the ribosome. Nature (London) 377: 309 314.
193. Samuelsson, T.,, T. Boren,, T.-I. Johansen,, and F. Lustig. 1988. Properties of a transfer RNA lacking modified nucleosides. J. Biol. Chem. 263: 13692 13699.
194. Sanger, F.,, and H. Tuppy. 1951. The aminO-acid sequence in the phenylalanyl chain of insulin. 2. The investigation of peptides from enzymic hydrolysates. Biochem. J. 49: 481 490.
195. Santer, M.,, and A. E. Dahlberg,. 1996. Ribosomal RNA: an historical perspective, p. 3 20. In R. A. Zimmermann, and A. E. Dahlberg (ed.), Ribosomal RNA. Structure, Evolution, Processing, and Function in Protein Biosynthesis. CRC Press, Boca Raton, Fla..
196. Saponara, A. G.,, and M. D. Enger. 1969. Occurrence of N2,N\7-trimethylguanosine in minor RNA species of a mammalian cell line. Nature (London) 223: 1365 1366.
197. Scannell, J. P.,, A. M. Crestfield,, and F. W. Allen. 1959. Methylation studies on various uracil derivatives and on an isomer of uridine isolated from ribonucleic acids. Biochim. Biophys. Acta 32: 406 412.
198. Scherrer, K.,, and J. E. Darnell. 1962. Sedimentation characteristics of rapidly labelled RNA from HeLa cells. Biochem. Biophys. Res. Commun. 7: 486 490.
199. Schnare, M. N.,, and M. W. Gray. 1981. 3'-Terminal nucleotide sequence of Crithidia fasciculata small ribosomal subunit RNA. FEBS Lett. 128: 298 304.
200. Schnare, M. N.,, and M. W. Gray. Unpublished data.
201. Semenza, G. 1957. Chromatographic purification of cysteinylglycinase. Biochim. Biophys. Acta 24: 401 413.
202. Shibata, H.,, T. S. RO-Choi,, R. Reddy,, Y. C. Choi,, D. Henning,, and H. Busch. 1975. The primary nucleotide sequence of nuclear U-2 ribonucleic acid. J. Biol. Chem. 250: 3909 3920.
203. Shugar, D.,, and J. J. Fox. 1952. Spectrophotometric studies of nucleic acid derivatives and related compounds as a function of pH. I. Pyrimidines. Biochim. Biophys. Acta 9: 199 218.
204. Simos, G.,, H. Tekotte,, H. Grosjean,, A. Segref,, K. Sharma,, D. Tollervey,, and E. C. Hurt. 1996. Nuclear pore proteins are involved in the biogenesis of functional tRNA. EMBO J. 15: 2270 2284.
205. Singer, M. F.,, and G. L. Cantoni. 1960. Studies on soluble ribonucleic acid of rabbit liver. Terminal groups and nucleotide composition. Biochim. Biophys. Acta 39: 182 183.
206. Singh, H.,, and B. G. Lane. 1964a. The separation, estimation, and characterization of alkali-stable oligonucleotides derived from commercial ribonucleate preparations. Can. J. Biochem. 42: 87 93.
207. Singh, H.,, and B. G. Lane. 1964b. The alkali-stable dinucleotide sequences in 18S + 28S ribonucleates from wheat germ. Can. J. Biochem. 42: 1011 1021.
208. Sirum-Connolly, K.,, and T. L. Mason. 1993. Functional requirement of a site-specific ribose methylation in ribosomal RNA. Science 262: 1886 1889.
209. Sirum-Connolly, K.,, J. M. Peltier,, P. F. Crain,, J. A. McCloskey,, and T. L. Mason. 1995. Implications of a functional large ribosomal RNA with only three modified nucleosides. Biochimie 77: 30 39.
210. Smith, C. M.,, and J. A. Steitz. 1997. Sno storm in the nucleolus: new roles for myriad small RNPs. Cell 89: 669 672.
211. Smith, J. E.,, B. S. Cooperman,, and P. Mitchell. 1992. Methylation sites in Escherichia coli ribosomal RNA: localization and identification of 4 new sites of methylation in 23S rRNA. Biochemistry 31: 10825 10834.
212. Smith, J. D.,, and D. B. Dunn. 1959a. An additional sugar component of ribonucleic acids. Biochim. Biophys. Acta 31: 573 575.
213. Smith, J. D.,, and D. B. Dunn. 1959b. The occurrence of methylated guanines in ribonucleic acids from several sources. Biochem. J. 72: 294 301.
214. Spector, L. B.,, and E. B. Keller. 1958. Labile acetylated uracil derivatives. J. Biol. Chem. 232: 185 192.
215. Streeter, D. G.,, and B. G. Lane. 1970. Studies of the biogenesis of N2-dimethylguanylate. I. Generation of N2-dimethylguanylate when bulk Escherichia coli transfer RNA is used as a substrate for wheat embryo methyltransferases. Biochim. Biophys. Acta 199: 394 404.
216. Suddath, F. L.,, G. J. Quigley,, A. McPherson,, D. Sneden,, J. J. Kim,, S. H. Kim,, and A. Rich. 1974. Three-dimensional structure of yeast phenylalanine tRNA at 3 A resolution. Nature (London) 248: 20 24.
217. Tamaoki, T.,, and B. G. Lane. 1967. The chain termini and alkali-stable dinucleotide sequences in rapidly labeled ribonucleates from L cells. Biochemistry 6: 3583 3591.
218. Tamaoki, T., and B. G. Lane. 1968. Methylation of sugars and bases in ribosomal and rapidly labeled ribonucleates from normal and puromyciN-treated L cells. Biochemistry 7: 3431 3440.
219. Tamaoki, T.,, and G. C. Mueller. 1962. Synthesis of nuclear and cytoplasmic RNA of HeLa cells and the effect of actinomycin D. Biochem. Biophys. Res. Commun. 9: 451 454.
220. Tazawa, I.,, T. Koike,, and Y. Inoue. 1980. Stacking properties of a highly hydrophobic dinucleotide sequence, N6,N6-dimethyladenylyl(3'-5')N6,N6-dimethyladenosine, occurring in 16-18-S ribosomal RNA. Eur. J. Biochem. 109: 33 38.
221. Tilghman, S. M.,, P. J. Curtis,, D. C. Tiemeier,, P. Leder,, and C. Weissmann. 1978. The intervening sequence of a mouse β-globin gene is transcribed within the 15S β-gIobin mRNA precursor. Proc. Natl. Acad. Sci USA 75: 1309 1313.
222. Tollervey, D. 1987. A yeast small nuclear RNA is required for normal processing of pre-ribosomal RNA. EMBO J. 6: 4169 4175.
223. Tollervey, D.,, H. Lehtonen,, R. Jansen,, H. Kern,, and E. C. Hurt. 1993. Temperature-sensitive mutations demonstrate roles for yeast fibrillarin in pre-rRNA processing, pre-rRNA methylation, and ribosome assembly. Cell 72: 443 457.
224. Tschirch, A., 1923. Cited by W. O. James,. 1950. Alkaloids in the plant, p. 82. In R. H. F. Manske, and H. L. Holmes (ed.), The Alkaloids. Chemistry and Physiology, vol. 1. Academic Press Inc., New York.
225. Tsui, H.-C. T.,, P. J. Arps,, D. M. Connolly,, and M. E. Winkler. 1991. Absence of hisT-mediated tRNA pseudouridylation results in a uracil requirement that interferes with Escherichia coli K-12 cell division. J. Bacteriol. 173: 7395 7400.
226. Tumaitis, T. D.,, and B. G. Lane. 1970. Differential labelling of the carboxymethyl and methyl substituents of 5-carboxyme-thyluridine methyl ester, a trace nucleoside constituent of yeast transfer RNA. Biochim. Biophys. Acta 224: 391 403.
227. van Knippenberg, P. H., 1986. Structural and functional aspects of N6,N6-dimethyladenosines in 16S ribosomal RNA, p. 412 424. In B. Hardesty, and G. Kramer (ed.), Structure, Function, and Genetics of Ribosomes. Springer-Verlag, Berlin, Germany.
228. Vaughan, M. H., Jr.,, R. Soeiro,, J. R. Warner,, and J. E. Darnell, Jr. 1967. The effects of methionine deprivation on ribosome synthesis in HeLa cells. Proc. Natl. Acad. Sci. USA 58: 1527 1534.
229. Veldman, G. M.,, J. Klootwijk,, V. C. H. F. de Regt,, R. J. Planta,, C. Branlant,, A. Krol,, and J.-P. Ebel. 1981. The primary and secondary structure of yeast 26S rRNA. Nucleic Acids Res. 9: 6935 6952.
230. Vladimirov, S. N.,, A. V. Ivanov,, G. G. Karpova,, A. K. Musoly-amov,, T. A. Egorov,, B. Thiede,, B. WittmanN-Liebold,, and A. Otto. 1996. Characterization of the human small-ribosomal-subunit proteins by N-terminal and internal sequencing, and mass spectrometry. Eur. J. Biochem. 239: 144 149.
231. Waldrop, M. M. 1992. Finding RNA makes proteins gives 'RNA World' a big boost. Science 256: 1396 1397.
232. Watson, J. D.,, and F. H. C. Crick. 1953. Molecular structure of nucleic acids. A structure for deoxyribose nucleic acid. Nature (London) 171: 737 738.
233. Weinberg, R. A.,, U. Loening,, M. Willems,, and S. Penman. 1967. Acrylamide gel electrophoresis of HeLa cell nucleolar RNA. Proc. Natl. Acad. Sci. USA 58: 1088 1095.
234. Weitzmann, C. J.,, P. R. Cunningham,, and J. Ofengand. 1990. Cloning, in vitro transcription, and biological activity of Escherichia coli 23S ribosomal RNA. Nucleic Acids Res. 18: 3515 3520.
235. Woese, C. R.,, and N. R. Pace,. 1993. Probing RNA structure, function, and history by comparative analysis, p. 91 117. In R. F. Gesteland, and J. F. Atkins (ed.), The RNA World. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y..
236. Wood, D. D.,, H. Pang,, A. Hempel,, N. Camerman,, B. G. Lane,, and M. A. Moscarello. 1995. Participation of acetylpseudouridine in the synthesis of a peptide bond in vitro. J. Biol. Chem. 270: 21040 21044.
237. Wrzesinski, J.,, K. Nurse,, A. Bakin,, B. G. Lane,, and J. Ofengand. 1995. A dual-specificity pseudouridine synthase: an Escherichia coli synthase purified and cloned on the basis of its specificity for ψ746 in 23S RNA is also specific for ψ32 in tRNAPhe. RNA 1: 437 448.
238. Wyatt, G. R. 1950. Occurrence of 5-methyl-cytosine in nucleic acids. Nature (London) 166: 237 238.
239. Yarus, M. 1993. How many catalytic RNAs? Ions and the Cheshire cat conjecture. FASEB J. 7: 31 39.
240. Yokoyama, S.,, and S. Nishimura,. 1995. Modified nucleosides and codon recognition, p. 207 223. In D. Sol,i and U. L. Raj-Bhandary (ed.), tRNA: Structure, Biosynthesis, and Function. ASM Press, Washington, D.C..
241. Yu, C.-T.,, and F. W. Allen. 1959. Studies on an isomer of uridine isolated from ribonucleic acids. Biochim. Biophys. Acta 32: 393 406.
242. Zachau, H. G.,, G. Acs,, and F. Lipmann. 1958. Isolation of adenosine amino acid esters from a ribonuclease digest of soluble, liver ribonucleic acid. Proc. Natl. Acad. Sci. USA 44: 885 889.
243. Zamecnik, P. C. 1962. The First Jubilee Lecture: unsettled questions in the field of protein synthesis. Biochem. J. 85: 257 264.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error