1887

Chapter 13 : Small Nucleolar RNAs Guide the Ribose Methylations of Eukaryotic rRNAs

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Small Nucleolar RNAs Guide the Ribose Methylations of Eukaryotic rRNAs, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818296/9781555811334_Chap13-1.gif /docserver/preview/fulltext/10.1128/9781555818296/9781555811334_Chap13-2.gif

Abstract:

This chapter provides a progress report on developments that should set the stage for dissecting the rRNA-ribose methylation machinery and for deciphering the role of these modifications in ribosome assembly and function. Interestingly, ribose methylations are far from being uniformly distributed within the universally conserved domains of eukaryotic rRNAs. The finding that small RNA guides specify the sites of ribose methylation in eukaryotic rRNAs raises the issue that RNA cofactors also could be involved in prokaryotes. Prokaryotic rRNAs have considerably fewer ribose methylations than eukaryotic rRNAs, with only 4 sites in . Two prokaryotic rRNA ribose methylases have been characterized so far that are each specific for a single site in rRNA. The presence of a complex repertoire of site-specific, -acting snoRNA guides sufficient to precisely target the modification through the formation of a common canonical duplex structure with the rRNA substrate strongly suggests that the enzymology of the reaction is quite simple, at least as to the variety of protein enzymes involved. snoRNA-guided ribose methylation of rRNA involves the formation of scores of 10-21 bp long intermolecular RNA duplexes along the elongating pre-rRNA transcript in eukaryotes. Analyzing the structure of the methylase(s) and pseudouridine synthase(s) involved in the modification of eukaryotic rRNAs, with particular reference to RNA editing enzymes, also recognizing double-stranded RNA structures could be illuminating.

Citation: Bachellerie J, Cavaillé J. 1998. Small Nucleolar RNAs Guide the Ribose Methylations of Eukaryotic rRNAs, p 255-272. In Grosjean H, Benne R (ed), Modification and Editing of RNA. ASM Press, Washington, DC. doi: 10.1128/9781555818296.ch13

Key Concept Ranking

Mobile Genetic Elements
0.64089
RNA Polymerase II
0.5115132
RNA Polymerase I
0.50986844
0.64089
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Clustering of ribose methylation sites in eukaryotic 28S rRNA secondary structure. Only the universally conserved domains of the rRNA molecule are represented (the evolutionarily variable D domains are indicated by dots; the junction between the 5′ and 3′ halves of the molecule is schematized by a broken line). Ribose methylated sites are shown by filled circles (sites that are still presumptive are denoted by question marks). (A) Sites conserved between the yeast and vertebrates (the two arrows point to sites conserved in 23 S rRNA). (B) Ribose methylated sites specific to vertebrates.

Citation: Bachellerie J, Cavaillé J. 1998. Small Nucleolar RNAs Guide the Ribose Methylations of Eukaryotic rRNAs, p 255-272. In Grosjean H, Benne R (ed), Modification and Editing of RNA. ASM Press, Washington, DC. doi: 10.1128/9781555818296.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Ribose methylated nucleotides involved in tertiary interactions in 28S rRNA structure. Among the few tertiary interactions by canonical base pairing which are supported by comparative sequence analysis ( ), only the ones involving ribose methylated nucleotides are shown here (dotted lines). In each case the precise nucleotide positions involved are indicated for human 28S rRNA (the corresponding 23S rRNA coordinates are also given in parentheses).

Citation: Bachellerie J, Cavaillé J. 1998. Small Nucleolar RNAs Guide the Ribose Methylations of Eukaryotic rRNAs, p 255-272. In Grosjean H, Benne R (ed), Modification and Editing of RNA. ASM Press, Washington, DC. doi: 10.1128/9781555818296.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Generic structure of snoRNAs belonging to the box C/D antisense family. Most snoRNAs contain a single antisense element (filled bar), located either immediately upstream from box D (top) or in the 5′ half, immediately upstream from another copy of box D, box D′ (middle). A few snoRNAs (U24, U32, U36, U45 and U50) contain two different antisense elements (bottom). The 5′-3′ terminal stem-box structure shared by most members of the family is schematized on the right.

Citation: Bachellerie J, Cavaillé J. 1998. Small Nucleolar RNAs Guide the Ribose Methylations of Eukaryotic rRNAs, p 255-272. In Grosjean H, Benne R (ed), Modification and Editing of RNA. ASM Press, Washington, DC. doi: 10.1128/9781555818296.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

The snoRNA/rRNA guide duplex at ribose methylation sites. (A) Structure of the canonical base pairing (dots denote base pairs not present in all duplexes). (B) Representation of the RNA duplex as an Α-form helix, in the case of the U24-25S rRNA interaction. The nucleotides shown are written in the upper part and the site of ribose methylation is denoted by an arrow. (Panel Β is reproduced with permission from )

Citation: Bachellerie J, Cavaillé J. 1998. Small Nucleolar RNAs Guide the Ribose Methylations of Eukaryotic rRNAs, p 255-272. In Grosjean H, Benne R (ed), Modification and Editing of RNA. ASM Press, Washington, DC. doi: 10.1128/9781555818296.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Mutually exclusive snoRNA/rRNA duplexes at adjacent ribose methylation sites. The two sites of ribose methylation in the 18S rRNA sequence (middle line) are boxed. Arrowheads point to the fifth nucleotide upstream from box D in each cognate guide snoRNAs, U32 and U33 ( ).

Citation: Bachellerie J, Cavaillé J. 1998. Small Nucleolar RNAs Guide the Ribose Methylations of Eukaryotic rRNAs, p 255-272. In Grosjean H, Benne R (ed), Modification and Editing of RNA. ASM Press, Washington, DC. doi: 10.1128/9781555818296.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818296.chap13
1. Abou-Elela, S.,, H. Igel,, and M. Ares, Jr. 1996. RNase III cleaves eukaryotic preribosomal RNA at a U3 snoRNP-dependent site. Cell 85: 115 124.
2. Amiri, K. A. 1994. Fibrillarin-like proteins occur in the domain Archaea. J. Bacterial. 176: 2124 2127.
3. Bachellerie, J.-P.,, and J. Cavaillé. 1997. Guiding ribose methylation of rRNA. Trends Biochem. Sci. 22: 257 261.
4. Bachellerie, J.-P.,, B. Michot,, M. Nicoloso,, A. Balakin,, J. Ni,, and M. J. Fournier. 1995a. Antisense snoRNAs: a family of nucleolar RNAs with long complementarities to rRNA. Trends Biochem. Sci. 20: 261 264.
5. Bachellerie, J.-P.,, M. Nicoloso,, L. H. Qu,, B. Michot,, M. Caizergues-Ferrer,, J. Cavailli,, and M. H. Renalier. 1995. Novel intron-encoded small nucleolar RNAs with long sequence complementarities to mature rRNAs involved in ribosome biogenesis. Biochem. Cell Biol. 73: 835 843.
6. Bakin, A.,, and J. Ofengand. 1993. Four newly located pseudouridine residues in Escherichia coli 23S ribosomal RNA are all at the peptidyltransferase center: analysis by the application of a new sequencing technique. Biochemistry 32: 9754 9762.
7. Balakin, A. G.,, L. Smith,, and M. J. Fournier. 1996. The RNA world of the nucleolus: two major families of small nucleolar RNAs defined by different box elements with related functions. Cell 86: 823 834.
8. Balakin, A. G.,, R. A. Lempicki,, G. M. Huang,, and M. J. Fournier. 1994. Saccharomyces cerevisiae U14 small nuclear RNA has little secondary structure and appears to be produced by posttranscriptional processing. J. Biol. Chem. 269: 739 746.
9. BardweU, V. J.,, M. Wickens,, S. Bienroth,, W. Keller,, B. S. Sproat,, and A. I. Lamond. 1991. Site-directed ribose methylation identifies 2'-OH groups in polyadenylation substrate critical for AAUAAA recognition and poly(A) addition. Cell 65: 125 133.
10. Baserga, S. J.,, X. W. Yang,, and J. A. Steitz. 1991. An intact box C sequence in the U3 snRNA is required for binding of fibrillarin, the protein common to the major family of nucleolar snRNPs. EMBO J. 10: 2645 2651.
11. Bass, B. L. 1997. RNA editing and hypermutation by adenosine deamination. Trends Biochem. Sci. 22: 157 162.
12. Benne, R. 1992. RNA editing in trypanosomes. Mol. Biol. Rep. 16: 217 227.
13. Bond, V. C, and B. Wold. 1993. Nucleolar localization of myc transcripts. Mol. Cell. Biol. 13: 3221 3230.
14. Bousquet-Antonelli, C.,, Y. Henry,, J.-P. Gelugne,, M. Caizergues-Ferrer,, and T. Kiss. 1997. A small nucleolar RNP protein is required for pseudouridylation of eukaryotic ribosomal RNAs. EMBO J. 15: 4770 4776.
15. Brimacombe, R.,, P. Mitchell,, M. Osswald,, K. Stade,, and D. Bochkariov. 1993. Clustering of modified nucleotides at the functional center of bacterial ribosomal RNA. FASEB J. 7: 161 167.
16. Caboche, M.,, and J.-P. Bachellerie. 1977. RNA methylation and control of eukaryotic RNA biosynthesis. Effects of cycloleucine, a specific inhibitor of methylation, on ribosomal RNA maturation. Eur.J. Biochem. 74: 19 29.
17. Caffarelli, E.,, A. Fatica,, S. Prislei,, E. De Gregorio,, P. Fragapane,, and I. Bozzoni. 1996. Processing of the intron-incoded U16 and U18 snoRNAs: the conserved C and D boxes control both the processing and the stability of the mature snoRNA. EMBO J. 15: 1121 1131.
18. Cattaneo, R. 1994. RNA duplexes guide base conversions. Curr. Biol. 4: 134 136.
19. Cavaillé, J. 1997. Biosynthese et fonction dans la methylation de l'ARNr du petit ARN nucleolaire d'origine intronique U20. Ph.D. thesis. Université Paul-Sabatier, Toulouse, France.
20. Cavaillé, J.,, and J.-P. Bachellerie. 1996. Processing of fibrillarin-associated snoRNAs from pre-mRNA introns: an exonucleolytic process exclusively directed by the common stem-box terminal structure. Biochimie 78: 443 456.
21. Cavaillé, J.,, M. Nicoloso,, and J.-P. Bachellerie. 1996. Targeted ribose methylation of RNA in vivo directed by tailored antisense RNA guides. Nature 383: 732 735.
22. Cech, T. R.,, and O. C. Uhlenbeck. 1994. Hammerhead nailed down. Nature 372: 39 40.
23. Chetouani, F.,, M. Nicoloso,, and J.-P. Bachellerie. Unpublished results.
24. Cundliffe, E. 1989. How antibiotic-producing organisms avoid suicide. Annu. Rev. Microbiol. 43: 207 233.
25. Cunningham, P. R.,, C. J. Weitzmann,, D. Negre,, J. G. Sinning,, V. Frick,, K. Nurse,, and J. Ofengand,. 1990. In vitro analysis of the role of rRNA in protein synthesis: site-specific mutation and methylation, p. 243 252. In W. E. Hill,, A. Dahlberg,, R. A. Garrett,, P. B. Moore,, D. Schlessinger,, and J. R. Warner (ed.), The Ribosome: Structure, Function, and Evolution. American Society for Microbiology, Washington, D.C.
26. Dennis, P. P.,, A. G. Russell,, and M. M. de Sa. 1997. Formation of the 5' end pseudoknot in small subunit ribosomal RNA: involvement of U3-like sequences. RNA 3: 337 343.
27. Droogmans, L.,, E. Hautmont,, S. de Henau,, and H. Grosjean. 1986. Enzymatic 2'-O-methylation of the wobble nucleoside of eukaryotic tRNA Phe: specificity depends on structural elements outside the anticodon loop. EMBOJ. 5: 1105 1109.
28. Eichler, D. C.,, and N. Craig. 1994. Processing of eukaryotic ribosomal RNA. Prog. Nucleic Acid Res. Mol. Biol. 49: 197 239.
29. Ganot, P.,, M. Caizergues-Ferrer,, and T. Kiss. 1997a. The family of box ACA snoRNAs is defined by an evolutionarily conserved secondary structure and ubiquitous sequence elements essential for RNA accumulation. Genes Dev. 11: 946 972.
30. Ganot, P.,, M. L. Bortolin,, and T. Kiss. 1997b. Site-specific pseudouridine formation in eukaryotic pre-rRNAs is guided by small nucleolar RNAs. Cell 89: 799 809.
31. Girard, J.-P.,, H. Lehtonen,, M. Caizergues-Ferrer,, F. Amalric,, D. Tollervey,, and B. Lapeyre. 1992. GAR1 is an essential small nucleolar RNP protein required for pre-rRNA processing in yeast. EMBO J. 11: 673 682.
32. Green, R.,, and H. F. Noller. 1996. In vitro complementation analysis localizes 23 S rRNA posttranscriptional modifications that are required for Escherichia coli 5 OS ribosomal subunit assembly and function. RNA 2: 1011 1021.
33. Grosjean, H.,, S. Auxilien,, F. Constantinesco,, C. Simon,, Y. Corda,, H. F. Becker,, D. Foiret,, A. Morin,, Y. X. Jin,, M. Fournier,, and J. L. Fourrey. 1996. Enzymatic conversion of adenosine to inosine and to N1-methylinosine in transfer RNAs: a review. Biochimie 78: 488 501.
34. Grosjean, H.,, Z. Szweykowska-Kulinska,, Y. Motorin,, F. Fasiolo,, and G. Simos. 1997. Intron-dependent enzymatic formation of modified nucleosides in eukaryotic tRNAs: a review. Biochimie 79: 293 302.
35. Gustafsson, C.,, R. Reid,, P. J. Greene,, and D. V. Santi. 1996. Identification of new RNA modifying enzymes by iterative genome search using known modifying enzymes as probes. Nucleic Acids Res. 24: 3756 3762.
36. Hadjiolov, A. A. 1985. The Nucleolus and Ribosome Biogenesis. Springer-Verlag, New York, N.Y.
37. Hodel, A. E.,, P. D. Gershon,, X. Shi,, and F. A. Quiocho. 1996. The 1.85 A 0 structure of vaccinia protein VP39, a bifunctional protein that participates in the modification of both mRNA ends. Cell 85: 247 256.
38. Hough, R. F.,, and B. L. Bass. 1997. Analysis of Xenopus dsRNA adenosine deaminase cDNAs reveals similarities to DNA methyltransferases. RNA 3: 356 370.
39. Hozak, P.,, P. R. Cook,, C. Schofer,, W. Mosgoller,, and F. Wachtler. 1994. Sites of transcription of ribosomal RNA and intranucleolar structure in HeLa cells. J. Cell Sci. 107: 639 648.
40. Huang, G. M.,, A. Jarmolowski,, J. C. R. Struck,, and M. J. Fournier. 1992. Accumulation of U14 small nuclear RNA in Saccharomyces cerevisiae requires box C, box D and a 5', 3' terminal stem. Mol. Cell. Biol. 12: 4456 4463.
41. Hughes, J. M. X. 1996. Functional base-pairing interaction between highly conserved elements of U3 small nucleolar RNA and the small ribosomal subunit RNA. J. Mol. Biol. 259: 645 654.
42. Jansen, R. P.,, E. C. Hurt,, H. Kern,, H. Lehtonen,, M. Carmo-Fonseca,, B. Lapeyre,, and D. Tollervey. 1991. Evolutionary conservation of the human nucleolar protein fibrillarin and its functional expression in yeast. J. Cell Biol. 113: 715 729.
43. Khan, M. S. N.,, M. Salim,, and B. E. H. Maden. 1978. Extensive homologies between the methylated nucleotide sequences in several vertebrate ribosomal ribonucleic acids. Biochem. J. 169: 531 542.
44. Kiss-Laszlo, Z.,, Y. Henry,, J.-P. Bachellerie,, M. Caizergues-Ferrer,, and T. Kiss. 1996. Site-specific ribose methylation of preribosomal RNA: a novel function for small nucleolar RNAs. Cell 85: 1077 1088.
45. Koonin, E. V.,, and K. E. Rudd. 1993. Spoil protein of Escherichia coli belongs to a new family of putative rRNA methylases. Nucleic Acids Res. 21: 5519.
46. Lane, B. G.,, J. Ofengand,, and M. W. Gray. 1995. Pseudouridine and O 2-methylated nucleosides. Significance of their selective occurrence in rRNA domains that function in ribosome-catalyzed synthesis of the peptide bonds in proteins. Biochimie 77: 7 15.
47. Leverette, R. D.,, M. T. Andrews,, and E. S. Maxwell. 1992. Mouse U14 snRNA is a processed intron of the cognate hsc70 heat-shock pre-messenger RNA. Cell 71: 1215 1221.
48. Liang, W.-Q.,, and M. J. Fournier. 1995. U14 base-pairs with 18S rRNA: a novel snoRNA interaction required for rRNA processing. Genes Dev. 9: 2433 2443.
49. Liang, W.-Q.,, J. A. Clark,, and M. J. Fournier. 1997. The rRNA-processing function of the yeast U14 small nucleolar RNA can be rescued by a conserved RNA-helicase-like protein. Mol. Cell. Biol. 17: 4124 4132.
50. Liu, J.,, and E. S. Maxwell. 1990. Mouse U14 snRNA is encoded in an intron of the mouse cognate hsc70 heat shock gene. Nucleic Acids Res. 18: 6565 6571.
51. Maden, B. E. H.,, and M. Salim. 1974. The methylated nucleotide sequences in HeLa cell ribosomal RNA and its precursors. J. Mol. Biol. 88: 133 164.
52. Maden, B. E. H. 1986. Identification of the location of the methyl groups in 18S ribosomal RNA from Xenopus laevis and man. J. Mol. Biol. 189: 681 699.
53. Maden, B. E. H. 1988. Location of methyl groups in 28S rRNA of Xenopus laevis and man: clustering in the conserved core of the molecule. J. Mol. Biol. 201: 289 314.
54. Maden, B. E. H. 1990. The numerous modified nucleotides in eukaryotic ribosomal RNA. Prog. Nucleic Acid Res. Mol. Biol. 39: 241 301.
55. Maden, B. E. H. 1996. Click here for methylation. Nature 383: 675 676.
56. Maden, B. E. H.,, M. E. Corbett,, P. A. Heeney,, K. Pugh,, and P. M. Ajuh. 1995. Classical and novel approaches to the detection and localization of the numerous modified nucleotides in eukaryotic ribosomal RNA. Biochimie 77: 22 29.
57. Mason, T. L.,, C. Pan,, M. E. Sanchirico,, and K. Sirum-Connolly. 1996. Molecular genetics of the peptidyl transferase center and the unusual Varl protein in yeast mitochondrial ribosomes. Experientia 52: 1148 1157.
58. Maxwell, E. S.,, and M. J. Fournier. 1995. The small nucleolar RNAs. Annu. Rev. Biochem. 35: 897 934.
59. McCallum, F. S.,, and B. E. H. Maden. 1985. Human 18S ribosomal RNA sequence inferred from DNA sequence. Variations in 18S sequences and secondary modification patterns between vertebrates. Biochem. J. 232: 725 733.
60. Miller, O. L. 1981. The nucleolus, chromosomes, and visualization of genetic activity. J. Cell Biol. 91: 15s 27s.
61. Moazed, D.,, and H. F. Noller. 1989. Interaction of tRNA with 23S rRNA in the ribosomal A, P and E sites. Cell 57: 589 597.
62. Moore, M. J.,, and P. A. Sharp. 1992. Site-specific methylation of pre-mRNA: the 2'-hydroxyl groups at the splice sites. Science 256: 992 997.
63. Negre, D.,, C. Weitzmann,, and J. Ofengand. 1989. In vitro methylation of Escherichia coli 16S ribosomal RNA and 30S ribosomes. Proc. Natl. Acad. Sci. USA 86: 4902 4906.
64. Ni, J.,, A. G. Balakin,, and M. J. Fournier. Personal communication.
65. Ni, J.,, A. L. Tien,, and M. J. Fournier. 1997. Small nucleolar RNAs direct site-specific synthesis of pseudouridine in ribosomal RNA. Cell 89: 565 573.
66. Nicoloso, M.,, M. Caizergues-Ferrer,, B. Michot,, M. C. Azum,, and J.-P. Bachellerie. 1994. U20, a novel small nucleolar RNA, is encoded in an intron of the nucleolin gene in mammals. Mol. Cell. Biol. 14: 5766 5776.
67. Nicoloso, M.,, L.-H. Qu,, B. Michot,, and J.-P. Bachellerie. 1996. Intron-encoded, antisense small nucleolar RNAs: the characterization of nine novel species points to their direct role as guides for the 2'-O-ribose methylation of rRNAs. J. Mol. Biol. 260: 178 195.
68. Noller, H. F.,, T. Powers,, P. N. Allen,, D. Moazed,, and S. Stern,. 1996. Ribosomal RNA and translation: tRNA selection and movement in the ribosome, p. 239 258. In R. A. Zimmermann, and A. E. Dahlberg (ed.), Ribosomal RNA. Structure, Evolution, Processing, and Function in Protein Biosynthesis. Telford, Caldwell, N.J.
69. Ofengand, J.,, A. Bakin,, J. Wrzesinski,, K. Nurse,, and B. G. Lane. 1995. The pseudouridine residues of ribosomal RNA. Biochem. Cell Biol. 73: 915 924.
70. Pley, H. W.,, K. M. Flaherty,, and D. B. McKay. 1994. Three dimensional structure of a hammerhead ribozyme. Nature 372: 68 74.
71. Poison, A. G.,, B. L. Bass,, and J. L. Casey. 1996. RNA editing of hepatitis delta antigenome by dsRNA-adenosine deaminase. Nature 380: 454 456.
72. Potter, S.,, P. Durovic,, and P. P. Dennis. 1995. Ribosomal RNA precursor processing by a eukaryotic U3 small nucleolar RNA-like molecule in an archaeon. Science 268: 1056 1060.
73. Prislei, S.,, A. Michienzi,, C. Presutti,, P. Fragapane,, and I. Bozzoni. 1993. Two different snoRNAs are encoded in introns of amphibian and human LI ribosomal protein genes. Nucleic Acids Res. 21: 5824 5830.
74. Qu, L. H.,, M. Nicoloso,, B. Michot,, M. C. Azum,, M. Caizergues-Ferrer,, M. H. Renalier,, and J.-P. Bachellerie. 1994. U21, a novel small nucleolar RNA with a 13 nt. complementarity to 28S rRNA, is encoded in an intron of ribosomal protein L5 gene in chicken and mammals. Nucleic Acids Res. 22: 4073 4081.
75. Qu, L. H.,, Y. Henry,, M. Nicoloso,, B. Michot,, M. C. Azum,, M. H. Renalier,, M. Caizergues-Ferrer,, and J.-P. Bachellerie. 1995. U24, a novel intron-encoded small nucleolar RNA with two 12 nt long, phylogenetically conserved complementarities to 28S rRNA. Nucleic Acids Res. 23: 2669 2676.
76. Renalier, M. H.,, M. Nicoloso,, L. H. Qu,, and J.-P. Bachellerie. 1996. SnoRNA U21 is also intron-encoded in Drosophila melanogaster but in a different host-gene as compared to warmblooded vertebrates. FEBS Lett. 379: 212 216.
77. Schnare, M. N.,, S. H. Damberger,, M. Gray,, and R. R. Gutell. 1996. Comprehensive comparison of structural characteristics in eukaryotic cytoplasmic large subunit (23S-like) ribosomal RNA. J. Mol. Biol. 256: 701 719.
78. Segal, D. M.,, and D. C. Eichler. 1991. A nucleolar 2'-O-methyl-transferase. Specificity and evidence for its role in the methylation of mouse 28S precursor ribosomal RNA. J. Biol. Chem. 266: 24385 24389.
79. Seiwert, S. D.,, and K. Stuart. 1994. RNA editing: transfer of genetic information from gRNA to precursor mRNA in vitro. Science 266: 114 117.
80. Shi, X.,, P. Yao,, T. Jose,, and P. D. Gershon. 1996. Methyltransferases specific domains within VP39, a bifunctional protein that participates in the modification of both mRNA ends. RNA 2: 88 101.
81. Simpson, L.,, and D. A. Maslov. 1994. RNA editing and the evolution of parasites. Science 264: 1870 1871.
82. Sirum-Connolly, K.,, and T. L. Mason. 1993. Functional requirement of a site-specific ribose methylation in ribosomal RNA. Science 262: 1886 1889.
83. Sirum-Conolly, K.,, J. M. Peltier,, P. F. Crain,, J. A. McCloskey,, and T. L. Mason. 1995. Implications of a functional large ribosomal RNA with only three modified nucleotides. Biochimie 77: 30 39.
84. Smith, H. C.,, and M. P. Sowden. 1996. Base-modification mRNA editing through deamination—the good, the bad and the unregulated. Trends Genet. 12: 418 424.
85. Smith, J. E.,, B. S. Cooperman,, and P. Mitchell. 1992. Methylation sites in E. coli ribosomal RNA: localization and identification of four new sites of methylation in 23S rRNA. Biochemistry 31: 10825 10834.
86. Smith, C. M.,, and J. A. Steitz. 1997. Sno storm in the nucleolus: new roles for myriad small RNPs. Cell 89: 669 672.
87. Sollner-Webb, B. 1993. Novel intron-encoded small nucleolar RNAs. Cell 75: 403 405.
88. Sollner-Webb, B.,, K. Tyc,, and J. A. Steitz,. 1995. Ribosomal RNA processing in eukaryotes, p. 469 490. In R. A. Zimmermann, and A. E. Dahlberg (ed.), Ribosomal RNA. Structure, Evolution, Processing, and Function in Protein Biosynthesis. Telford, Caldwell, N.J.
89. Steitz, J. A.,, and K. T. Tycowski. 1995. Small RNA chaperones for ribosome biogenesis. Science 270: 1626 1627.
90. Szweykowska-Kulinska, Z.,, B. Senger,, G. Keith,, F. Fasiolo,, and H. Grosjean. 1994. Intron-dependent formation of pseudouridines in the anticodon of Saccharomyces cerevisiae minor tRNA" e. EMBO J. 13: 4636 4644.
91. Tollervey, D. 1996a. Small nucleolar RNAs guide ribosomal RNA methylation. Science 273: 1056 1057.
92. Tollervey, D. 1996b. Trans-acting factors in ribosome biogenesis. Exp. Cell Res. 229: 226 232.
93. Tollervey, D.,, H. Lehtonen,, M. Carmo-Fonseca,, and E. C. Hurt. 1991. The small nucleolar RNP protein NOP1 (fibrillarin) is required for pre-rRNA processing in yeast. EMBO J. 10: 573 583.
94. Tollervey, D.,, H. Lehtonen,, R. Jansen,, H. Kern,, and E. C. Hurt. 1993. Temperature-sensitive mutations demonstrate roles for yeast fibrillarin in pre-rRNA processing, pre-rRNA methylation, and ribosome assembly. Cell 72: 443 457.
95. Trinh-Rohlik, Q.,, and E. S. Maxwell. 1988. Homologous genes for mouse 4.5S hybRNA are found in all eukaryotes and their low molecular weight transcripts intermolecularly hybridize with eukaryotic 18S ribosomal RNAs. Nucleic Acids Res. 16: 6041 6056.
96. Tyc, K.,, and J. A. Steitz. 1989. U3, U8 and U13 comprise a new class of mammalian snRNPs localized in the cell nucleolus. EMBO J. 8: 3113 3119.
97. Tycowski, K. T.,, M.-D. Shu,, and J. A. Steitz. 1994. Requirement for intron-encoded U22 small nucleolar RNA in 18S rRNA maturation. Science 266: 1558 1561.
98. Tycowski, K. T.,, M.-D. Shu,, and J. A. Steitz. 1996a. A mammalian gene with introns instead of exons generating stable RNA products. Nature 379: 464 466.
99. Tycowski, K. T.,, M.-D. Shu,, and J. A. Steitz. 1996b. A small nucleolar RNA requirement for site-specific ribose methylation of rRNA in Xenopus. Proc. Natl. Acad. Sci. USA 93: 14480 14485.
100. Tycowski, K. T.,, Z. You,, and J. A. Steitz. Personal communication.
101. Vaughan, M. H.,, R. Soeiro,, J. R. Warner,, and J. E. Darnell. 1967. The effects of methionine deprivation on ribosome synthesis in HeLa cells. Proc. Natl. Acad. Sci. USA 58: 1527 1534.
102. Veldman, G. M.,, J. Klootwijk,, V. C. H. F. De Regt,, R. J. Planta,, C. Branlant,, A. Krol,, and J. P. Ebel. 1981. The primary and secondary structure of yeast 26S rRNA. Nucleic Acids Res. 9: 6935 6952.
103. Venema, J.,, and D. Tollervey. 1995. Processing of pre-ribosomal RNA in Saccharomyces cerevisiae. Yeast 11: 1629 1650.
104. Visomirski-Robic, L. M.,, and J. M. Gott. 1997. Insertional editing in isolated Physarum mitochondria is linked to RNA synthesis. RNA 3: 821 837.
105. Warner, J. R. 1989. Synthesis of ribosomes in Saccharomyces cerevisiae. Microbiol. Rev. 53: 256 271.
106. Watkins, N. J.,, R. D. Leverette,, L. Xia,, M. T. Andrews,, and E. S. Maxwell. 1996. Elements essential for processing intronic U14 snoRNA are located at the termini of the mature snoRNA sequence and include conserved nucleotide boxes C and D. RNA 2: 118 133.

Tables

Generic image for table
Table 1

Numbers of modified nucleotides detected in rRNAs of representative species

Citation: Bachellerie J, Cavaillé J. 1998. Small Nucleolar RNAs Guide the Ribose Methylations of Eukaryotic rRNAs, p 255-272. In Grosjean H, Benne R (ed), Modification and Editing of RNA. ASM Press, Washington, DC. doi: 10.1128/9781555818296.ch13
Generic image for table
Table 2

Ribose-methylated sites in eukaryotic rRNAs associated with a known snoRNA guide

Citation: Bachellerie J, Cavaillé J. 1998. Small Nucleolar RNAs Guide the Ribose Methylations of Eukaryotic rRNAs, p 255-272. In Grosjean H, Benne R (ed), Modification and Editing of RNA. ASM Press, Washington, DC. doi: 10.1128/9781555818296.ch13

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error