Chapter 14 : Functional Aspects of the Three Modified Nucleotides in Yeast Mitochondrial Large-Subunit rRNA

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Functional Aspects of the Three Modified Nucleotides in Yeast Mitochondrial Large-Subunit rRNA, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818296/9781555811334_Chap14-1.gif /docserver/preview/fulltext/10.1128/9781555818296/9781555811334_Chap14-2.gif


This chapter focuses on the possible functional significance of the three highly conserved modified nucleotides in the otherwise minimally modified yeast mitochondrial large-subunit rRNA (LSU rRNA). The three modified nucleotides in yeast mitochondrial LSU rRNA, Gm2270, Um2791, and pseudouridine 2819, are equivalent to the Gm2251, Um2552, and pseudouridine 2580, respectively, in peptidyl transferase center (PTC) of LSU rRna. The PET56 nuclear gene encodes an rRNA ribose methyltransferase (Pet56p) required for the formation of 2’-O-methylguanosine at G2270 in yeast mitochondrial LSU rRNA (G2251 in numbering), and PET56 function is essential for the formation of functional mitochondrial ribosomes. While PET56 is normally essential for the formation of functional yeast mitochondrial ribosomes, a dominant extragenic mutation has been isolated (SRM1-1) that suppresses, albeit very weakly, pet56 loss-of-function mutations without restoring methylation at G2270 in yeast mitochondrial LSU rRNA. The presence of only three modified nucleotides at highly conserved positions in the PTC of yeast mitochondrial LSU rRNA has fueled speculation that these particular modification might have special functional significance. The recent progress in the identification of genes responsible for specific modifications in , yeast mitochondrial, and yeast cytoplasmic rRNAs will accelerate the genetic analysis of rRNA modification in these systems. It will be particularly informative to compare the in vivo effects of depleting pseudouridine 2580 in and yeast mitochondria and Gm2251 and Um2552 in all three ribosomal systems.

Citation: Mason T. 1998. Functional Aspects of the Three Modified Nucleotides in Yeast Mitochondrial Large-Subunit rRNA, p 273-280. In Grosjean H, Benne R (ed), Modification and Editing of RNA. ASM Press, Washington, DC. doi: 10.1128/9781555818296.ch14
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

The three modified nucleotides in yeast mitochondrial LSU rRNA are located at positions implicated in binding the 3′-terminal end of either Α-site- or P-site-bound tRNA. The secondary structure is that of domain V from mitochondrial LSU rRNA. The circled A, B, and C indicate the positions of variable sequences that are not shown. The locations of three modified nucleotides are indicated by arrows, and the sequences corresponding to the equivalent modifications in 23S rRNA are boxed. The closed arrowheads indicate sites that are protected from chemical modification by P-site-bound tRNA; the open arrowheads indicate protections by A-site-bound tRNA; positions where base substitutions cause strong dominant negative growth phenotypes are underlined. The region corresponding to the binding site for ribosomal protein L1 in 23S rRNA is enclosed by the dashed line. See the text for references.

Citation: Mason T. 1998. Functional Aspects of the Three Modified Nucleotides in Yeast Mitochondrial Large-Subunit rRNA, p 273-280. In Grosjean H, Benne R (ed), Modification and Editing of RNA. ASM Press, Washington, DC. doi: 10.1128/9781555818296.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Bachellerie, J.-P.,, and J. Cavaille. 1997. Guiding ribose methylation of rRNA. Trends Biochem. Sci. 22: 257 261.
2. Draper, D. E., 1996. Ribosomal-protein interactions, p. 171 197. In R. A. Zimmermann, and A. E. Dahlberg (ed.), Ribosomal RNA: Structure, Evolution, Processing, and Function in Protein Biosynthesis. CRC Press, Boca Raton, Fla.
3. Garrett, R. A., , and C. Rodriguez-Fonseca,. 1996. The peptidyl transferase center, p. 327-355. In R. A. Zimmermann, and A. E. Dahlberg (ed.), Ribosomal RNA: Structure, Evolution, Processing, and Function in Protein Biosynthesis. CRC Press, Boca Raton, Fla.
4. Green, R.,, and H. F. Noller. 1996. In vitro complementation analysis localizes 23S rRNA posttranscriptional modifications that are required for Escherichia coli SOS ribosomal subunit assembly and function. RNA 2: 1011 1021.
5. Green, R.,, and H. F. Noller. 1997. Ribosomes and translation. Annu. Rev. Biochem. 66: 679 716.
6. Green, R.,, R. S. Samaha,, and H. F. Noller. 1997. Mutations at nucleotides G2251 and U2585 of 23S rRNA perturb the peptidyl transferase center of the ribosome. J. Mol. Biol. 266: 40 50.
7. Gregory, S.,, and A. Dahlberg. Personal communication.
8. Gregory, S.,, K. Sirum-Connolly,, T. Mason,, and A. Dahlberg. Unpublished results.
9. Gregory, S. T.,, K. R. Lieberman,, and A. E. Dahlberg. 1994. Mutations in the peptidyl transferase region of E. coli 23S rRNA affecting translational accuracy. Nucleic Acids Res. 22: 279 284.
10. Gustafsson, C.,, R. Reid,, P. J. Greene,, and D. Santi. 1996. Identification of new modifying enzymes by iterative genome search using known modifying enzymes as probes. Nucleic Acids Res. 24: 3756 3762.
11. Klootwijk, J.,, I. Klein,, and L. A. Grivell. 1975. Minimal posttranscriptional modification of yeast mitochondrial ribosomal RNA. J. Mol. Biol. 97: 337 350.
12. Koonin, E. V. 1996. Pseudouridine synthases: four families of enzymes containing a putative uridine-binding motif also conserved in dUTPases and dCTP deaminases. Nucleic Acids Res. 24: 2411 2415.
13. Kowalak, J. A.,, E. Bruenger,, and J. A. McCloskey. 1995. Posttranscriptional modification of the central loop of domain V in Escherichia coli 23S ribosomal RNA. J. Biol. Chem. 270: 17758 17764.
14. Krzyzosiak, W. R.,, R. Denman,, K. Nurse,, W. Hellman,, M. Boublik,, C. W. Gehrke,, P. F. Agris,, and J. Ofengand. 1987. In vitro synthesis of 16S ribosomal RNA containing single base changes and assembly into a functional 30S ribosome. Biochemistry 26: 2353 2364.
15. Lafontaine, D.,, J. Vandenhaute,, and D. Tollervey. 1995. The 18S rRNA dimethylase Dimlp is required for pre-ribosomal RNA processing in yeast. Genes Dev. 9: 2470 2481.
16. Lane, B. G.,, J. Ofengand,, and M. W. Gray. 1995. Pseudouridine and O 2 -methylated nucleosides. Significance of their selective occurrence in rRNA domains that function in ribosome-catalyzed synthesis of the peptide bonds in proteins. Biochimie 77: 7 15.
17. Lieberman, K. R.,, and A. E. Dahlberg. 1995. Ribosome-catalyzed peptide-bond formation. Prog. Nucleic Acid Res. Mol. Biol. 50: 1 23.
18. Maden, B. E. H.,, M. E. Corbett,, P. A. Heeney,, K. Pugh,, and P. M. Ajuh. 1995. Classical and novel approaches to the detection and localization of the numerous modified nucleotides in eukaryotic ribosomal RNA. Biochimie 77: 22 29.
19. Mason, T. Unpublished data.
20. Mason, T. L.,, C. Pan,, M. E. Sanchirico,, and K. Sirum-Connolly. 1996. Molecular genetics of the peptidyl transferase center and the unusual Varl protein in yeast mitochondrial ribosomes. Experientia 52: 1148 1157.
21. Moazed, D.,, and H. F. Noller. 1989. Interaction of tRNA with 23S rRNA in the ribosomal A, P, and E sites. Cell 57: 585 597.
22. Nicol, S. M.,, and F. V. Fuller-Pace. 1995. The "DEAD box" protein Dbp interacts specifically with the peptidyltransferase center in 23S rRNA. Proc. Natl. Acad. Sci. USA 92: 11681 11685.
23. Nicoloso, M.,, L.-H. Qu,, B. Michot,, and J.-P. Bachellerie. 1996. Intron-encoded, antisense small nucleolar RNAs: the characterization of nine novel species points to their direct role as guides for the 2'-O-ribose methylation of rRNAs. J. Mol. Biol. 260: 178 195.
24. Nierhaus, K.,, and F. Dohme. 1974. Total reconstitution of functionally active 50S ribosomal subunits from E. coli. Proc. Natl. Acad. Sci. USA 71: 4713 4717.
25. Ofengand, J.,, and A. Bakin. 1997. Mapping to nucleotide resolution of pseudouridine residues in large subunit ribosomal RNAs from representative eukaryotes, prokaryotes, archaebacteria, mitochondria and chloroplasts. J. Mol. Biol. 266: 246 268.
26. Pinkham, J. L.,, A. M. Dudley,, and T. L. Mason. 1994. T7 RNA polymerase-dependent expression of COXII in yeast mitochondria. Mol. Cell. Biol. 14: 4643 4652.
27. Porse, B. T.,, and R. A. Garrett. 1995. Mapping important nucleotides in the peptidyl transferase center of 23S rRNA using a random mutagenesis approach. J. Mol. Biol. 249: 1 10.
28. Porse, B. T.,, H. P. Thi-Ngoc,, and R. A. Garrett. 1996. The donor substrate site within the peptidyl transferase loop of 23S rRNA and its putative interactions with the CCA-end of N-blocked aminoacyl-tRNA(Phe). J. Mol. Biol. 264: 472 483.
29. Saarma, U.,, and J. Remme. 1992. Novel mutants of 23S RNA: characterization of functional properties. Nucleic Acids Res. 20: 3147 3152.
30. Samaha, R. R.,, R. R. Green,, and H. F. Noller. 1995. A base pair between tRNA and 23S rRNA in the peptidyl transferase centre of the ribosome. Nature 377: 309 314.
31. Sirum-Connolly, K.,, and T. L. Mason. Unpublished data.
32. Sirum-Connolly, K.,, and T. L. Mason. 1993. Functional requirement of a site-specific ribose methylation in ribosomal RNA. Science 262: 1886 1889.
33. Sirum-Connolly, K.,, J. M. Peltier,, P. F. Crain,, J. McCloskey,, and T. L. Mason. 1995. Implications of a functional large ribosomal RNA with only three modified nucleotides. Biochimie 77: 30 39.
34. Spahn, C. M. T.,, J. Remme,, M. A. Schafer,, and K. H. Nierhaus. 1996a. Mutational analysis of two highly conserved UGG sequences of 23S rRNA from Escherichia coli. J. Biol. Chem. 271: 32849 32856.
35. Spahn, C. M. T., , M. A. Schafer,, A. A. Krayevsky,, and K. H. Nierhaus. 1996b. Conserved nucleotides of 23S rRNA located at the ribosomal peptidyltransferase center. J. Biol. Chem. 271: 32857 32862.
36. Thompson, J.,, and E. Cundliffe, 1991. The binding of thiostrepton to 23S RNA. Biochimie 73: 1131 1135.
37. Traub, P.,, and M. Nomura. 1968. Structure and function of E. coli ribosomes. V. Reconstitution of functionally active 30S ribosomal particles from RNA and protein. Proc. Natl. Acad. Sci. USA 59: 777 784.
38. Tycowski, K. T.,, M. D. Shu,, and J. A. Steitz. 1996. A mammalian gene with introns instead of exons generating stable RNA products. Nature 379: 464 466.
39. Walleczek, J.,, B. Redl,, M. Stöffler-Meilicke,, and G. Stuffier. 1989. Protein-protein cross-linking of the 50S ribosomal subunit of Escherichia coli using 2-iminothiolane. Identification of cross-links by immunoblotting techniques. J. Biol. Chem. 264: 4231 4237.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error