Chapter 27 : Modified Nucleosides in Translation

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Modified Nucleosides in Translation, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818296/9781555811334_Chap27-1.gif /docserver/preview/fulltext/10.1128/9781555818296/9781555811334_Chap27-2.gif


Cellular physiology is fundamentally dependent on the functions of translational apparatus, and these functions are dependent on modified nucleosides. This chapter examines the translational functions of modified nucleosides in the anticodon arm of tRNA. There are modifications at other positions within tRNA, but our knowledge of translational effects is limited to the modifications in the anticodon region. Emphasis is placed on the effects that the loss of specific modifications has on the activities of tRNA. Before considering the effects of modifications on translation, it is helpful to review certain aspects of the decoding process. Further work on the translational mechanism is needed to fully understand the roles of modified nucleosides in the important cellular process. The chapter discusses the effects of modified nucleosides at various positions in the anticodon arm. There are data on the translational effects of a subset of the modified nucleosides that occur within the anticodon arm. The chapter talks about a discussion of unmodified U34 because models for decoding by the modified forms are extended from those for unmodified U. Virtually all tRNAs contain modified nucleosides within the anticodon region, and it has become abundantly clear that they contribute to translation in a number of ways. The future looks very promising for the continued study and understanding of the roles that modified nucleosides play in the fundamentally important translational process.

Citation: Curran J. 1998. Modified Nucleosides in Translation, p 493-516. In Grosjean H, Benne R (ed), Modification and Editing of RNA. ASM Press, Washington, DC. doi: 10.1128/9781555818296.ch27
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Schematic structure of the tRNA anticodon arm. The ribbon structure of yeast tRNA is shown on the left. The anticodon arm (AC arm) is the bottom quarter of the molecule, and the anticodon nucleotides (AC) are indicated at the bottom. A detailed view of the AC arm is shown on the right. The stem includes the five base pairs on the top, and the loop contains seven nucleotides. The anticodon nucleotides are 36, 35, and 34, which read codon bases 1, 2, and 3, respectively. The U turn” in the backbone occurs between the highly conserved U33 and the 5′ end of the anticodon. All of the nucleotides discussed in the text are indicated. (Adapted from .)

Citation: Curran J. 1998. Modified Nucleosides in Translation, p 493-516. In Grosjean H, Benne R (ed), Modification and Editing of RNA. ASM Press, Washington, DC. doi: 10.1128/9781555818296.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Examples of base pair geometries that may occur at the wobble position. On the left are representatives of the four structures predicted by to function in decoding. For each base pair, the codon nucleotide is on the right and is fixed in the standard 3′-endo, A conformation (see the discussions in Li and Venclovas, 1992; ). The anticodon nucleotide may assume a “wobble” conformation. The boldface brackets indicate the positions of the N-glycosidic bonds for the Watson–Crick base pairs. Anticodon nucleotide wobble deviations from Watson–Crick geometry are indicated by curved arrows. At the top left is the G:C base pair, which is representative of the Watson–Crick base pairs (G:C, C:G, A:U, U:A, and I:C), all of which are geometrically equivalent. Just below are the U:G and G:U base pairs, in which the anticodon bases are slightly shifted into the major and minor grooves, respectively. The I:U base pair is geometrically equivalent to the G:U base pair. At the bottom left is the “long wobble” I:A base pair. On the right are two hypothetical schemes for base pairing between uridines. At the top right is the “short wobble” conformation favored by ). This base pair requires a 2′-endo conformation for the anticodon uridine. At the bottom right is the conformation preferred by ) in which a water molecule in the minor groove bridges between the uridine bases. This base pair does not require a 2′-endo conformation, but it does require a significant rotation of the anticodon base about the N-glycosidic bond (propeller twist). The propeller twist is not depicted in this two-dimensional diagram. (Adapted from .)

Citation: Curran J. 1998. Modified Nucleosides in Translation, p 493-516. In Grosjean H, Benne R (ed), Modification and Editing of RNA. ASM Press, Washington, DC. doi: 10.1128/9781555818296.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Frameshifting competes with normal translation at the RF2-programmed frameshift site. Shown is an example of an RF2 variant used to measure the relative rate of aa-tRNA selection at the leucine CUG codon. Prior to the frameshift (top) the peptidyl-tRNA is base paired to message CUU in the ribosomal Ρ site. The next triplet, CUG, is available for decoding in the A site. Normal translation occurs if tRNA binds productively at the A site, fixing the “0” reading frame. Alternatively, frameshifting occurs when the peptidyl-tRNA slips one nucleotide rightward onto UUC, fixing the “+1”reading frame. (For mechanistic details of the RF2-programmed frameshift, see ; and )

Citation: Curran J. 1998. Modified Nucleosides in Translation, p 493-516. In Grosjean H, Benne R (ed), Modification and Editing of RNA. ASM Press, Washington, DC. doi: 10.1128/9781555818296.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Agris, P. F.,, D. Söll,, and T. Seno. 1973. Biological function of 2-thiolation in Escherichia coli glutamic acid transfer ribonucleic acid. Biochemistry 12: 4331 4337.
2. Agris, P. F.,, H. Sierzputowska-Gracz,, W. Smith, A Malkiewicz, S. Sochacka, and B. Nawrot. 1992. Thiolation of uridine carbon-2 restricts the motional dynamics of the transfer RNA wobble position. J. Am. Chem. Soc. 114: 2652 2656.
3. Agris, P. F. 1996. The importance of being modified: roles of modified nucleosides and Mg 2+ in RNA structure and function. Prog. Nucleic Acid Res. Mol. Biol. 53: 79 129.
4. Agris, P. F.,, R. Guenther,, P. S. Ingram,, M. M. Basti,, J. W. Stuart,, E. Sochacka,, and A. Malkiewicz. 1997. Unconventional structure of tRNA Lys SUU anticodon explains tRNA's role in bacterial and mammalian ribosomal frameshifting and primer selection by HIV-1. RNA 3: 420 428.
5. Alberts, B.,, D. Bray,, J. Lewis,, M. Raff,, K. Roberts,, and J. D. Watson. 1994. Molecular Biology of the Cell. Garland Press, New York, N.Y..
6. Andachi, T.,, F. Yamao,, A. Muto, amd S. Osawa. 1989. Codon recognition pattern as deduced from sequences of the complete set of transfer RNA species in Mycoplasma capricolum. J. Mol. Biol. 209: 37 54.
7. Arnez, J. G.,, and T. A. Steitz. 1994. Crystal structure of unmodified tRNA Gln complexed with glutamyl-tRNA synthetase and ATP suggests a possible role for pseudo-uridines in stabilization of RNA structure. Biochemistry 33: 7560 7567.
8. Atkins, J. F.,, and R. F. Gesteland,. 1995. Discontinuous triplet reading with or without re-pairing by peptidyl-tRNA, p. 471 490. In D. Soli, and U. RajBhandary (ed), tRNA: Structure, Biosynthesis, and Function. American Society for Microbiology, Washington, D.C..
9. Baeyens, K. J.,, H. L. De Bont,, and S. R. Holbrook. 1995. Structure of an RNA double helix including uracil-uracil base pairs in an internal loop. Nat. Struct. Biol. 2: 52 62.
10. Barak, Z.,, J. Gallant,, D. Lindsley,, B. Kwieciszewski,, and D. Heidel. 1996. Enhanced ribosomal frameshifting in stationary phase cells. J. Mol. Biol. 263: 140 148.
11. Barnes, W. M. 1978. DNA sequence from the histidine control region: seven histidine codons in a row. Proc. Natl. Acad. Sci. USA 75: 4281 4285.
12. Beier, H.,, M. Barciszewska,, and H. Sickinger. 1984. The molecular basis for the differential translation of TMV RNA in tobacco protoplasts and wheat germ extracts. EMBO J. 3: 1091 1096.
13. Bienz, M.,, and E. Kubli. 1981. Wild-type tRNA G Tyr reads the TMV stop codon, but the Q base-modified tRNA Q Tyr does not. Nature 294: 188 190.
14. Björk, G. R. 1980. A novel link between the biosynthesis of aromatic amino acids and transfer RNA modification in Escherichia coli. J. Mol. Biol. 140: 391 410.
15. Björk, G. R.,, P. M. Wikström,, and A. S. Byström. 1989. Prevention of translational frameshifting by the modified nucleoside 1-methylguanosine. Science 244: 986 989.
16. Björk, G. R. 1995a. Genetic dissection of synthesis and function of modified nucleosides in bacterial transfer RNA. Prog. Nucleic Acid Res. Mol. Biol. 50: 263 338.
17. Björk, G. R., 1995b. Biosynthesis and function of modified nucleosides, p. 165 205. In D. Soil, and U. L. RajBhandary (ed.), tRNA: Structure, Biosynthesis and Function. American Society for Microbiology, Washington, D.C..
18. Björk, G. R., 1995c. Stable RNA modification, p. 861 886. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. ASM Press, Washington, D.C..
19. Björnsson, A.,, and L. A. Isaksson. 1993. UGA codon context which spans three codons. Reversal by ms 2i 6A37 in tRNA, mutation in rpsD(S4) or streptomycin. J. Mol. Biol. 232: 1017 1029.
20. Borén, T.,, P. Elias,, T. Sammuelsson,, C. Claesson,, M. Barciszewska,, C. W. Gehrke,, K. C. Kuo,, and F. Lustig. 1993. Un-discriminating codon reading with adenosine in the wobble position. J. Mol. Biol. 230: 739 749.
21. Bossi, L.,, and J. R. Roth. 1980. The influence of codon context on genetic code translation. Nature 286: 123 127.
22. Bouadloun, F.,, T. Srichaiyo,, L. A. Isakson,, and G. R. Björk. 1986. Influence of modification next to the anticodon in tRNA on codon context sensitivity of translational suppression and accuracy. J. Bacteriol. 166: 102 1027.
23. Brierley, I.,, A. J. Jenner,, and S. C. Inglis. 1992. Mutational analysis of the "slippery-sequence" component of a coronavirus ribosomal frameshifting signal. J. Mol. Biol. 227: 463 479.
24. Brierley, I.,, M. R. Meredith,, A. J. Bloys,, and T. G. Hagervall. 1997. Expression of a coronavirus ribosomal frameshift signal in Escherichia coli: influence of tRNA anticodon modification on frameshifting. J. Mol. Biol. 271: 1 14.
25. Buckingham, R. H. 1994. Codon context and protein synthesis: enhancements of the genetic code. Biochimie 76: 351 354.
26. Carter, P. W.,, D. L. Weiss,, H. L. Weith,, and J. M. Calvo. 1985. Mutations that convert the four leucine codons of the Salmonella typhimurium leu leader to four threonine codons. J. Bacteriol. 162: 943 949.
27. Chamorro, M.,, N. Parkin,, and H. E. Varmus. 1992. An RNA pseudoknot and an optimal heptameric shift site are required for highly efficient ribosomal frameshifting on a retroviral messenger RNA. Proc. Natl. Acad. Sci. USA 89: 713 717.
28. Córtese, R.,, R. Landsberg,, R. A. Haar,, H. E. Umbarger,, and B. N. Ames. 1974. Pleiotropy of hisT mutants blocked in pseudouridine synthesis in tRNA: leucine and isoleucine-valine opérons. Proc. Natl. Acad. Sci. USA 71: 1857 1861.
29. Craigen, W. J.,, R. G. Cook,, W. P. Tate,, and C. T. Caskey. 1985. Bacterial peptide chain release factors: conserved primary structure and possible frameshift regulation of release factor 2. Proc. Natl. Acad. Sci. USA 82: 3616 3620.
30. Craigen, W. J.,, and C. T. Caskey. 1986. Expression of peptide chain release factor 2 requires high-frequency frameshift. Nature 322: 272 275.
31. Crick, F. H. C. 1966. Codon-anticodon pairing: the wobble hypothesis. J. Mol. Biol. 19: 548 555.
32. Curran, J. F.,, and M. Yarus. 1988. Use of tRNA suppressors to probe regulation of Escherichia coli release factor 2. J. Mol. Biol. 203: 75 83.
33. Curran, J. F.,, and M. Yarus. 1989. Rates of aminoacyl-tRNA selection at 29 sense codons in vivo. J. Mol. Biol. 209: 65 77.
34. Curran, J. F. 1993. Analyses of effects of tRNA: message stability on frameshift frequency at the Escherichia coli RF2 programmed frameshift site. Nucleic Acids Res. 21: 1837 1843.>
35. Curran, J. F. 1995. Decoding with the A:I wobble pair is inefficient. Nucleic Acids Res. 23: 683 688.
36. Curran, J. F.,, E. S. Poole,, W. P. Tate,, and B. L. Gross. 1995. Selection of aminoacyl-tRNAs at sense codons: the size of the tRNA variable loop determines whether the immediate 3' nucleotide to the codon has a context effect. Nucleic Acids Res. 23: 4104 4108.
37. Dalphin, M. E.,, C. M. Brown,, P. A. Stockwell,, and W. P. Tate. 1997. The translational signal database, TransTerm: more organisms, complete genomes. Nucleic Acids Res. 25: 246 247.
38. Dao, V.,, R. Guenther,, A. Malkiewicz,, B. Nawrot,, E. Sochacka,, A. Kraszewski,, K. Everett,, and P. F. Agris. 1994. Ribosome binding of DNA analogs of tRNA requires base modifications and supports the "extended anticodon." Proc. Natl. Acad. Sci. USA 91: 2125 2129.
39. Davis, D. R.,, and C. D. Poulter. 1991. 1H- 15N NMR studies of Escherichia coli tRNA Phe from hisT mutants: a structural role for pseudouridine. Biochemistry 30: 4223 4231.
40. Davis, D. R. 1995. Stabilization of RNA stacking by pseudouridine. Nucleic Acids Res. 23: 5020 5026.
41. Diaz, I.,, M. Ehrenberg,, and C.-G. Kurland. 1986. How do combinations of rpsL - and miaA - generate streptomycin dependence? Mol. Gen. Genet. 208: 373 376.
42. Diaz, I.,, and M. Ehrenberg. 1991. ms 2i 6A deficiency enhances proofreading in translation. J. Mol. Biol. 222: 1161 1171.
43. Dinman, J. D.,, T. Icho,, and R. B. Wickner. 1991. A -1 ribosomal frameshift in a double-stranded RNA virus of yeast forms a gag-pol fusion protein. Proc. Natl. Acad. Sci. USA 88: 174 178.
44. Dock-Bregeon, A. C.,, B. Chevrier,, A. Podjarny,, J. Johnson,, J. S. deBear,, G. R. Gough,, P. T. Gilham,, and D. Moras. 1989. Crys-tallographic structure of an RNA helix [U(UA) 6A] 2. J. Mol. Biol. 209: 459 474.
45. Eggertsson, G.,, and D. Soil. 1988. Transfer ribonucleic acid-mediated suppression of termination codons in Escherichia coli. Microbiol. Rev. 52: 354 374.
46. Elseviers, D.,, L. A. Petrullo,, and P. J. Gallagher. 1984. Novel £. coli mutants deficient in biosynthesis of 5-methylaminomethyl-2-thiouridine. Nucleic Acids Res. 12: 3521 3534.
47. Ericson, J. U.,, and G. R. Björk. 1986. Pleiotropic effects induced by modification deficiency next to the anticodon of tRNA from Salmonella typhimurium LT2. J. Bacteriol. 166: 1013 1021.
48. Ericson, J. U.,, and G. R. Björk. 1991. tRNA anticodons with the modified nucleoside 2-methylthio-N 6-(hydroxyisopentenyl)-adenosine distinguish between bases 3' of the anticodon. J. Mol. Biol. 218: 509 516.
49. Esberg, B.,, and G. R. Björk. 1995. The methylthio group (ms 2) of N6-(4-hydroxyisopentenyl)-2-methylthioadenosine (ms 2io 6A) present next to the anticodon contributes to the decoding efficiency of tRNA. J. Bacteriol. 177: 1967 1975.
50. Farabaugh, P. J. 1996. Programmed translational frameshifting. Microbiol. Rev. 60: 103 134.
51. Förster, C.,, K. Chakraburtty,, and M. Sprinzl. 1993. Discrimination between initiation and elongation of protein biosynthesis in yeast: identity assured by a nucleotide modification in the initiator tRNA. Nucleic Acids Res. 21: 5679 5683.
52. Frey, B.,, G. Jânel,, U. Michelsen,, and H. Kersten. 1989. Mutations in the Escherichia coli fnr and tgt genes: control of molybdate reductase activity and the cytochrome d complex by fnr. J. Bac-teriol. 171: 1524 1530.
53. Fu, C.,, and J. Parker. 1994. A ribosomal frameshifting error during translation of the argl mRNA of Escherichia coli. Mol. Gen. Genet. 243: 434 441.
54. Gesteland, R. F.,, and J. F. Atkins. 1996. Recoding: dynamic re-programming of translation. Annu. Rev. Biochem. 65: 741 768.
55. Glasser, A.-L.,, J. Desgres,, J. Heitzler,, C. W. Gehrke,, and G. Keith. 1991. O-Ribosyl-phosphate purine as a constant modified nucleotide located at position 64 in cytoplasmic initiator tRNAs Met of yeasts. Nucleic Acids Res. 19: 5199 5203.
56. Green, R.,, and H. F. Noller. 1997. Ribosomes and translation. Annu. Rev. Biochem. 66: 679 716.
57. Griffey, R. H.,, D. Davis,, Z. Yamaizumi,, S. Nishimura,, A. Bax,, B. Hawkins,, and C. D. Poulter. 1985. 15N-labeled Escherichia coli tRNA fMet, tRNA G, tRNA Tyr, and tRNA Phe. Double resonance and two-dimensional NMR of NMabelled pseudouridine. J. Biol. Chem. 260: 9734 9741.
58. Grosjean, H.,, D. G. Soil,, and D. M. Crothers. 1976. Studies of the complex between tRNAs with complementary anticodons. I. Origins of enhanced affinity between complementary triplets. J. Mol. Biol. 103: 499 519.
59. Grosjean, H. J.,, S. DeHenau,, and D. M. Crothers. 1978. On the physical basis for ambiguity in genetic coding interactions. Proc. Natl. Acad. Sci. USA 75: 610 614.
60. Grosjean, H.,, K. Nicoghosian,, E. Haumont,, D. Soil,, and R. Cedergren. 1985. Nucleotide sequences of two serine tRNAs with a GGA anticodon: the structure-function relationships in the serine family of tRNAs. Nucleic Acids Res. 13: 5697 5706.
61. Grosjean, H.,, and C. Houssier. 1990. Codon recognition: evaluation of the effects of modified bases in the anticodon loop of tRNA using the temperature-jump relaxation method. J. Chromatogr. Library 45: A555 A595.
62. Grosjean, H.,, M. Sprinzl,, and S. Steinberg. 1995. Posttranscriptionally modified nucleosides in transfer RNA: their locations and frequencies. Biochimie 77: 139 141.
63. Grossenbacher, A.-M.,, B. Stadelmann,, W.-D. Heyer,, P. Thuriaux,, and J. Kohli. 1986. Antisuppressor mutations and sulfur-carrying nucleosides in transfer RNAs of Schizosaccharomyces pombe. J. Biol. Chem. 261: 16351 16355.
64. Gu, Z.,, R. Harrod,, E. J. Rogers,, and P. S. Lovett. 1994. Properties of a pentapeptide inhibitor of peptidyltransferase that is essential for cat gene regulation by translational attenuation. J. Bacterial. 176: 6238 6244.
65. Guillerez, J.,, M. Gazeau,, and M. Dreyfus. 1991. In the Escherichia coli lacZ gene the spacing between the translating ribosome is sensitive to the efficiency of translation initiation. Nucleic Acids Res. 19: 6743 6750.
66. Gupta, R. 1984. Halobacterium volcanii tRNAs: identification of 41 tRNAs covering all amino acids, and the sequences of 33 class 1 tRNAs. J. Biol. Chem. 259: 9461 9471.
67. Guthrie, C.,, and J. Abelson,. 1982. Organization and expression of tRNA genes in Saccharomyces cerevisiae, p. 487 528. In J. N. Strathern,, E. W. Jones,, and J. R. Broach (ed.), The Molecular Biology of the Yeast Saccharomyces: Metabolism and Gene Expression. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y..
68. Hagervall, T. G.,, J. U. Ericson,, B. Esberg,, J.-N. Li,, and G. R. Björk. 1984. Undermodification in the first position of the anticodon of supG-tRNA reduces translational efficiency. Mol. Gen. Genet. 196: 194 200.
69. Hagervall, T. G.,, Y. H. Jönsson,, C. G. Edmonds,, J. A. McCloskey,, and G. R. Björk. 1990. Chorismic acid, a key metabolite in modification of tRNA. J. Bacteriol. 172: 252 259.
70. Hagervall, T. G.,, B. Esberg,, J.-N. Li,, T. M. F. Tuohy,, J. F. Atkins,, J. F. Curran,, and G. R. Björk,. 1993a. Functional aspects of three nucleosides, Ψ, ms 2io 6A, and m 1G, present in the anticodon loop of tRNA, p. 67-78. In K. Nierhaus (ed.), The Translational Apparatus. Plenum Press, New York, N.Y..
71. Hagervall, T. G.,, T. M. F. Tuohy,, J. F. Atkins,, and G. R. Björk. 1993b. Deficiency of 1-methylguanosine in tRNA from Salmonella typhimurium induces frameshifting by quadruplet decoding. J. Mol. Biol. 232: 756 765.
72. Harada, F.,, and S. Nishimura. 1972. Possible anticodon sequences of tRNA His, tRNA Asn, and tRNA Asp from Escherichia coli B. Universal presence of nucleoside Q in the first position of the anticodon of three transfer ribonucleic acids. Biochemistry 13: 300 306.
73. Harada, F.,, and J. E. Dahlberg. 1975. Specific cleavage of tRNA by nuclease S1. Nucleic Acids Res. 2: 865 871.
74. Hardesty, B.,, O. W. Odom,, and J. Czworkowski,. 1990. Movement of tRNA through ribosomes during peptide elongation, p. 366 372. In W. E. Hill,, A. Dahlberg,, R. A. Garrett,, P. B. Moore,, D. Schlessinger,, and J. R. Warner (ed.), The Ribosome: Structure, Function, and Evolution. American Society for Microbiology, Washington, D.C..
75. Hatfield, D.,, Y.-X. Feng,, B. J. Lee,, A. Rein,, J. G. Levin,, and S. Oroszlan. 1989. Chromatographic analysis of the aminoacyl-tRNAs which are required for translation of codons at and around the ribosomal frameshift sites of HIV, HTLV-1, and BLV. Virology 173: 736 742.
76. Heckman, J. E.,, J. Sarnoff,, B. Alzner-DeWeerd,, S. Yin,, and U. L. RajBhandary. 1980. Novel features in the genetic code and codon reading patterns in Neurospora crassa mitochondria based on sequences of six mitochondrial tRNAs. Proc. Natl. Acad. Sci. USA 77: 3159 3163.
77. Heurgue-Hamard, V.,, L. Mora,, G. Guarneros,, and R. H. Buckingham. 1996. The growth defect in Escherichia coli deficient in peptidyl hydrolase is due to starvation for Lys-tRNA Lys. EMBO J. 15: 2826 2833.
78. Heyer, W.-D.,, P. Thuriaux,, J. Kohli,, P. Ebert,, H. Kersten,, C. Gehrke,, K. C. Kuo,, and P. F. Agris. 1984. An antisuppressor mutation of Schizosaccharomyces pombe affects post-transcriptional modification of the "wobble" U base in the anticodon of tRNAs. J. Biol. Chem. 259: 2856 2862.
79. Hirsh, D.,, and L. Gold. 1971. Translation of the UGA triplet in vitro by tryptophan transfer RNAs. J. Mol. Biol. 58: 459 468.
80. Holbrook, S. R.,, J. L. Sussman,, R. W. Warrant,, and S.-H. Kim. 1978. Crystal structure of yeast phenylalanine transfer RNA. II. Structural features and functional implications. J. Mol. Biol. 123: 631 660.
81. Holbrook, S. R.,, C. Cheong,, I. Tinoco,, and S.-H. Kim. 1991. Crystal structure of an RNA double helix incorporating a track of non-Watson-Crick base pairs. Nature 353: 579 581.
82. Horsfield, J. A.,, D. N. Wilson,, S. A. Mannering,, F. M. Adamski,, and W. P. Tate. 1995. Prokaryotic ribosomes recode the HIV-1 gag-pol -1 frameshift sequence by an E/P site post-translocation simultaneous slippage mechanism. Nucleic Acids Res. 23: 1487 1494.
83. Houssier, C.,, and H. Grosjean. 1985. Temperature jump relaxation studies on the interactions between transfer RNAs with complementary anticodons: the effect of modified bases adjacent to the anticodon triplet. J. Biomol. Struct. Dyn. 3: 387 408.
84. Houssier, C.,, P. Degree,, K. Nicoghosian,, and H. Grosjean. 1988. Effect of uridine dethiolation in the anticodon triplet of tRNA Glu on its association with tRNA Phe. J. Biomol. Struct. Dyn. 5: 1259 1266.
85. Ikemura, T. 1981. Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: a proposal for a synonymous codon choice that is optimal for the E. coli translational system. J. Mol. Biol. 151: 389 409.
86. Ikemura, T., 1992. Correlation between codon usage and tRNA content in microorganisms, p. 87 111. In D. L. Hatfield,, B. J. Lee,, and R. M. Pirtle (ed.), Transfer RNA in Protein Synthesis. CRC Press, Boca Raton, Fla..
87. Ishikura, H.,, Y. Yamada,, and S. Nishimura. 1971. Structure of serine tRNA from Escherichia coli. I. Purification of serine tRNA's with different codon responses. Biochim. Biophys. Acta 228: 471 481.
88. Jacks, T.,, H. D. Madhani,, F. R. Masiarz,, and H. E. Varmus. 1988. Signals for ribosomal frameshifting in the Rous sarcoma virus gag-pol region. Cell 55: 447 458.
89. Johnson, P. F.,, and J. Abelson. 1983. The yeast tRNA Tyr gene intron is essential for correct modification of its tRNA product. Nature 302: 681 687.
90. Johnston, H. M.,, W. M. Barnes,, F. G. Chumley,, L. Bossi,, and B. N. Ames. 1980. Model for regulation of the histidine operon of Salmonella. Proc. Natl. Acad. Sci. USA 77: 508 512.
91. Jukes, T. H. 1973. Possibilities for the evolution of the genetic code from a preceding form. Nature 246: 22 26.
92. Kano, A.,, Y. Andachi,, T. Ohama,, and S. Osawa. 1991. Novel anticodon composition of transfer RNAs in Micrococus luteus, a bacterium with a high genomic G+C content. Correlation with codon usage. J. Mol. Biol. 221: 387 401.
93. Kawai, G.,, Y. Yamamoto,, T. Kamimura,, T. Masegi,, M. Sekine,, T. Hata,, T. Iimori,, T. Watanabe,, T. Miyazawa,, and S. Yokoyama. 1992. Conformational rigidity of specific pyrimidine residues in tRNA arises from posttranscriptional modifications that enhance steric interaction between the base and the 2'-hydroxyl group. Biochemistry 31: 1040 1046.
94. Komine, Y.,, T. Andachi,, A. Inokuchi,, and H. Ozeki. 1990. Genomic organization and physical mapping of the transfer RNA genes in Escherichia coli K12. J. Mol. Biol. 212: 579 598.
95. Kowalak, J. A.,, E. Breunger,, and J. A. McCloskey. 1994. Posttranscriptional modification of the central loop of domain V in Escherichia coli 23 S ribosomal RNA. J. Biol. Chem. 270: 17758 17764.
96. Kurland, C. G.,, D. Hughes,, and M. Eherenberg,. 1995. Limitations of translational accuracy, p. 979 1004. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Maga-sanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella.- Cellular and Molecular Biology, 2nd ed. ASM Press, Washington, D.C..
97. Landick, R.,, C. L. Turnbough, Jr.,, and C. Yanofsky,. 1996. Transcription attenuation, p. 1263 1286. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. ASM Press, Washington, D.C..
98. Lane, B. G.,, J. Ofengand,, and M. W. Gray. 1995. Pseudouridine and 02'-methylated nucleosides. Significance of their selective occurrence in rRNA domains that function in ribosome-catalyzed synthesis of the peptide bonds in proteins. Biochimie 77: 7 15.
99. Lee, F.,, and C. Yanofsky. 1977. Transcription termination at the trp operon attenuators of Escherichia coli and Salmonella typhimurium: RNA secondary structure and regulation of termination. Proc. Natl. Acad. Sci. USA 74: 4365 4369.
100. Li, J.-N.,, and G. R. Björk. 1995. 1-Methylguanosine deficiency of tRNA influences cognate codon interaction and metabolism in Salmonella typhimurium. J. Bacteriol. 177: 6593 6600.
101. Li, J.-N.,, B. Esberg,, J. F. Curran,, and G. R. Björk. 1997. Three modified nucleosides present in the anticodon stem and loop influence the in vivo aa-tRNA selection in a tRNA-dependent manner. J. Mol. Biol. 271: 209 221.
102. Lietzke, S. E.,, C. L. Barnes,, J. A. Berglund,, and C. E. Kundrot. 1996. The structure of an RNA dodecamer shows how tandem U-U base pairs increase the range of stable RNA structures and the diversity of recognition sites. Structure 4: 917 930.
103. Lim, V.,, C. Venclovas,, A. Spirin,, R. Brimacombe,, P. Mitchell,, and F. Muller. 1992. How are tRNAs and mRNA arranged in the ribosome? An attempt to correlate the stereochemistry of the tRNA-mRNA interaction with constraints imposed by the ribosomal topography. Nucleic Acids Res. 20: 2627 2637.
104. Lim, V. I.,, and C. Venclovas. 1992. Codon-anticodon pairing. A model for interacting codon-anticodon duplexes located at the ribosomal A- and P-sites. FEBS Lett. 313: 133 137.
105. Lim, V. I. 1994. Analysis of the action of wobble nucleoside modifications on codon-anticodon pairing within the ribosome. J. Mol. Biol. 240: 8 19.
106. Lim, V. I. 1995. Analysis of the action of the wobble adenine on codon reading within the ribosome. J. Mol. Biol. 252: 277 282.
107. Lim, V. I. 1997. Analysis of interactions between the codon-anticodon duplexes within the ribosome: their role in translation. J. Mol. Biol. 266: 877 890.
108. Limbach, P. A.,, P. F. Crain,, and J. A. McCloskey. 1995. Characterization of oligonucleotides and nucleic acids by mass spectrometry. Curr. Opin. Biotechnol. 6: 96 102.
109. Lovett, P. S.,, and E. J. Rogers. 1996. Ribosome regulation by the nascent peptide. Microbiol. Rev. 60: 366 385.
110. Lustig, F.,, P. Elias,, T. Axberg,, T. Samuelsson,, I. Tittawella,, and U. Lagerkvist. 1981. Codon reading and translational error. Reading of the glutamine and lysine codon during protein synthesis in vitro. J. Biol. Chem. 256: 2635 2643.
111. Lustig, F.,, T. Borén,, C. Claesson,, C. Simonsson,, M. Barciszewska,, and U. Lagerkvist. 1993. The nucleotide in position 32 of the tRNA anticodon loop determines ability of anticodon UCC to discriminate among glycine codons. Proc. Natl. Acad. Sci. USA 90: 3343 3347.
112. Lynn, S. P.,, W. S. Burton,, T. J. Donahue,, R. M. Gould,, R. I. Gumport,, and J. F. Gardner. 1987. Specificity of the attenuation response of the threonine operon of Escherichia coli determined by the threonine and isoleucine codons in the leader transcript. J. Mol. Biol. 194: 59 69.
113. Mangroo, D.,, P. A. Limbach,, J. A. McCloskey,, and U. L. Raj-Bhandary. 1995. An anticodon sequence mutant of Escherichia coli initiator tRNA: possible importance of a newly acquired base modification next to the anticodon on its activity in initiation. J. Bacteriol. 177: 2858 2862.
114. Martin, R. P.,, A. P. Sibler,, C. W. Gehrke,, K. Kuo,, C. G. Edmonds,, J. A. McCloskey,, and G. Dirheimer. 1990. 5-[([Carboxymethyl)-amino]methyl)]uridine is found in the anticodon of yeast mitochondrial tRNAs recognizing two-codon families ending in a purine. Biochemistry 29: 956 959.
115. Meier, F.,, B. Suter,, H. Grosjean,, G. Keith,, and E. Kubli. 1985. Queuosine modification of the wobble base in tRNA His influences 'in vivo' decoding properties. EMBO J. 4: 823 827.
116. Miller, J. H.,, and A. M. Albertini. 1983. Effects of surrounding sequence on the suppression of nonsense codons. J. Mol. Biol. 164: 59 71.
117. Miller, J. P.,, Z. Hussein,, and M. P. Schweizer. 1976. The involvement of the anticodon adjacent modified nucleoside N-9-(-D-ribofuranosyl)-purine-6-carbamoyl-threonine in the biological function of E. coli tRNA Ile. Nucleic Acids Res. 3: 1185 1201.
118. Motorin, Y.,, G. Bec,, R. Tewari,, and H. Grosjean. 1997. Transfer RNA recognition by the Escherichia coli δ 2-isopentenyl-pyrophosphate:tRNA ? 2-isopentenyl transferase: dependence on the anticodon arm structure. RNA 3: 721 733.
119. Munz, P.,, U. Leupold,, P. Agris,, and J. Kohli. 1981. In vivo decoding rules studied in Schizosaccharomyces pombe are at variance with in vitro data. Nature 294: 187 188.
120. Muramatsu, T.,, S. Yokoyama,, N. Horie,, A. Matsuda,, T. Ueda,, Z. Yamaizumi,, Y. Kuchino,, S. Nishimura,, and T. Miyazawa. 1988. A novel lysine-substituted nucleoside in the first position of the anticodon of minor isoleucine tRNA from Escherichia coli. J. Biol. Chem. 263: 9261 9267.
121. Murgola, E. J., 1995. Translational suppression: when two wrongs DO make a right, p. 491 509. In D. Söll, and U. L. RajBhandary (ed.), tRNA: Structure, Biosynthesis, and Function. American Society for Microbiology, Washington, D.C..
122. Nierhaus, K. H. 1993. Solution of the ribosome riddle: how the ribosome selects the correct aminoacyl-tRNA out of 41 similar contestants. Mol. Microbiol. 9: 661 669.
123. Nierhaus, K. H. 1996. An elongation factor turn-on. Nature 379: 491 492.
124. Nishimura, S. 1972. Minor components in transfer RNA: their characterization, location and function. Prog. Nucleic Acid Res. Mol. Biol. 12: 49 85.
125. Noguchi, S.,, Y. Nishimura,, Y. Hirota,, and S. Nishimura. 1982. Isolation and characterization of an Escherichia coli mutant lacking tRNA-guanine transglycosylase. J. Biol. Chem. 257: 6544 6550.
126. Ofengand, J.,, and A. Bakin. 1997. Mapping to nucleotide resolution of pseudouridine residues in large subunit ribosomal RNAs from representative eukaryotes, prokaryotes, archaebac-teria, mitochondria and chloroplasts. J. Mol. Biol. 266: 246 268.
127. Osawa, S.,, T. H. Jukes,, K. Watanabe,, and A. Muto. 1992. Recent evidence for evolution of the genetic code. Microbiol. Rev. 56: 229 264.
128. Pais de Barros, J.-P.,, G. Keith,, C. E. Adlouni,, A.-L. Glasser,, G. Mack,, G. Dirheimer,, and J. Degrès. 1996. 2'-0-methyl-5-formylcytidine (PCm), a new modified nucleotide at the 'wobble' position of two cytoplasmic tRNAsLeu(NAA) from bovine liver. Nucleic Acids Res. 24: 1489 1496.
129. Palmer, D. T.,, P. H. Blum,, and S. W. Artz. 1983. Effect of the hisT mutation of Salmonella typhimurium on translation elongation rate. J. Bacteriol. 153: 357 363.
130. Parker, J. 1982. Specific mistranslation in hisT mutants of Escherichia coli. Mol. Gen. Genet. 190: 405 409.
131. Parker, J.,, and J. D. Friesen. 1980. "Two out of three" codon reading leading to mistranslation in vivo. Mol. Gen. Genet. 177: 439 445.
132. Parker, J. 1989. Errors and alternatives in reading the universal genetic code. Microbiol. Rev. 53: 273 298.
133. Pedersen, W. T.,, and J. F. Curran. 1991. Effects of the nucleotide 3' to an amber codon on ribosomal selection rates of suppressor tRNA and release factor 1. J. Mol. Biol. 219: 231 241.
134. Persson, B.,, and G. R. Björk. 1993. Isolation of the gene (miaE) encoding the hydroxylase involved in the synthesis of 2-methylthio- cis-ribozeatin in tRNA of Salmonella typhimurium and characterization of mutants. J. Bacteriol. 175: 7776 7785.
135. Petrullo, L. A.,, P. J. Gallagher,, and D. Elseviers. 1983. The role of 2-methylthio-N 6-isopentenyladenosine in readthrough and suppression of nonsense codons. Mol. Gen. Genet. 190: 289 294.
136. Pieczenik, G. 1980. Predicting coding function from nucleotide sequence or survival of "fitness" of tRNA. Proc. Natl. Acad. Sci. USA 77: 3539 3543.
137. Precup, J.,, and J. Parker. 1987. Missense misreading of asparagines codons as a function of codon identity and context. J. Biol. Chem. 262: 11351 11355.
138. Qian, Q.,, and G. R. Björk. 1997. Structural requirements for the formation of 1-methylguanosine in vivo in tRNA Pro GGG of Salmonella typhimurium. J. Mol. Biol. 266: 283 296.
139. Qian, Q.,, J. F. Curran,, and G. R. Björk. 1997. Unpublished data.
140. Qian, Q.,, and G. R. Björk. Personal communication.
141. Rizzino, A.,, M. Mastanduno,, and M. Freundlich. 1977. Partial derepression of the isoleucine-valine enzymes during methionine starvation in Salmonella typhimurium. Biochim. Biophys. Acta 475: 267 275.
142. Roth, J. R.,, D. N. Anton,, and P. E. Hartman. 1966. Histidine regulatory mutations in Salmonella typhimurium. I. Isolation and general properties. J. Mol. Biol. 22: 305 323.
143. Saenger, W. 1984. Principles of Nucleic Acid Structure. Springer-Verlag, New York, N.Y..
144. Salser, W. 1969. The influence of the reading context upon the suppression of nonsense codons. Mol. Gen. Genet. 105: 125 130.
145. Schejfer, E.,, S. Roy,, V. Sanchez,, and A. G. Redfield. 1982. Nuclear Overhauser effect study of yeast tRNA 1 Val: evidence for uridine: pseudouridine pairing. Nucleic Acids Res. 10: 8297 8305.
146. Schultz, D. W.,, and M. Yarus. 1994a. tRNA structure and ribosomal function. I. tRNA nucleotide 27-43 mutations enhance first position wobble. J. Mol. Biol. 235: 1381 1394.
147. Schultz, D. W.,, and M. Yarus. 1994. tRNA structure and ribosomal function. II. Interaction between anticodon helix and other tRNA mutations. J. Mol. Biol. 235: 1395 1405.
148. Schwartz, R. S.,, and J. F. Curran. 1997. Analyses of frameshifting at UUU-pyrimidine sites. Nucleic Acids Res. 25: 2005 2011.
149. Sibler, A. P.,, G. Dirheimer,, and R. P. Martin. 1986. Codon reading patterns in Saccharomyces cerevisiae based on sequences of mitochondrial tRNAs. FEBS Lett. 194: 131 138.
150. Sierzputowska-Gracz, H.,, E. Sochacka,, A. Malkiewicz,, K. C. Kuo,, C. W. Gehrke,, and P. F. Agris. 1987. Chemistry and structure of modified uridines in the anticodon, wobble position of transfer RNA are determined by thiolation. J. Am. Chem. Soc. 109: 7171 7177.
151. Singer, C. E.,, G. R. Smith,, R. Córtese,, and B. N. Ames. 1972. Mutant tRNA His ineffective in repression and lacking two pseudouridine modifications. Nat. New Biol. 238: 72 74.
152. Sipley, J.,, and E. Goldman. 1993. Increased ribosomal accuracy increases a programmed translational frameshift in Escherichia coli. Proc. Natl. Acad. Sci. USA 90: 2315 2319.
153. Smith, D.,, and M. Yarus. 1989a. tRNA-tRNA interactions within cellular ribosomes. Proc. Natl. Acad. Sci. USA 86: 4397 4401.
154. Smith, D.,, and M. Yarus. 1989b. Transfer RNA structure and coding specificity. I. Evidence that a D-arm mutation reduces tRNA dissociation from the ribosome. J. Mol. Biol. 206: 489 501.
155. Smith, D.,, and M. Yarus. 1989c. Transfer RNA structure and coding specificity. II. A D-arm tertiary interaction that restricts coding range. J. Mol. Biol. 206: 503 511.
156. Smith, W.,, H. Sierzputowska-Gracz,, S. Sochacka, A Malkiewicz, and P. F. Agris. 1992. Chemistry and structure of modified uridine dinucleosides are determined by thiolation. J. Am. Chem. Soc. 114: 7989 7997.
157. Soil, D.,, E. Ohtsuka,, D. S. Jones,, R. Lohrmann,, H. Hayatsu,, S. Nishimura,, and H. G. Khorana. 1965. Studies on polynucleotides. XLIX. Stimulation of the binding of aminoacyl-tRNA's to ribosomes by ribotrinucleotides and a survey of codon assignments for 20 amino acids. Proc. Natl. Acad. Sci. USA 54: 1378 1385.
158. Spanjaard, R. A.,, K. Chen,, J. R. Walker,, and J. van Duin. 1990. Frameshift suppression at tandem AGA and AGG codons by cloned tRNA genes: assigning a codon to argU tRNA and T4 tRNA Arg. Nucleic Acids Res. 18: 5031 5036.
159. Sprinzl, M.,, C. Steegborn,, F. Hiibel,, and S. Steinberg. 1996. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 24: 68 72.
160. Stanssens, P.,, E. Remaut,, and W. Fiers. 1986. Inefficient translation initiation causes premature transcription termination in the lacZ gene. Cell 44: 711 718.
161. Suzuki, T.,, T. Ueda,, T. Yokogawa,, K. Nishimura,, and K. Watanabe. 1994. Characterization of serine and leucine tRNAs in an asporogenic yeast Candida cylindracea and evolutionary implications of genes for tRNA Ser CAG responsible for translation of a non-universal genetic code. Nucleic Acids Res. 22: 115 123.
162. Takai, K.,, H. Takaku,, and S. Yokoyama. 1996. Codon-reading specificity of an unmodified form of Escherichia coli tRNA 1 Ser in cell-free protein synthesis. Nucleic Acids Res. 24: 2894 2899.
163. Takemoto, C.,, T. Koike,, T. Yokogawa,, L. Benkowski,, L. L. Spre-mulli,, T. A. Ueda,, K. Nishikawa,, and K. Watanabe. 1995. The ability of bovine mitochondrial transfer RNA Met to decode AUG and AUA codons. Biochimie 77: 104 108.
164. Tanaka, R.,, Y. Andachi,, and A. Muto. 1991. Evolution of tRNAs and tRNA genes in Acholeplasma laidlawii. Nucleic Acids Res. 19: 6787 6792.
165. Tate, W. P.,, and S. A. Mannering. 1996. Three, four or more: the translational stop signal at length. Mol. Microbiol. 21: 213 219.
166. ten Dam, E.,, C. Pleij,, and L. Bosch. 1990. RNA pseudoknots: translational frameshifting and readthrough of viral RNAs. Virus Genes 4: 121 136.
167. Thompson, R. C. 1988. EFTu provides an internal kinetic standard for translational accuracy. Trends Biochem. Sci. 13: 91 93.
168. Tsuchihashi, Z.,, and P. O. Brown. 1992. Sequence requirements for efficient translational frameshifting in the Escherichia coli dnaX gene and the role of an unstable interaction between tRNA Lys and an AAG lysine codon. Genes Dev. 6: 511 519.
169. Vacher, J.,, H. Grosjean,, C. Houssier,, and R. H. Buckingham. 1984. The effect of point mutations affecting Escherichia coli tryptophan tRNA on anticodon-anticodon interactions and on UGA suppression. J. Mol. Biol. 177: 329 342.
170. Varani, G.,, and I. Tinoco. 1991. RNA structure and NMR spectroscopy. Q. Rev. Biophys. 24: 479 532.
171. Watanabe, K. 1980. Reactions of 2-thioribothymidine and 4-thiouridine with hydrogen peroxide in transfer ribonucleic acids from Thermus thermophilus and Escherichia coli as studied by circular dichroism. Biochemistry 19: 5542 5549.
172. Watanabe, K.,, N. Hayashi,, A. Oyama,, K. Nishikawa,, T. Ueda,, and K. Miura. 1994. Unusual anticodon loop structure found in E. coli lysine tRNA. Nucleic Acids Res. 22: 79 87.
173. Weiss, R. B.,, D. M. Dunn,, A. E. Dahlberg,, J. F. Atkins,, and R. F. Gesteland. 1988. Reading frame switch caused by base-pair formation between the 3' end of 16S rRNA and the mRNA during elongation of protein synthesis in Escherichia coli. EMBO J. 7: 1503 1507.
174. Weiss, R. B.,, D. M. Dunn,, M. Shuh,, J. F. Atkins,, and R. F. Gesteland. 1989. ?. coli ribosomes re-phase on retroviral frameshift signals at rates ranging from 2 to 50 percent. New Biol. 1: 159 169.
175. Weiss, W. A.,, and E. C. Friedberg. 1986. Normal yeast tRNA Gln CAG can suppress amber codons and is encoded by an essential gene. J. Mol. Biol. 192: 725 735.
176. Weissenbach, J.,, and H. Grosjean. 1981. Effect of threonylcarbamoyl modification (t 6A) in yeast tRNA Arg III on codon-anticodon and anticodon-anticodon interactions. Eur. J. Biochem. 116: 207 213.
177. Westhof, E.,, P. Dumas,, and D. Moras. 1985. Crystallographic refinement of yeast aspartic acid transfer RNA. J. Mol. Biol. 184: 119 145.
178. Wilson, R. K.,, and B. A. Roe. 1989. Presence of the hypermodified nucleotide N 6-(δ 2-isopentenyl)-2-methylthioadenosine prevents codon misreading by Escherichia coli phenylalanyl-transfer RNA. Proc. Natl. Acad. Sci. USA 86: 409 413.
179. Wu, M.,, J. A. McDowell,, and J. H. Turner. 1995. A periodic table of symmetric tandem mismatches in RNA. Biochemistry 34: 3204 3211.
180. Yarus, M. 1982. Translational efficiency of transfer RNA's: uses of an extended anticodon. Science 218: 646 652.
181. Yarus, M.,, S. W. Cline,, P. Wier,, L. Breeden,, and R. C. Thompson. 1986. Actions of the anticodon arm in translation on the phenotypes of RNA mutants. J. Mol. Biol. 192: 235 255.
182. Yarus, M.,, and J. F. Curran,. 1992. The translational context effect, p. 319 365. In D. A. Hatfield,, B. J. Lee,, and R. M. Pirtle (ed.), Transfer RNA in Protein Synthesis. CRC Press, Boca Raton, Fla..
183. Yarus, M.,, and D. Smith,. 1995. tRNA on the ribosome: a waggle theory, p. 443 469. In D. Soli, and U. L. RajBhandary (ed.), tRNA: Structure, Biosynthesis, and Function. American Society for Microbiology, Washington, D.C..
184. Yelverton, E.,, D. Lindsley,, P. Yamauchi,, and J. Gallant. 1994. The function of a ribosomal frameshifting signal from human immunodeficiency virus-1 in Escherichia coli. Mol. Microbiol. 11: 303 313.
185. Yokoyama, S.,, Z. Yamaizumi,, S. Nishimura,, G. Kawai,, and T. Miyazawa. 1979. 1H NMR studies on the conformational characteristics of 2-thiopyrimidine nucleotides found in transfer RNAs. Nucleic Acids Res. 6: 2611 2626.
186. Yokoyama, S.,, T. Watanabe,, K. Murao,, H. Ishikura,, Z. Yamaizumi,, S. Nishimura,, and T. Miyazawa. 1985. Molecular mechanism of codon recognition by tRNA species with modified uridine in the first position of the anticodon. Proc. Natl. Acad. Sci. USA 82: 4905 4909.
187. Yokoyama, S.,, and S. Nishimura,. 1995. Modified nucleosides and codon recognition, p. 207 233. In D. Söll, and U. L. RajBhandary (ed.), tRNA: Structure, Biosynthesis, and Function. American Society for Microbiology, Washington, D.C..
188. Zerfass, K.,, and H. Beier. 1992. Pseudouridine in the anticodon G?A of plant cytoplasmic tRNA Tyr is required for UAG and UAA suppression in the TMV-specific context. Nucleic Acids Res. 20: 5911 5918.


Generic image for table
Table 1

Summary of the effects of modified nucleosides on translation

Citation: Curran J. 1998. Modified Nucleosides in Translation, p 493-516. In Grosjean H, Benne R (ed), Modification and Editing of RNA. ASM Press, Washington, DC. doi: 10.1128/9781555818296.ch27

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error