Chapter 6 : On the Origin of Oncogenes

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

On the Origin of Oncogenes, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818302/9781555810986_Chap06-1.gif /docserver/preview/fulltext/10.1128/9781555818302/9781555810986_Chap06-2.gif


This chapter first reviews Howard Temin's thoughts on the origin of cancer genes, who had correctly predicted many aspects of the current understanding of the molecular alterations responsible for the development of malignant tumors. The chapter discusses some of the functions of proto-oncogenes in controlling normal cell growth and differentiation as well as the possibility that oncogene proteins provide novel targets for cancer chemotherapy-areas of current interest which represent direct outgrowths of some of Howard's seminal contributions to cancer research. All three key elements of Howard's hypothesis for the origin of cancer genes have proven correct. First, mutations play a critical role in converting protooncogenes to oncogenes as well as in inactivating tumor suppressor genes. Second, similar oncogenes are found in both strongly transforming retroviruses and nonvirus-induced tumors, including human cancers. Third, reverse transcription is involved in at least some mutations of proto-oncogenes and tumor suppressor genes in non-virus-induced tumors as well as being responsible for the incorporation of oncogenes into retroviral genomes. The discovery that oncogenes are mutated versions of normal cell genes (proto-oncogenes) focused attention on the roles of proto-oncogenes in normal cells and on the nature of the molecular alterations that convert proto-oncogenes to oncogenes. The chapter concludes with a brief consideration of the possibility that oncogenes provide novel targets against which drugs with increased selectivity for cancer cells could be designed. Posttranslational modification of Ras proteins by addition of a farnesyl isoprenoid is required for their membrane association and biological activity.

Citation: Cooper G. 1995. On the Origin of Oncogenes, p 63-80. In Cooper G, Temin R, Sugden B (ed), The DNA Provirus. ASM Press, Washington, DC. doi: 10.1128/9781555818302.ch6
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Ras proteins in mitogenic signal transduction. Ras proteins are activated downstream of receptor protein-tyrosine kinases. The Raf protein-serine/threonine kinase then binds to Ras, which serves to recruit Raf to the plasma membrane. Activated Raf then phosphorylates and activates MEK, which in turn phosphorylates and activates MAP kinase (MAPK).

Citation: Cooper G. 1995. On the Origin of Oncogenes, p 63-80. In Cooper G, Temin R, Sugden B (ed), The DNA Provirus. ASM Press, Washington, DC. doi: 10.1128/9781555818302.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Distinct pathways signal differentiation and survival of PC12 cells in response to NGF.

Citation: Cooper G. 1995. On the Origin of Oncogenes, p 63-80. In Cooper G, Temin R, Sugden B (ed), The DNA Provirus. ASM Press, Washington, DC. doi: 10.1128/9781555818302.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Aaronson, S. A. 1991. Growth factors and cancer. Science 254: 1146 1153.
2. Alema, S.,, P. Casalbore,, E. Agostini,, and F. Tato. 1985. Differentiation of PC12 phaeochromocy-toma cells induced by v- src oncogene. Nature (London) 316: 557 559.
3. Amaya, E.,, T. J. Musci,, and M. W. Kirschner. 1991. Expression of a dominant negative mutant of the FGF receptor disrupts mesoderm formation in Xenopus embryos. Cell 66: 257 270.
4. Ambrosio, L.,, A. P. Mahowald,, and N. Perrimon. 1989. Requirement of the Drosophila raf homologue for torso function. Nature (London) 342: 288 291.
5. Aroian, R. V.,, M. Koga,, J. E. Mendel,, Y. Ohshima,, and P. W. Sternberg. 1990. The let-23 gene necessary for Caenorhabditis elegans vulval induction encodes a tyrosine kinase of the EGF receptor subfamily. Nature (London) 348: 693 698.
6. Baltimore, D. 1970. RNA-dependent DNA polymerase in virions of RNA tumour viruses. Nature (London) 226: 799 801.
7. Bar-Sagi, D.,, and J. R. Feramisco. 1985. Microinjection of the ras oncogene protein into PC12 cells induces morphological differentiation. Cell 42: 841 848.
8. Beitel, G. J.,, S. G. Clark,, and H. R. Horvitz. 1990. Caenorhabditis elegans ras gene let-60 acts as a switch in the pathway of vulval induction. Nature (London) 348: 503 509.
9. Biggs, W. H., III,, K. H. Zavitz,, B. Dickson,, A. van der Straten,, D. Brunner,, E. Hafen,, and S. L. Zipursky. 1994. The Drosophila rolled locus encodes a MAP kinase required in the sevenless signal transduction pathway. EMBO J. 13: 1628 1635.
10. Blenis, J. 1993. Signal transduction via the MAP kinases: proceed at your own RSK. Proc. Natl. Acad. Sci. USA 90: 5889 5892.
11. Boguski, M. S.,, and F. McCormick. 1993. Proteins that regulate Ras and its relatives. Nature (London) 366: 643 654.
12. Bolen, J. B. 1993. Nonreceptor tyrosine protein kinases. Oncogene 8: 2025 2031.
13. Bos, J. L. 1989. Ras oncogenes in human cancer: a review. Cancer Res. 49: 4682 4689.
14. Cacace, A.,, S. N. Guadagno,, R. S. Krauss,, D. Fabbro,, and I. B. Weinstein. 1993. The epsilon isoform of protein kinase C is an oncogene when overexpressed in rat fibroblasts. Oncogene 8: 2094 2114.
14.a. Cai, H.,, and G. M. Cooper. Unpublished results.
15. Cai, H.,, P. Erhardt,, J. Szeberenyi,, M. T. Diaz-Meco,, J. Moscat,, and G. M. Cooper. 1992. Hydrolysis of phosphatidylcholine is stimulated by Ras proteins during mitogenic signal transduction. Mol. Cell. Biol. 12: 5329 5335.
16. Cai, H.,, P. Erhardt,, J. Troppmair,, M. T. Diaz-Meco,, G. Sithanandam,, U. R. Rapp,, J. Moscat,, and G. M. Cooper. 1993. Hydrolysis of phosphatidylcholine couples Ras to activation of Raf protein kinase during mitogenic signal transduction. Mol. Cell. Biol. 13: 7645 7651.
17. Cai, H.,, J. Szeberenyi,, and G. M. Cooper. 1990. Effect of a dominant inhibitory Ha-ra.v mutation on mitogenic signal transduction in NIH 3T3 cells. Mol. Cell. Biol. 10: 5314 5323.
18. Canaani, E.,, O. Dreazen,, A. Klar,, G. Rechavi,, D. Ram,, J. B. Cohen,, and D. Givol. 1983. Activation of the c- mos oncogene in a mouse plasmacytoma by insertion of an endogenous intracisternal A-particle genome. Proc. Natl. Acad. Sci. USA 80: 7118 7122.
19. Cantley, L. C.,, K. R. Auger,, C. Carpenter,, B. Duckworth,, A. Graziani,, R. Kapeller,, and S. Soltoff. 1991. Oncogenes and signal transduction. Cell 64: 281 302.
20. Casey, P. J.,, P. A. Solski,, C. J. Der,, and J. E. Buss. 1989. p21 ras is modified by a farnesyl isoprenoid. Proc. Natl. Acad. Sci. USA 86: 8323 8327.
21. Cooper, G. M. 1995. Oncogenes, 2d ed. Jones and Bartlett Publishers, Boston.
22. Dent, P.,, W. Haser,, T. A. J. Haystead,, L. A. Vincent,, T. M. Roberts,, and T. W. Sturgill. 1992. Activation of mitogen-activated protein kinase kinase by v-Raf in NIH 3T3 cells and in vitro. Science 257: 1404 1407.
23. Der, C. J.,, T. G. Krontiris,, and G. M. Cooper. 1982. Transforming genes of human bladder and lung carcinoma cell lines are homologous to the ras genes of Harvey and Kirsten sarcoma viruses. Proc. Natl. Acad. Sci. USA 79: 3637 3640.
24. Dickson, B.,, F. Sprenger,, D. Morrison,, and E. Hafen. 1992. Raf functions downstream of Rasl in the Sevenless signal transduction pathway. Nature (London) 360: 600 603.
25. Duhrsen, U.,, J. Stahl,, and N. M. Gough. 1990. In vivo transformation of factor-dependent hemopoietic cells: role of intracisternal A-particle transposition for growth factor gene activation. EMBO J. 9: 1087 1096.
26. Fabian, J. R.,, I. O. Daar,, and D. K. Morrison. 1993. Critical tyrosine residues regulate the enzymatic and biological activity of Raf-1 kinase. Mol. Cell. Biol. 13: 7170 7179.
27. Feig, L. A.,, and G. M. Cooper. 1988. Inhibition of NIH 3T3 cell proliferation by a mutant ras protein with preferential affinity for GDP. Mol. Cell. Biol. 8: 3235 3243.
28. Gibbs, J. B.,, A. Oliff,, and N. E. Kohl. 1994. Farnesyltransferase inhibitors: Ras research yields a potential cancer therapeutic. Cell 77: 175 178.
29. Gille, H.,, A. D. Sharrocks,, and P. E. Shaw. 1992. Phosphorylation of transcription factor p62 TCF by MAP kinase stimulates ternary complex formation at c-fos promoter. Nature (London) 358: 414 417.
30. Glass, D. J.,, and G. D. Yancopoulos. 1993. The neurotrophins and their receptors. Trends Cell Biol. 3: 262 268.
31. Ha, K. S.,, and J. H. Exton. 1993. Differential translocation of protein kinase C isozymes by thrombin and platelet-derived growth factor. A possible function for phosphatidylcholine-derived diacylglycerol. J. Biol. Chem. 268: 10534 10539.
32. Hafen, E.,, K. Basler,, J.-E. Edstroem,, and G. M. Rubin. 1987. Sevenless, a cell-specific homeotic gene of Drosophila, encodes a putative transmembrane receptor with a tyrosine kinase domain. Science 236: 55 63.
33. Hagag, N.,, S. Halegoua,, and M. Viola. 1986. Inhibition of growth factor-induced differentiation of PC12 cells by microinjection of antibody to ras p21. Nature (London) 319: 680 682.
34. Han, M.,, A. Golden,, Y. Han,, and P. W. Sternberg. 1993. C. elegans lin-45 raf gene participates in let-60 ras-stimulated vulval differentiation. Nature (London) 363: 133 140.
35. Han, M.,, and P. W. Sternberg. 1990. let-60, a gene that specifies cell fates during C. elegans vulval induction, encodes a ras protein. Cell 63: 921 931.
36. Hancock, J. F.,, A. I. Magee,, J. E. Childs,, and C. J. Marshall. 1989. All ras proteins are polyiso-prenylated but only some are palmitoylated. Cell 57: 1167 1177.
37. Hayward, W. S.,, B. G. Neel,, and S. M. Astrin. 1981. Activation of a cellular onc gene by promoter insertion in ALV-induced lymphoid leukosis. Nature (London) 290: 475 480.
38. Hill, C. S.,, R. Marais,, S. John,, J. Wynne,, S. Dalton,, and R. Treisman. 1993. Functional analysis of a growth factor-responsive transcription factor complex. Cell 73: 395 406.
39. Howe, L. R.,, S. J. Leevers,, N. Gomez,, S. Nakielny,, P. Cohen,, and C. J. Marshall. 1992. Activation of the MAP kinase pathway by the protein kinase raf. Cell 71: 335 342.
40. Huebner, R. J.,, and G. J. Todaro. 1969. Oncogenes of RNA tumor viruses as determinants of cancer. Proc. Natl. Acad. Sci. USA 64: 1087 1094.
41. Ibanez, C. F.,, T. Ebendal,, G. Barbany,, J. Murray-Rust,, T. L. Blundell,, and H. Persson. 1992. Disruption of the low affinity receptor-binding site in NGF allows neuronal survival and differentiation by binding to the trk gene product. Cell 69: 329 341.
42. James, G. L.,, J. L. Goldstein,, M. S. Brown,, T. E. Rawson,, T. C. Somers,, R. S. McDowell,, C. W. Crowley,, B. K. Lucas,, A. D. Levinson,, and J. C. Marsters, Jr. 1993. Benzodiazepine peptidomimetics: potent inhibitors of Ras farnesylation in animal cells. Science 260: 1937 1942.
43. Johansen, T.,, G. Bjorkoy,, A. Overvatn,, M. T. Diaz-Meco,, T. Traavik,, and J. Moscat. 1994. NIH 3T3 cells stably transfected with the gene encoding phosphatidylcholine-hydrolyzing phospholi-pase C from Bacillus cereus acquire a transformed phenotype. Mol. Cell. Biol. 14: 646 654.
44. Kaplan, D. R.,, B. L. Hempstead,, D. Martin-Zanca,, M. V. Chao,, and L. F. Parada. 1991. The trk proto-oncogene product: a signal transducing receptor for nerve growth factor. Science 252: 554 558.
45. Klein, R.,, S. Jing,, V. Nanduri,, E. O'Rourke,, and M. Barbacid. 1991. The trk proto-oncogene encodes a receptor for nerve growth factor. Cell 65: 189 197.
46. Kohl, N. E.,, S. D. Mosser,, S. J. deSolms,, E. A. Giuliani,, D. L. Pompliano,, S. L. Graham,, R. L. Smith,, E. M. Scolnick,, A. Oliff,, and J. Gibbs. 1993. Selective inhibition of ras-dependent transformation by a farnesyltransferase inhibitor. Science 260: 1934 1937.
47. Kolch, W.,, G. Heidecker,, G. Kochs,, R. Hummel,, H. Vahidi,, H. Mischak,, G. Finkenzeller,, D. Marme,, and U. R. Rapp. 1993. PKC-α activates Raf-1 by direct phosphorylation. Nature (London) 364: 426 428.
48. Kolch, W.,, G. Heidecker,, P. Lloyd,, and U. R. Rapp. 1991. Raf-1 protein kinase is required for growth of induced NIH 3T3 cells. Nature (London) 349: 249 252.
49. Krontiris, T. G.,, and G. M. Cooper. 1981. Transforming activity of human tumor DNAs. Proc. Natl. Acad. Sci. USA 78: 1181 1184.
50. Kyriakis, J. M.,, H. App,, X. Zhang,, P. Banerjee,, D. L. Brautigan,, U. R. Rapp,, and J. Avruch. 1992. Raf-1 activates MAP kinase-kinase. Nature (London) 358: 417 421.
51. Larrodera, P.,, M. E. Cornet,, M. T. Diaz-Meco,, M. Lopez-Barrahona,, I. Diaz-Laviada,, P. H. Guddal,, T. Johansen,, and J. Moscat. 1990. Phospholipase C-mediated hydrolysis of phosphatidylcholine is an important step in PDGF-stimulated DNA synthesis. Cell 61: 1113 1120.
52. Leevers, S. J.,, H. F. Paterson,, and C. J. Marshall. 1994. Requirement for Ras in Raf activation is overcome by targeting Raf to the plasma membrane. Nature (London) 369: 411 414.
53. Levine, A. J. 1993. The tumor suppressor genes. Annu. Rev. Biochem. 62: 623 651.
54. Loeb, D. M.,, J. Maragos,, D. Martin-Zanca,, M. V. Chao,, L. F. Parada,, and L. A. Greene. 1991. The trk proto-oncogene rescues NGF responsiveness in mutant NGF-nonresponsive PC 12 cell lines. Cell 66: 961 966.
55. Lowy, D. R.,, and B. M. Willumsen. 1993. Function and regulation of Ras. Annu. Rev. Biochem. 62: 851 891.
56. Lu, X.,, T.-B. Chou,, N. G. Williams,, T. M. Roberts,, and N. Perrimon. 1993. Control of cell fate determination by p21 ras /Rasl, an essential component of torso signaling in Drosophila. Genes Dev. 7: 621 632.
57. Macdonald, S. G.,, C. M. Crews,, L. Wu,, J. Driller,, R. Clark,, R. L. Erikson,, and F. McCormick. 1993. Reconstitution of the Raf-1-MEK-ERK signal transduction pathway in vitro. Mol. Cell. Biol. 13: 6615 6620.
58. MacNicol, A. M.,, A. J. Muslin,, and L. T. Williams. 1993. Raf-1 kinase is essential for early Xenopus development and mediates the induction of mesoderm by FGF. Cell 73: 571 583.
59. Marais, R.,, J. Wynne,, and R. Treisman. 1993. The SRF accessory protein Elk-1 contains a growth factor-regulated transcriptional activation domain. Cell 73: 381 393.
60. Miki, Y.,, I. Nishisho,, A. Horii,, Y. Miyoshi,, J. Utsunomiya,, K. W. Kinzler,, B. Vogelstein,, and Y. Nakamura. 1992. Disruption of the APC gene by a retrotransposal insertion of LI sequence in a colon cancer. Cancer Res. 52: 643 645.
61. Mischak, H.,, J. Goodnight,, W. Kolch,, G. Martiny-Baron,, C. Schaechtle,, M. G. Kazanietz,, P. M. Blumberg,, J. H. Pierce,, and J. F. Mushniski. 1993. Overexpression of protein kinase C-δ and -∈ in NIH 3T3 cells induces opposite effects on growth, morphology, anchorage dependence, and tumorigenicity. J. Biol. Chem. 268: 6090 6096.
62. Moodie, S. A.,, B. M. Willumsen,, M. J. Weber,, and A. Wolfman. 1993. Complexes of Ras-GTP with Raf-1 and mitogen-activated protein kinase kinase. Science 260: 1658 1661.
63. Mulcahy, L. S.,, M. R. Smith,, and D. W. Stacey. 1985. Requirement for ras proto-oncogene function during serum-stimulated growth of NIH 3T3 cells. Nature (London) 313: 241 243.
64. Nishizuka, Y. 1992. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 258: 607 614.
65. Noda, M.,, M. Ko,, A. Ogura,, D. Liu,, T. Amano,, T. Takano,, and Y. Ikawa. 1985. Sarcoma viruses carrying ras oncogenes induce differentiation-associated properties in a neuronal cell line. Nature (London) 318: 73 75.
66. Pal, S. K.,, R. Crowell,, A. A. Kiessling,, and G. M. Cooper. 1993. Expression of proto-oncogenes in mouse eggs and preimplantation embryos. Mol. Reprod. Dev. 35: 8 15.
67. Parada, L. F.,, C. J. Tabin,, C. Shih,, and R. A. Weinberg. 1982. Human EJ bladder carcinoma oncogene is homologue of Harvey sarcoma virus ras gene. Nature (London) 297: 474 478.
68. Raff, M. C.,, B. A. Barres,, J. F. Bume,, H. S. Coles,, Y. Ishizaki,, and M. D. Jacobson. 1993. Programmed cell death and the control of cell survival: lessons from the nervous system. Science 262: 695 700.
69. Rappolee, D. A.,, C. A. Brenner,, R. Schultz,, D. Mark,, and Z. Werb. 1988. Developmental expression of PDGF, TGF-α and TGF-β genes in preimplantation mouse embryos. Science 241: 708 712.
70. Rappolee, D. A.,, K. S. Sturm,, O. Behrendtsen,, G. A. Schultz,, R. A. Pedersen,, and Z. Werb. 1992. Insulin-like growth factor II acts through an endogenous growth pathway regulated by imprinting in early mouse embryos. Genes Dev. 6: 939 952.
71. Reddy, E. P.,, R. K. Reynolds,, E. Santos,, and M. Barbacid. 1982. A point mutation is responsible for the acquisition of transforming properties by the T24 human bladder carcinoma oncogene. Nature (London) 300: 149 152.
72. Santos, E.,, S. R. Tronick,, S. A. Aaronson,, S. Pulciani,, and M. Barbacid. 1982. T24 human bladder carcinoma oncogene is an activated form of the normal human homologue of BALB- and Harvey-MSV transforming genes. Nature (London) 298: 343 347.
73. Scolnick, E. M.,, E. Rands,, D. Williams,, and W. P. Parks. 1973. Studies on the nucleic acid sequences of Kirsten sarcoma virus: a model for formation of a mammalian RNA-containing sarcoma virus. J. Virol. 12: 458 463.
74. Shih, C.,, L. C. Padhy,, M. Murray,, and R. A. Weinberg. 1981. Transforming genes of carcinomas and neuroblastomas introduced into mouse fibroblasts. Nature (London) 290: 261 264.
75. Simon, M. A.,, D. D. L. Bowtell,, G. S. Dodson,, T. R. Laverty,, and G. M. Rubin. 1991. Rasl and a putative guanine nucleotide exchange factor perform crucial steps in signaling by the sevenless protein tyrosine kinase. Cell 67: 701 715.
76. Smith, M. R.,, S. J. DeGudicibus,, and D. W. Stacey. 1986. Requirement for c- ras proteins during viral oncogene transformation. Nature (London) 320: 540 543.
77. Sozeri, O.,, K. Vollmer,, M. Liyanage,, D. Frith,, G. Kour,, G. E. Mark III,, and S. Stabel. 1992. Activation of the c-Raf protein kinase by protein kinase C phosphorylation. Oncogene 7: 2259 2262.
78. Sprenger, F.,, L. M. Stevens,, and C. Nusslein-Volhard. 1989. The Drosophila gene torso encodes a putative receptor tyrosine kinase. Nature (London) 338: 478 483.
79. Stehelin, D.,, H. E. Varmus,, J. M. Bishop,, and P. K. Vogt. 1976. DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA. Nature (London) 260: 170 173.
80. Stokoe, D.,, S. G. Macdonald,, K. Cadwallader,, M. Symons,, and J. F. Hancock. 1994. Activation of Raf as a result of recruitment to the plasma membrane. Science 264: 1463 1467.
81. Sugden, B. 1993. How some retroviruses got their oncogenes. Trends Biochem. Sci. 18: 233 235.
82. Szeberenyi, J.,, H. Cai,, and G. M. Cooper. 1990. Effect of a dominant inhibitory Ha- ras mutation on neuronal differentiation of PC12 cells. Mol. Cell. Biol. 10: 5324 5332.
83. Tabin, C. J.,, S. M. Bradley,, C. I. Bargmann,, R. A. Weinberg,, A. G. Papageorge,, E. M. Scolnick,, R. Dhar,, D. R. Lowy,, and E. H. Chang. 1982. Mechanism of activation of a human oncogene. Nature (London) 300: 143 149.
84. Taparowsky, E.,, Y. Suard,, O. Fasano,, K. Shimizu,, M. Goldfarb,, and M. Wigler. 1982. Activation of the T24 bladder carcinoma transforming gene is linked to a single amino acid change. Nature (London) 300: 762 765.
85. Temin, H. M. 1970. Malignant transformation of cells by viruses. Perspect. Biol. Med. 14: 11 26.
86. Temin, H. M. 1971. The protovirus hypothesis: speculations on the significance of RNA-directed DNA synthesis for normal development and for carcinogenesis. J. Natl. Cancer Inst. 46: 111 VII.
87. Temin, H. M. 1974. On the origin of the genes for neoplasia. Cancer Res. 34: 2835 2841.
88. Temin, H. M.,, and S. Mizutani. 1970. RNA-dependent DNA polymerase in virions of Rous sarcoma virus. Nature (London) 226: 1211 1213.
89. Thomas, S. M.,, M. DeMarco,, G. D'Arcangelo,, S. Halegoua,, and J. S. Brugge. 1992. Ras is essential for nerve growth factor- and phorbol ester-induced tyrosine phosphorylation of MAP kinases. Cell 68: 1031 1040.
90. Troppmair, J.,, J. T. Bruder,, H. App,, H. Cai,, L. Liptak,, J. Szeberenyi,, G. M. Cooper,, and U. R. Rapp. 1992. Ras controls coupling of growth factor receptors and protein kinase C in the membrane to Raf-1 and B-Raf protein serine kinases in the cytosol. Oncogene 7: 1867 1873.
91. Vail Aelst, L.,, M. Barr,, S. Marcus,, A. Polverino,, and M. Wigler. 1993. Complex formation between RAS and RAF and other protein kinases. Proc. Natl. Acad. Sci. USA 90: 6213 6217.
92. Vogelstein, B.,, and K. W. Kinzler. 1993. The multistep nature of cancer. Trends Genet. 9: 138 141.
93. Vojtek, A. B.,, S. M. Hollenberg, and J. A. Cooper. 1993. Mammalian Ras interacts directly with the serine/threonine kinase Raf. Cell 74: 205 214.
94. Wallace, M. R.,, L. B. Andersen,, A. M. Saulino,, P. E. Gregory,, T. W. Glover,, and F. S. Collins. 1991. A de novo Alu insertion results in neurofibromatosis type 1. Nature (London) 353: 864 866.
95. Warne, P. H.,, P. R. Viciana,, and J. Downward. 1993. Direct interaction of Ras and the amino-terminal region of Raf-1 in vitro. Nature (London) 364: 352 355.
96. Weinberg, R. A. 1991. Tumor suppressor genes. Science 254: 1138 1146.
97. Whitman, M.,, and D. A. Melton. 1992. Involvement of p21 ras in Xenopus mesoderm induction. Nature (London) 357: 252 254.
98. Wood, K. W.,, C. Sarnecki,, T. M. Roberts,, and J. Blenis. 1992. Ras mediates nerve growth factor receptor modulation of three signal-transducing protein kinases: MAP kinase, Raf-1, and RSK. Cell 68: 1041 1050.
99. Yamauchi, N.,, A. A. Kiessling,, and G. M. Cooper. 1994. The Ras/Raf signaling pathway is required for progression of mouse embryos through the two-cell stage. Mol. Cell. Biol. 14: 6655 6662.
100. Yao, R.,, and G. M. Cooper. 1995. Requirement for phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor. Science 267: 2003 2006.
101. Ymer, S.,, W. Q. J. Tucker,, C. J. Sanderson,, A. J. Hapel,, H. D. Campbell,, and I. G. Young. 1985. Constitutive synthesis of interleukin-3 by leukaemia cell line WEHI-3B is due to retroviral insertion near the gene. Nature (London) 317: 255 258.
102. Zhang, X.,, J. Settleman,, J. M. Kyriakis,, E. Takeuchi-Suzuki,, S. J. Elledge,, M. S. Marshall,, J. T. Bruder,, U. R. Rapp,, and J. Avruch. 1993. Normal and oncogenic p21 ras proteins bind to the amino-terminal regulatory domain of c-Raf-1. Nature (London) 364: 308 313.


Generic image for table
Table 1

Examples of oncogenes in human cancers

Citation: Cooper G. 1995. On the Origin of Oncogenes, p 63-80. In Cooper G, Temin R, Sugden B (ed), The DNA Provirus. ASM Press, Washington, DC. doi: 10.1128/9781555818302.ch6
Generic image for table
Table 2

Tumor suppressor genes

Citation: Cooper G. 1995. On the Origin of Oncogenes, p 63-80. In Cooper G, Temin R, Sugden B (ed), The DNA Provirus. ASM Press, Washington, DC. doi: 10.1128/9781555818302.ch6
Generic image for table
Table 3

Functions of representative proto-oncogenes

PDGF, platelet-derived growth factor; FGF, fibroblast growth factor; EGF, epidermal growth factor; IL-2, interleukin 2.

Citation: Cooper G. 1995. On the Origin of Oncogenes, p 63-80. In Cooper G, Temin R, Sugden B (ed), The DNA Provirus. ASM Press, Washington, DC. doi: 10.1128/9781555818302.ch6

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error