1887

Chapter 17 : Symbiotic Expression of Nitrogen Fixation Genes Is Regulated by Oxygen

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Symbiotic Expression of Nitrogen Fixation Genes Is Regulated by Oxygen, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818319/9781555810894_Chap17-1.gif /docserver/preview/fulltext/10.1128/9781555818319/9781555810894_Chap17-2.gif

Abstract:

elicits the development of specialized organs on the plant roots called nodules. How nitrogen fixation genes are coordinately expressed specifically within the nodule is an important question in understanding the plant-microbe symbiosis. Homologs of genes have been identified in , but inactivation of these genes by transposon mutagenesis does not affect symbiosis. The fact that FixL* retains oxygen-regulated activity in vitro demonstrates that the amino-terminal membrane attachment domain is not essential for FixL function. The net effect, then, is an increase in the level of phospho-FixJ. The development of an oxygen-regulated in vitro transcription system is an important step in the study of FixJ action at target promoters. Two-component response regulators that function as transcription factors can be divided into three subclasses based on sequence similarity outside the universally conserved N-terminal phosphoryl acceptor domain. In contrast with many other systems, the phosphorylated forms of both the sensor kinase (FixL) and the response regulator (FixJ) are very stable, greatly facilitating many biochemical approaches. Signal transduction can be reconstituted in vitro, from stimulus to gene expression, with a minimum of water-soluble components. The study of FixL/FixJ may have important consequences in understanding other oxygen-regulated biological processes. Oxygen is an important regulator of many processes in bacteria. In addition to the intermolecular interactions between the kinase (transmitter) and phosphoryl acceptor (receiver) domains, other important intermolecular interactions may be important, such as monomer-dimer transitions.

Citation: Agron P, Helinski D. 1995. Symbiotic Expression of Nitrogen Fixation Genes Is Regulated by Oxygen, p 275-287. In Hoch J, Silhavy T (ed), Two-Component Signal Transduction. ASM Press, Washington, DC. doi: 10.1128/9781555818319.ch17
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Regulation of symbiotic nitrogen fixation genes of R. meliloti. A plus (+) indicates transcriptional activation of the target gene or operon; a minus (−) indicates repression of transcription.

Citation: Agron P, Helinski D. 1995. Symbiotic Expression of Nitrogen Fixation Genes Is Regulated by Oxygen, p 275-287. In Hoch J, Silhavy T (ed), Two-Component Signal Transduction. ASM Press, Washington, DC. doi: 10.1128/9781555818319.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Schematic representation of the two-component system controlling nitrogen fixation gene expression in (A) The sensor kinase, FixL. The three principal domains and the predicted membrane topology of FixL are shown. (B) FixL⋆, a water-soluble truncated derivative of FixL used for in vitro studies. Two critical histidine residues and their corresponding functions are shown. (C) FixJ, the response regulator. The two principal domains of FixJ are indicated. Coordinates are the positions of amino acids relative to the N terminus of the native protein (1). The amino acid numbering of FixL is according to Lois et al. (1993a).

Citation: Agron P, Helinski D. 1995. Symbiotic Expression of Nitrogen Fixation Genes Is Regulated by Oxygen, p 275-287. In Hoch J, Silhavy T (ed), Two-Component Signal Transduction. ASM Press, Washington, DC. doi: 10.1128/9781555818319.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Current model for modulation of FixJ-phosphate levels by FixL in −O2 indicates that the designated reaction is stimulated by micro- or anaerobiosis. +O2 indicates that the reaction is stimulated by atmospheric oxygen tension and/or repressed by low oxygen tension. ±O2 indicates that the reaction rate is not affected by oxygen concentration. The numbered reactions are described in the text; 1 and 1. refer to forward and reverse reactions, respectively.

Citation: Agron P, Helinski D. 1995. Symbiotic Expression of Nitrogen Fixation Genes Is Regulated by Oxygen, p 275-287. In Hoch J, Silhavy T (ed), Two-Component Signal Transduction. ASM Press, Washington, DC. doi: 10.1128/9781555818319.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818319.chap17
1. Agron, R. G. 1993. Transcriptional regulation of Rhizobium meliloti nitrogen fixation genes by oxygen. Ph.D. thesis. University of California, San Diego.
2. Agron, R. G.,, G. S. Ditta,, and D. R. Helinski. 1992. Mutational analysis of the Rhizobium meliloti nifA promoter. J. Bacteriol. 174: 4120 4129.
3. Agron, R. G.,, G. S. Ditta,, and D. R. Helinski. 1993. Oxygen regulation of nifA transcription in vitro. Proc. Natl. Acad. Sci. USA 90: 3506 3510.
4. Anthamatten, D.,, and H. Hennecke. 1991. The regulatory status of the^ixL- and fixj-hke genes in Bradyrhizobium japonicum may be different from that in Rhizobium meliloti. Mol. Gen. Genet. 225: 38 48.
5. Appleby, C. A. 1984. Leghemoglobin and Rhizobium respiration. Annu. Rev. Plant Physiol. 35: 443 478.
6. Batut, J.,, M.-L. Daveran-Mingot,, M. David,, J. Jacobs,, A. M. Garnerone,, and D. Kahn. 1989. fixK, a gene homologous with fnr and crp from Escherichia coli, regulates nitrogen fixation genes both positively and negatively in Rhizobium meliloti. EMBO J. 8: 1279 1286.
7. David, M.,, M.-L. Daveran,, J. Batut,, A. Dedieu,, O. Domergue,, J. Ghai,, C. Hertig,, P. Boistard,, and D. Kahn. 1988. Cascade regulation of nif gene expression in Rhizobium meliloti. Cell 54: 671 683.
8. David, M.,, O. Domergue,, P. Pognonec,, and D. Kahn. 1987. Transcription patterns of Rhizobium meliloti symbiotic plasmid pSym: identification of nifA-independent fix genes. J. Bacteriol. 169: 2239 2244.
9. Denarie, J.,, and J. Cullimore. 1993. Lipo-oligosaccharide nodulation factors: a new class of signalling molecules mediating recogniton and morphogenesis. Cell 74: 951 954.
10. de Philip, P.,, J. Batut,, and P. Boistard. 1990. Rhizobium meliloti FixL is an oxygen sensor and regulates R. meliloti nifA and fixK genes differently in Escherichia coli. J. Bacteriol. 172: 4255 4262.
11. de Philip, P.,, E. Soupene,, J. Batut,, and P. Boistard. 1992. Modular structure of the FixL protein of Rhizobium meliloti. Mol. Gen. Genet. 235: 49 54.
12. Ditta, G.,, E. Virts,, A. Palomares,, and C.-H. Kim. 1987. The nifA gene of Rhizobium meliloti is oxygen regulated. J. Bacteriol. 169: 3217 3223.
13. Fisher, R. E.,, and S. R. Long. 1992. Rhizobium-phnt signal exchange. Nature (London) 357: 655 660.
14. Gilles-Gonzalez, M. A.,, G. S. Ditta,, and D. R. Helinski. 1991. A haemoprotein with kinase activity encoded by the oxygen sensor of Rhizobium meliloti. Nature 350: 170 172.
15. Gilles-Gonzalez, M. A.,, and G. Gonzalez. 1993. Regulation of the kinase activity of heme protein FixL from the two-component system FixL/FixJ of Rhizobium meliloti. J. Biol. Chem. 268: 16293 16297.
16. Goldberg, M. A.,, S. P. Dunning,, and H. F. Bunn. 1988. Regulation of the erythropoietin gene: evidence that the oxygen sensor is a heme protein. Science 242: 1412 1415.
17. Gussin, G. N.,, C. W. Ronson,, and F. M. Ausubel. 1986. Regulation of nitrogen fixation genes. Annu. Rev. Genet. 20: 567 591.
18. Haaker, H.,, and J. Klugkist. 1987. The bioenergetics of electron transport to nitrogenase. FEMS Microbiol. Rev. 46: 57 71.
19. Hertig, C.,, R. Y. Li,, A.-M. Louarn,, A.-M. Garnerone,, M. David,, J. Batut,, D. Kahn,, and P. Boistard. 1989. Rhizobium meliloti regulatory gene JixJ activates transcription of R. meliloti nifA and JixK genes in Escherichia coli. J. Bacteriol. 171: 1736 1738.
20. Hill, S. 1988. How is nitrogenase regulated by oxygen? FEMS Microbiol. Rev. 54: 111 130.
21. Huala, E.,, and E. M. Ausubel. 1989. The central domain of Rhizobium meliloti NifA is sufficient to activate transcription from the R. meliloti niJH promoter. J. Bacteriol. 170: 3354 3365.
22. Kahn, D.,, M. David,, O. Domergue,, M.-L. Daveran,, J. Ghai,, P. R. Hirsch,, and J. Batut. 1989. Rhizobium meliloti JixGHI sequence predicts involvement of a specific cation pump in symbiotic nitrogen fixation. J. Bacteriol. 171: 929 939.
23. Kahn, D.,, and G. Ditta. 1991. Modular structure of FixJ: homology of the transcriptional activator domain with the —35 binding domain of sigma factors. Mol. Microbiol. 5: 987 997.
24. Kaminski, P. A.,, and C. Elmerich. 1991. Involvement of JixLJ in the regulation of nitrogen fixation in Azorhizobium caulinodans. Mol. Microbiol. 5: 665 673.
25. Kaminski, P. A.,, K. Mandon,, F. Arigoni,, N. Desnoues,, and C. Elmerich. 1991. Regulation of nitrogen fixation in Azorhizobium caulinodans: identification of a JixK-like gene, a positive regulator of nifA. Mol. Microbiol. 5: 1983 1991.
26. Lois, A. F.,, M. Weinstein,, G. S. Ditta,, and D. R. Helinski. 1993a. The oxygen sensor FixL of Rhizobium meliloti is a membrane protein containing four possible transmembrane segments. J. Bacteriol. 175: 1103 1109.
27. Lois, A. F.,, M. Weinstein,, G. S. Ditta,, and D. R. Helinski. 1993b. Autophosphorylation and phosphatase activities of the oxygen-sensing protein FixL of Rhizobium meliloti are coordinately regulated by oxygen. J. Biol. Chem. 268: 4370 4375.
28. Long, S. R. 1989. Rhizobium-legume nodulation: fife together in the underground. Cell 56: 203 214.
29. Lukat, G. S.,, W. R. McCleary,, A. M. Stock,, and J. B. Stock. 1992. Phosphorylation of bacterial response regulator proteins by low molecular weight phospho-donors. Proc. Natl. Acad. Sci. USA 89: 718 722.
30. Merkel, T. J.,, D. M. Nelson,, B. L. Brauer,, and R. J. Kadner. 1992. Promoter elements required for positive control of transcription of the Escherichia coli uhpTgene. J. Bacteriol. 174: 2763 2770.
31. Monson, E. K.,, G. S. Ditta,, and D. R. Helinski. The oxygen sensor protein, FixL, of Rhizobium meliloti: role of histidine residues in heme binding, phosphorylation and signal transduction. J. Biol. Chem., in press.
32. Monson, E. K.,, M. Weinstein,, G. S. Ditta,, and D. R, Helinski. 1992. The FixL protein of Rhizobium meliloti can be separated into a heme-binding oxygen-sensing domain and a functional C-terminal kinase domain. Proc. Natl. Acad. Sci. USA 89: 4280 4284.
33. Renalier, M.-H.,, J. Batut,, J. Ghai,, B. Terzaghi,, M. Gherardi,, A.-M. Garnerone,, J. Vasse,, G. Truchet,, T. Huguet,, and P. Boistard. 1987. A new symbiotic cluster on the pSym megaplasmid of Rhizobium meliloti 2011 carries a functional fix gene repeat and a nod locus. J. Bacteriol. 169: 2231 2238.
34. Reyrat, J.-M.,, M. David,, C. Blonski,, P. Boistard,, and J. Batut. 1993. Oxygen-regulated in vitro transcription of Rhizobium meliloti nifA and JixK genes. J. Bacteriol. 175: 6867 6872.
35. Stock, J. B.,, A. J. Ninfa,, and A. M. Stock. 1989. Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol. Rev. 53: 450 490.
36. Szeto, W. W.,, J. L. Zimmerman,, V. Sundaresan,, and F. M. Ausubel. 1984. Identification and characterization of the Rhizobium meliloti ntrC gene: R. meliloti has separate regulatory pathways for activating nitrogen fixation genes in free-living and symbiotic cells J. Bacteriol. 169: 1423 1432.
37. Virts, E. L.,, S. W. Stanfield,, D. R. Helinski,, and G. S. Ditta. 1988. Common regulatory elements control symbiotic and microaerobic induction of nifA in Rhizobium meliloti. Proc. Natl. Acad. Sci. USA 85: 3062 3065.
38. Waelkens, E.,, A. Foglia,, J. - B. Morel, J. Fourment, J. Batut, and P. Boistard. 1992. Molecular genetic analysis of the Rhizobium meliloti JixK promoter: identification of sequences involved in positive and negative regulation. Mol. Microbiol. 6: 1447 1456.
39. Weinstein, M.,, A. F. Lois,, G. S. Ditta,, and D. R. Helinski. 1993. Mutants of the two-component regulatory protein FixJ of Rhizobium meliloti that have increased activity at the nifA promoter. Gene 134: 145 152.
40. Weinstein, M.,, A. F. Lois,, E. K. Monson,, G. S. Ditta,, and D. R. Helinski. 1992. Isolation of phosphorylation-deficient mutants of the Rhizobium meliloti two-component regulatory protein, FixJ. Mol. Microbiol. 6: 2041 2049.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error