Chapter 5 : Translation and Host Cell Shutoff

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Translation and Host Cell Shutoff, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818326/9781555810924_Chap05-1.gif /docserver/preview/fulltext/10.1128/9781555818326/9781555810924_Chap05-2.gif


Poliovirus represents the prototypic enterovirus, and thus, much of the information available on the mechanism of protein synthesis of enteroviruses has been derived from its study. The other members of the genus , such as coxsackieviruses A and B and enteric cytopathic human orphan (ECHO) virus, presumably display similar modes of translation initiation. Enteroviruses, like all members of the family, have a positive-sense (i.e., message-sense), single-stranded RNA genome that is translated in the cellular cytoplasm immediately after the virions have been uncoated. Enteroviral RNAs resemble cellular mRNAs to such an extent that the viral mRNAs are translated efficiently by the host cell translation machinery, although the mechanism for initiation of protein synthesis appears to be distinct from that employed for most eukaryotic mRNAs. In poliovirus-infected cells, eIF-4F is targeted for proteolysis, thereby causing a shutoff of host cell translation, but the processed form of eIF-4F is still capable of stimulating poliovirus protein synthesis.

Citation: Haller A, Semler B. 1995. Translation and Host Cell Shutoff, p 113-133. In Rotbart H (ed), Human Enterovirus Infections. ASM Press, Washington, DC. doi: 10.1128/9781555818326.ch5
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Diagram of computer-predicted secondary structure of the 5′ NCR of poliovirus RNA. This structure has been confirmed, in part, by RNase and chemical probing experiments. Numbers refer to the poliovirus type 1 RNA genome. The seven stem-loop structures are labeled A through G.An alternative nomenclature employing roman numerals for the stem-loop structures is indicated in parentheses ( ). In addition, Andino et al. ( ) suggested that stem-loops A and B form a cloverleaf structure. This structure would compose the I stem-loop region shown in the figure. The asterisks indicate AUGs conserved among the enteroviruses and rhinoviruses. The conserved polypyrimidine tract (UUUCCUU) is located at nt 558 to 577; the conserved AUG at position 586 is indicated. The AUG at nt 743 represent the authentic translation start codon. The figure is modified from that of Dildine and Semler ( ).

Citation: Haller A, Semler B. 1995. Translation and Host Cell Shutoff, p 113-133. In Rotbart H (ed), Human Enterovirus Infections. ASM Press, Washington, DC. doi: 10.1128/9781555818326.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Diagram of bicistronic mRNAs directing cap-independent translation initiation in uninfected and poliovirus-infected cells. The bicistronic RNA consists of a capped mRNA encoding TK that is fused to the poliovirus 5′ NCR linked to the second cistron encoding CAT. In uninfected cells, the capped mRNA encoding TK is translated in a cap-dependent manner. Translation of the second cistron encoding CAT could occur in two ways: by ribosomal readthrough and reinitiation of ribosomes that bound at the 5′ end of the bicistronic mRNA or by internal ribosome entry in the 5′ NCR of poliovirus. In poliovirus-infected cells, cap-dependent translation initiation is inhibited by the proteolytic processing of translation initiation factor eIF-4F. Thus, no TK protein is observed. However, the CAT mRNA is still translated, presumably by ribosomes binding internally at the IRES element within the 5′ NCR of poliovirus RNA. Reprinted with permission from ( ). © 1988 Macmillan Magazines Limited.

Citation: Haller A, Semler B. 1995. Translation and Host Cell Shutoff, p 113-133. In Rotbart H (ed), Human Enterovirus Infections. ASM Press, Washington, DC. doi: 10.1128/9781555818326.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Diagram of conserved sequence elements in the IRES of enteroviral RNAs. The conserved sequence elements, i.e., the polypyrimidine tract and the upstream AUG codon (at nt 586 in poliovirus type 1), are boxed. The AUG codon is present in stem-loop G of the 5′ NCR of enterovirus RNA. The nucleotide sequences of the AUG codon are predicted to be base paired in a stem structure. A distance of 20 nt between the pyrimidine-rich region and the AUG at nt 586 is required for efficient translation initiation by internal ribosome entry on viral RNAs. Stem-loop G sequences are followed by a region of viral RNA that is not well conserved among the enteroviruses (the variable region). The authentic translation start codon is located at nt 743 and is thus ∼150 nt downstream of the polypyrimidine tract. This AUG codon may be located by ribosome scanning of the viral RNA.

Citation: Haller A, Semler B. 1995. Translation and Host Cell Shutoff, p 113-133. In Rotbart H (ed), Human Enterovirus Infections. ASM Press, Washington, DC. doi: 10.1128/9781555818326.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

Kinetics of protein synthesis in poliovirus-infected cells compared to the rate of protein synthesis in uninfected cells. By approximately 2 h postinfection, cap-dependent cellular protein synthesis has ceased in infected cells. By 3.5 to 4 h postinfection, cap-independent virus-specific protein synthesis occurs at high levels. In uninfected cells, continuous cellular protein synthesis is observed. (Adapted from reference with permission.)

Citation: Haller A, Semler B. 1995. Translation and Host Cell Shutoff, p 113-133. In Rotbart H (ed), Human Enterovirus Infections. ASM Press, Washington, DC. doi: 10.1128/9781555818326.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5

Models of shutoff of host cell protein synthesis for poliovirus and coxsackievirus. In poliovirus-infected cells, a latent cellular protease is activated by the viral 2A, perhaps by proteolysis. The cellular protease carries out the cleavage of p220, a component of eIF-4F, in the presence of eIF-3, resulting in inactive eIF-4F and an inhibition of cap-dependent translation initiation. In contrast, the coxsackievirus 2A can carry out p220 cleavage itself without a requirement for eIF-3.

Citation: Haller A, Semler B. 1995. Translation and Host Cell Shutoff, p 113-133. In Rotbart H (ed), Human Enterovirus Infections. ASM Press, Washington, DC. doi: 10.1128/9781555818326.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Ambros, V.,, and D. Baltimore. 1978. Protein is linked to the 5' end of poliovirus RNA by phosphodiester linkage to tyrosine. J. Biol. Chem. 253: 5263 5266.
2. Andino, R.,, G. E. Rieckhof,, and D. Baltimore. 1990. A functional ribonucleoprotein complex forms around the 5' end of poliovirus RNA. Cell 63: 369 380.
3. Anthony, D. D.,, and W. C. Merrick. 1991. Eukaryotic initiation factor (eIF)-4F: implications for a role in internal initiation of translation. J. Biol. Chem. 266: 10218 10226.
4. Bernstein, H. D.,, N. Sonenberg,, and D. Baltimore. 1985. Poliovirus mutant that does not selectively inhibit host cell protein synthesis. Mol. Cell. Biol. 5: 2913 2923.
5. Bienkowska-Szewczyk, K.,, and E. Ehrenfeld. 1988. An internal 5'-noncoding region required for translation of poliovirus RNA in vitro. J. Virol. 62: 3068 3072.
6. Bienz, K.,, D. Egger,, Y. Rasser,, and W. Bossart. 1983. Intracellular distribution of poliovirus proteins and the induction of virus-specific cytoplasmic structures. Virology 131: 39 48.
7. Bonneau, A.-M.,, and N. Sonenberg. 1987. Proteolysis of the p220 component of the cap-binding protein complex is not sufficient for complete inhibition of host cell protein synthesis after poliovirus infection. J. Virol. 61: 986 991.
8. Borman, A.,, M. T. Howell,, J. G. Patton,, and R. J. Jackson. 1993. The involvement of a spliceosome component in internal initiation of human rhinovirus RNA translation. J. Gen. Virol. 74: 1775 1788.
9. Brown, B. A.,, and E. Ehrenfeld. 1979. Translation of poliovirus RNA in vitro: changes in cleavage pattern and initiation sites by ribosomal salt wash. Virology 97: 396 405.
10. Buckley, B.,, and E. Ehrenfeld. 1987. The cap-binding protein complex in uninfected and poliovirus-infected HeLa cells. J. Biol. Chem. 262: 13599 13606.
11. Clark, M.,, and A. Dasgupta. 1990. A transcriptionally active form of TFIIIC is modified in poliovirus-infected HeLa cells. Mol. Cell. Biol. 10: 5106 5113.
12. Clark, M.,, T. Haemmerle,, E. Wimmer,, and A. Dasgupta. 1991. Poliovirus proteinase 3C converts an active form of transcription factor IIIC to an inactive form: a mechanism for inhibition of host cell polymerase III transcription by poliovirus. EMBO J. 10: 2941 2947.
13. Clark, M. E.,, P. M. Lieberman,, A. J. Berk,, and A. Dasgupta. 1993. Direct cleavage of human TATA-binding protein by poliovirus protease 3C in vivo and in vitro. Mol. Cell. Biol. 13: 1232 1237.
14. Crawford, N.,, A. Fire,, M. Samuels,, P. A. Sharp,, and D. Baltimore. 1981. Inhibition of transcription factor activity by poliovirus. Cell 27: 555 561.
15. Davies, M. V.,, J. Pelletier,, K. Meerovitch,, N. Sonenberg,, and R.J. Kaufman. 1991. The effect of poliovirus proteinase 2A pro expression on cellular metabolism. J. Biol. Chem. 266: 14714 14720.
16. Devaney, M. A.,, V. N. Vakharia,, R. E. Lloyd,, E. Ehrenfeld,, and M. J. Grubman. 1988. Leader protein of foot-and-mouth disease virus is required for cleavage of the p220 component of the cap-binding protein complex. J. Virol. 62: 4407 4409.
17. Dildine, S. L.,, and B. L. Semler. 1989. The deletion of 41 proximal nucleotides reverts a poliovirus mutant containing a temperature-sensitive lesion in the 5' noncoding region of genomic RNA. J. Virol. 63: 847 862.
18. Dildine, S. L.,, and B. L. Semler. 1992. Conservation of RNA-protein interactions among picornaviruses. J. Virol. 66: 4364 4376.
19. Dildine, S. L.,, K. R. Stark,, A. A. Haller,, and B. L. Semler. 1991. Poliovirus translation initiation: differential effects of directed and selected mutations in the 5' noncoding region of viral RNAs. Virology 182: 742 752.
20. Dorner, A. J.,, L. F. Dorner,, G. R. Larsen,, E. Wimmer,, and C. W. Anderson. 1982. Identification of the initiation site of poliovirus polyprotein synthesis. J. Virol. 42: 1017 1028.
21. Dorner, A. J.,, B. L. Semler,, R. J. Jackson,, R. Hanecak,, E. Duprey,, and E. Wimmer. 1984. In vitro translation of poliovirus RNA: utilization of internal initiation sites in reticulocyte lysate. J. Virol. 50: 507 514.
22. Ehrenfeld, E., 1984. Picornavirus inhibition of host cell protein synthesis, p. 177 221. In H. Fraenkel-Conrat, and R. R. Wagner (ed.), Comprehensive Virology, vol. 19. Plenum Press, New York.
23. Etchison, D.,, S. Milburn,, I. Edery,, N. Sonenberg,, and J. W. B. Hershey. 1982. Inhibition of HeLa cell protein synthesis following poliovirus infection correlates with the proteolysis of a 220,000 dalton polypeptide associated with eucaryotic initiation factor 3 and a cap binding protein complex. J. Biol. Chem. 257: 14806 14810.
24. Etchison, D. S.,, J. Hansen,, E. Ehrenfeld,, I. Edery,, N. Sonenberg,, S. Milburn,, and J. W. B. Hershey. 1984. Demonstration in vitro that eucaryotic initiation factor 3 is active but that a cap-binding protein complex is inactive in poliovirus-infected cells. J. Virol. 51: 832 837.
25. Fradkin, L. G.,, S. K. Yoshinaga,, A. J. Berk,, and A. Dasgupta. 1987. Inhibition of host cell RNA polymerase Ill-mediated transcription by poliovirus: inactivation of specific transcription factors. Mol. Cell Biol. 7: 3880 3887.
26. Garcia-Blanco, M. A.,, S. F. Jamison,, and P. A. Sharp. 1989. Identification and purification of a 62,000-dalton protein that binds specifically to the polypyrimidine tract of in-trons. Genes Dev. 3: 1874 1886.
27. Gebhard, J. R.,, and E. Ehrenfeld. 1992. Specific interactions of HeLa cell proteins with proposed translation domains of the poliovirus 5' noncoding region. J. Virol. 66: 3101 3109.
28. Ghetti, A.,, S. Piol-Roma,, W. M. Michael,, C. Morandi,, and G. Dreyfuss. 1992. hnRNP I, the polypyrimidine tract-binding protein: distinct nuclear localization and association with hn RNAs. Nucleic Acids Res. 20: 3671 3678.
29. Gmyl, A. P.,, E. V. Pilipenko,, S. V. Maslova,, G. A. Belov,, and V. I. Agol. 1993. Functional and genetic plasticities of the poliovirus genome: quasi-infectious RNAs modified in the 5'-untranslated region yield a variety of pseudorevertants. J. Virol. 67: 6309 6316.
30. Golini, F.,, B. L. Semler,, A. J. Dorner,, and E. Wimmer. 1980. Protein-linked RNA of poliovirus is competent to form an initiation complex of translation in vitro. Nature (London) 287: 600 603.
31. Gorbalenya, A. E.,, E. V. Koonin,, and M. M.-C. Lai. 1991. Putative papain-related thiol proteases of positive-strand RNA viruses: identification of rubi- and aphthovirus proteases and delineation of a novel conserved domain associated with proteases of rubi-, alpha-, and coronaviruses. FEBS Lett. 288: 201 205.
32. Haller, A. A.,, J. H. C. Nguyen,, and B. L. Semler. 1993. Minimum internal ribosome entry site required for poliovirus infectivity. J. Virol. 67: 7461 7471.
33. Haller, A. A.,, and B. L. Semler. 1992. Linker scanning mutagenesis of the internal ribosome entry site of poliovirus RNA. J. Virol. 66: 5075 5086.
34. Haller, A. A.,, and B. L. Semler. Stem-loop structure synergy in binding cellular proteins to the 5' noncoding region of poliovirus RNA. Virology, in press.
35. Hambidge, S. J.,, and P. Sarnow. 1992. Translational enhancement of the poliovirus 5' noncoding region mediated by virus-encoded polypeptide 2A. Proc. Natl. Acad. Sci. USA 89: 10272 10276.
36. Harber, J.,, and E. Wimmer,. 1993. Aspects of the molecular biology of picornaviruses, p. 189 224. In L. Carrasco,, N. Sonenberg,, and E. Wimmer (ed.), Regulation of Gene Expression in Animal Viruses. Plenum Press, New York.
37. Hellen, C. U. T.,, M. Faecke,, H.-G. Kraeusslich,, C.-K. Lee,, and E. Wimmer. 1991. Characterization of poliovirus 2A proteinase by mutational analysis: residues required for autocatalytic activity are essential for induction of cleavage of eukaryotic initiation factor 4F polypeptide p220. J. Virol. 65: 4226 4231.
38. Hellen, C. U. T.,, T. V. Pestova,, M. Litterst,, and E. Wimmer. 1994. The cellular polypeptide p57 (pyrimidine tract-binding protein) binds to multiple sites in the poliovirus 5' nontranslated region. J. Virol. 68: 941 950.
39. Hellen, C. U. T.,, G. W. Witherell,, M. Schmid,, S. H. Shin,, T. V. Pestova,, A. Gil,, and E. Wimmer. 1993. A cytoplasmic 57 kDa protein (p57) that is required for translation of picornavirus RNA by internal ribosome entry is identical to the nuclear polypyrimidine tract-binding protein. Proc. Natl. Acad. Sci. USA 90: 7642 7646.
40. Holland, J. J. 1962. Inhibition of DNA-primed RNA synthesis during poliovirus infection of human cells. Biochem. Biophys. Res. Commun. 9: 556 573.
41. Iizuka, N.,, M. Kohara,, K. Hagino-Yamagishi,, S. Abe,, T. Komatsu,, K. Tago,, M. Arita,, and A. Nomoto. 1989. Construction of less neurovirulent polioviruses by introducing deletions into the 5' noncoding sequence of the genome. J. Virol. 63: 5354 5363.
42. Iizuka, N.,, H. Yonekawa,, and A. Nomoto. 1991. Nucleotide sequences important for translation initiation of enterovirus RNA. J. Virol. 65: 4867 4873.
43. Jackson, R. J.,, M. T. Howell,, and A. Kaminski. 1990. The novel mechanism of initiation of picornavirus RNA translation. Trends Biochem. Sci. 15: 477 483.
44. Jacobson, S. J.,, D. A. M. Konings,, and P. Sarnow. 1993. Biochemical and genetic evidence for a pseudoknot structure at the 3' terminus of the poliovirus RNA genome and its role in viral RNA amplification. J. Virol. 67: 2961 2971.
45. Jang, S. K.,, H. G. Krausslich,, M. J. H. Nicklin,, G. M. Duke,, A. C. Palmenberg,, and E. Wimmer. 1988. A segment of the 5' untranslated region of encephalomyelitis virus RNA directs internal entry of ribosomes during in vitro translation. J. Virol. 62: 2636 2643.
46. Jang, S. K.,, T. V. Pestova,, C. U. T. Hellen,, G. W. Witherell,, and E. Wimmer. 1990. Cap-independent translation of picornavirus RNAs: structure and function of the internal ribosomal entry site. Enzyme 44: 292 309.
47. Joachims, M.,, and D. Etchison. 1992. Poliovirus infection results in structural alteration of a microtubule-associated protein. J. Virol. 66: 5797 5804.
48. Johnson, V. H.,, and B. L. Semler. 1988. Defined recombinants of poliovirus and coxsackievirus: sequence-specific deletions and functional substitutions in the 5'-noncoding regions of viral RNAs. Virology 162: 47 57.
49. Kaminski, A.,, T. Howell,, and R. J. Jackson. 1990. Initiation of encephalomyocarditis virus RNA translation: the authentic initiation site is not selected by a scanning mechanism. EMBO J. 9: 3753 3759.
50. Kenan, D. J.,, C. C. Query,, and J. D. Keene. 1991. RNA recognition: towards identifying determinants of specificity. Trends Biochem. Sci. 16: 214 220.
51. Kitamura, N.,, B. L. Semler,, P. G. Rothberg,, G. R. Larsen,, C. J. Adler,, A. J. Dorner,, E. A. Emini,, R. Hanecak,, J. J. Lee,, S. van der Werf,, C. W. Anderson,, and E. Wimmer. 1981. Primary structure, gene organization, and polypeptide expression of poliovirus RNA. Nature (London) 291: 547 553.
52. Kleina, L. G.,, and M. J. Grubman. 1992. Antiviral effects of a thiol protease inhibitor on foot-and-mouth disease virus. J. Virol. 66: 7168 7175.
53. Kliewer, S.,, C. Muchardt,, R. Gaynor,, and A. Dasgupta. 1990. Loss of a phosphorylated form of transcription factor CREB/ATF in poliovirus-infected cells. J. Virol. 64: 4507 4515.
54. Kozak, M. 1989. The scanning model for translation: an update J. Cell Biol. 108: 229 241.
55. Kozak, M. 1991. Structural features in eukaryotic mRNAs that modulate the initiation of translation. J. Biol. Chem. 266: 19867 19870.
56. Kraeusslich, H. G.,, M. J. H. Nicklin,, H. Toyoda,, D. Etchison,, and E. Wimmer. 1987. Poliovirus proteinase 2A induces cleavage of eukaryotic initiation factor 4F polypeptide p220. J. Virol. 61: 2711 2718.
57. Kuge, S.,, N. Kawamura,, and A. Nomoto. 1989. Genetic variation occurring in the genome of an in vitro insertion mutant of poliovirus type 1. J. Virol. 63: 1069 1075.
58. La Monica, N.,, and V. R. Racaniello. 1989. Differences in replication of attenuated and neurovirulent polioviruses in human neuroblastoma cell line SH-SY5Y. J. Virol. 63: 2357 2360.
59. Lampheart, B. J.,, R. Yan,, F. Yang,, D. Waters,, H.-D. Liebig,, H. Klump,, E. Kuechler,, T. Skern,, and R. E. Rhoads. 1993. Mapping the cleavage site in protein synthesis initiation factor eIF-4 gamma of the 2A proteases from human coxsackievirus. and rhinovirus. J. Biol. Chem. 268: 19200 19203.
60. Lawrence, C.,, and R. E. Thatch. 1974. Encephalomyocarditis virus infection of mouse plasmacytoma cells. J. Virol. 14: 598 610.
61. Le, S.-Y.,, and M. Zuker. 1990. Common structures of the 5' non-coding RNA in enteroviruses and rhinoviruses. J. Mol. Biol. 216: 729 741.
62. Lee, K. A. W.,, I. Edery,, R. Hanecak,, E. Wimmer,, and N. Sonenberg. 1985. Poliovirus protease 3C (P3-7c) does not cleave p220 of the eucaryotic mRNA cap-binding protein complex. J. Virol. 55: 489 493.
63. Lee, K. A. W.,, and N. Sonenberg. 1982. Inactivation of cap-binding proteins accompanies the shut-off of host protein synthesis by poliovirus. Proc. Natl. Acad. Sci. USA 79: 3447 3451.
64. Liebig, H.-D.,, E. Ziegler,, R. Yan,, K. Hartmuth,, H. Klump,, H. Kowalski,, D. Blaas,, W. Sommergruber,, L. Frasel,, B. J. Lampheart,, R. E. Rhoads,, E. Kuechler,, and T. Skern. 1993. Purification of two picornaviral 2A proteinases: interaction with eIF-4 gamma and influence on in vitro translation. Biochemistry 32: 7581 7588.
65. Linder, P.,, P. F. Lasko,, P. Leroy,, M. Ashburner,, P. Nielsen,, K. Nishi,, J. Schnier,, and P. P. Slonimski. 1989. Birth of the D-E-A-D box. Nature (London) 337: 121 122.
66. Lloyd, R. E.,, D. Etchison,, and E. Ehrenfeld. 1985. Poliovirus protease does not mediate cleavage of the 220,000-Da component of the cap binding protein complex. Proc. Natl. Acad. Sci. USA 82: 2723 2727.
67. Lloyd, R. E.,, M. Grubman,, and E. Ehrenfeld. 1988. Relationship of p220 cleavage during picornavirus infection to 2A proteinase sequences. J. Virol. 62: 4216 4223.
68. Lloyd, R. E.,, H. Toyoda,, D. Etchison,, E. Wimmer,, and E. Ehrenfeld. 1986. Cleavage of the cap binding protein complex polypeptide p220 is not effected by the second poliovirus protease 2A. Virology 150: 299 303.
69. Macadam, A. J.,, G. Ferguson,, T. Fleming,, D. M. Stone,, J. W. Almond,, and P. D. Minor. 1994. Role for poliovirus protease 2A in cap independent translation. EMBO J. 13: 924 927.
70. Macejak, D. G.,, and P. Sarnow. 1991. Internal initiation of translation mediated by the 5' leader of a cellular mRNA. Nature (London) 353: 90 94.
71. Medina, M.,, E. Domingo,, J. K. Brangwyn,, and G.J. Belsham. 1993. The two species of the foot-and-mouth disease virus leader protein, expressed individually, exhibit the same activities. Virology 194: 355 359.
72. Meerovitch, K.,, R. Nicholson,, and N. Sonenberg. 1991. In vitro mutational analysis of cis-acting RNA translational elements within the poliovirus type 2 5' untranslated region. J. Virol. 65: 5895 5901.
73. Meerovitch, K.,, J. Pelletier,, and N. Sonenberg. 1989. A cellular protein that binds to the 5'-noncoding region of poliovirus RNA: implications for internal translation initiation. Genes Dev. 3: 1026 1034.
74. Meerovitch, K.,, Y. U. Svitkin,, H. S. Lee,, F. Lejbkowicz,, D. J. Kenan,, E. K. L. Chan,, V. I. Agol,, J. D. Keene,, and N. Sonenberg. 1993. La autoantigen enhances and corrects aberrant translation of poliovirus RNA in reticulocyte lysate. J. Virol. 67: 3798 3807.
75. Merrick, W. C. 1990. Overview: mechanism of translation initiation in eukaryotes. Enzyme 44: 7 16.
76. Morris, D. R.,, T. Kakegawa,, R. L. Kaspar,, and M. W. White. 1993. Polypyrimidine tracts and their binding proteins: regulatory sites for posttranscriptional modulation of gene expression. Biochemistry 32: 2931 2937.
77. Najita, L.,, and P. Sarnow. 1990. Oxidation-reduction sensitive interaction of a cellular 50-kD protein with an RNA hairpin in the 5' noncoding region of the poliovirus genome. Proc. Natl. Acad. Sci. USA 87: 5846 5850.
78. Nicholson, R.,, J. Pelletier,, S. Le,, and N. Sonenberg. 1991. Structural and functional analysis of the ribosome landing pad of poliovirus type 2: in vivo translational studies. J. Virol. 65: 5886 5894.
79. Nomoto, A.,, Y. F. Lee,, and E. Wimmer. 1976. The 5'-end of poliovirus mRNA is not capped with m7G(5')ppp(5')Np. Proc. Natl. Acad. Sci. USA 73: 375 380.
80. OH, S.-K.,, M. P. Scott,, and P. Sarnow. 1992. Homeotic gene Antennapedia mRNA contains 5'-noncoding sequences that confer translational initiation by internal ribosome binding. Genes Dev. 6: 1643 1653.
81. Parks, G. D.,, G. M. Duke,, and A. C. Palmenberg. 1986. Encephalomyocarditis virus 3C protease: efficient cell-free expression from clones which link viral 5' noncoding sequences to the P3 region. J. Virol. 60: 376 384.
82. Patton, J. G.,, S. A. Mayer,, P. Tempst,, and B. Nadal-Ginard. 1991. Characterization and molecular cloning of polypyrimidine tract-binding protein: a component of a complex necessary for pre-mRNA splicing. Genes Dev. 5: 1237 1251.
83. Pelletier, J.,, M. E. Flynn,, G. Kaplan,, V. Racaniello,, and N. Sonenberg. 1988. Mutational analysis of upstream AUG codons of poliovirus RNA. J. Virol. 62: 4486 4492.
84. Pelletier, J.,, G. Kaplan,, V. R. Racaniello,, and N. Sonenberg. 1988. Cap-independent translation of poliovirus mRNA is conferred by sequence elements within the 5' noncoding region. Mol. Cell. Biol. 8: 1103 1112.
85. Pelletier, J.,, and N. Sonenberg. 1988. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature (London) 334: 320 325.
86. Pelletier, J.,, and N. Sonenberg. 1989. Internal binding of eucaryotic ribosomes on poliovirus RNA: translation in HeLa cell extracts. J. Virol. 63: 441 444.
87. Percy, N.,, G. J. Belsham,, J. K. Brangwyn,, M. Sullivan,, D. M. Stone,, and J. W. Almond. 1992. Intracellular modifications induced by poliovirus reduce the requirement for structural motifs in the 5' noncoding region of the genome involved in internal initiation of protein synthesis. J. Virol. 66: 1695 1701.
88. Perez, L.,, and L. Carrasco. 1992. Lack of direct correlation between p220 cleavage and the shut-off of host translation after poliovirus infection. Virology 189: 178 186.
89. Pestova, T. V.,, C. U. T. Hellen,, and E. Wimmer. 1991. Translation of poliovirus RNA: role of an essential cis-acting oligopyrimidine element within the 5' nontranslated region and involvement of a cellular 57-kilodalton protein. J. Virol. 65: 6194 6204.
90. Pilipenko, E. V.,, V. M. Blinov,, L. I. Romanova,, A. N. Sinyakov,, S. V. Maslova,, and V. I. Agol. 1989. Conserved structural domains in the 5' untranslated region of picornaviral genomes: an analysis of the segment controlling translation and neurovirulence. Virology 168: 201 209.
91. Pilipenko, E.V.,, A. P. Gmyl,, S.V. Maslova,, Y. V. Svitkin,, A. N. Sinyakov,, and V. I. Agol. 1992. Prokaryotic-like cis-elements in the cap-independent internal initiation of translation on picornavirus RNA. Cell 68: 119 131.
92. Racaniello, V. R.,, and D. Baltimore. 1981. Molecular cloning of poliovirus cDNA and determination of the complete nucleotide sequence of the viral genome. Proc. Natl. Acad. Sci. USA 78: 4887 4891.
93. Racaniello, V. R.,, and C. Meriam. 1986. Poliovirus temperature-sensitive mutant containing a single nucleotide deletion in the 5'-noncoding region of the viral RNA. Virology 155: 498 507.
94. Rivera, V. M.,, J. D. Welsh,, and J.V. Maizel. 1988. Comparative sequence analysis of the 5' noncoding region of the enteroviruses and rhi-noviruses. Virology 165: 42 50.
95. Roehl, H. H.,, and B. L. Semler. 1994. In vitro biochemical methods for investigating RNA-protein interactions in picornaviruses. Methods Mol. Genet. 4: 160 182.
96. Rothberg, P. G.,, T. J. R. Harris,, A. Nomoto,, and E. Wimmer. 1978. O4-(5'-uridylyl)tyrosine is the bond between the genome-linked protein and the RNA of poliovirus. Proc. Natl. Acad. Sci. USA 75: 4868 4872.
97. Rozen, F.,, I. Edery,, K. Meerovitch,, T. E. Dever,, W. C. Merrick,, and N. Sonenberg. 1990. Bidirectional RNA helicase activity of eukaryotic translation initiation factors 4A and 4F. Mol. Cell. Biol. 10: 1134 1144.
98. Rubinstein, S. J.,, and A. Dasgupta. 1989. Inhibition of rRNA synthesis by poliovirus: specific inactivation of transcription factors. J. Virol. 63: 4689 4696.
99. Sarnow, P.,, H. S. Bernstein,, and D. Baltimore. 1986. A poliovirus temperature-sensitive mutant located in a non-coding region of the genome. Proc. Natl. Acad. Sci. USA 83: 571 575.
100. Simoes, E. A. F.,, and P. Sarnow. 1991. An RNA hairpin at the extreme 5' end of the poliovirus RNA genome modulates viral translation in human cells. J. Virol. 65: 913 921.
101. Skinner, M. A.,, V. R. Racaniello,, G. Dunn,, J. Cooper,, P. D. Minor,, and J. W. Almond. 1989. New model for the secondary structure of the 5' non-coding RNA of poliovirus is supported by biochemical and genetic data that also show that RNA secondary structure is important in neurovirulence. J. Mol. Biol. 207: 379 392.
102. Sonenberg, N.,, and K. Meerovitch. 1990. Translation of poliovirus mRNA. Enzyme 44: 278 291.
103. Stone, D. M.,, J. W. Almond,, J. K. Brangwyn,, and G.J. Belsham. 1993. trans complementation of cap-independent translation directed by poliovirus 5' noncoding region deletion mutants: evidence for RNA-RNA interactions. J. Virol. 67: 6215 6223.
104. Strebel, K.,, and E. Beck. 1986. A second protease of foot-and-mouth disease virus. J. Virol. 58: 893 899.
105. Toyoda, H.,, M. Kohara,, Y. Kataoka,, T. Suganuma,, T. Omata,, N. Imura,, and A. Nomoto. 1984. Complete nucleotide sequences of all three poliovirus serotype genomes: implication for genetic relationship, gene function, and antigenic determinants. J. Mol. Biol. 174: 561 585.
106. Trono, D.,, R. Andino,, and D. Baltimore. 1988. An RNA sequence of hundreds of nucleotides at the 5' end of poliovirus RNA is involved in allowing viral protein synthesis. J. Virol. 62: 2291 2299.
107. Witherell, G. W.,, A. Gil,, and E. Wimmer. 1993. Interaction of polypyrimidine tract binding protein with the encephalomyocarditis virus mRNA internal ribosome entry site. Biochemistry 32: 8268 8275.
108. Wyckoff, E. E.,, J. W. B. Hershey,, and E. Ehrenfeld. 1990. Eukaryotic initiation factor 3 is required for poliovirus 2A protease-in-duced cleavage of the p220 component of eukaryotic initiation factor 4E Proc. Natl. Acad. Sci. USA 87: 9529 9533.
109. Wyckoff, E. E.,, R. E. Lloyd,, and E. Ehrenfeld. 1992. Relationship of eukaryotic initiation factor 3 to poliovirus-induced p220 cleavage activity. J. Virol. 66: 2943 2951.
110. Yan, R.,, W. Rychlik,, D. Etchison,, and R. E. Rhoads. 1992. Amino acid sequence of the human protein synthesis initiation factor elF-4 gamma. J. Biol. Chem. 267: 23226 23231.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error