Chapter 6 : Cell Biology of Enterovirus Infection

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Cell Biology of Enterovirus Infection, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818326/9781555810924_Chap06-1.gif /docserver/preview/fulltext/10.1128/9781555818326/9781555810924_Chap06-2.gif


Poliovirus, coxsackievirus, and echoviruses are cytopathic in most cell types, and the cytopathic effect (CPE) of enteroviral infection has been frequently described. This chapter discusses alterations in chromatin structure and transcription, rearrangement of cytoskeleton, accumulation of membranous vesicles, inhibition of protein secretion, and eventual lysis of cells infected with cytopathic enteroviruses. Wherever possible, the known or suspected viral proteins involved in these processes are identified, and the evidence for their involvement is presented. The chapter first discusses nuclear effects of enteroviral infection. While many changes in the cell biology of infected cells may result directly from the inhibition of cellular translation, it is also true that several preexisting proteins in the infected cell are specifically degraded during infection by poliovirus. The cell cytoskeleton is composed of three distinct but interconnected filament systems: actin microfilaments, microtubules, and intermediate filaments. A variety of findings support the hypothesis that the synthesis of viral RNA is membrane associated. First, subcellular fractions of poliovirus-infected cells that contain virus-induced membranes are able to synthesize viral RNA. Second, a complex of proteins containing the RNA-dependent RNA polymerase was shown to be membrane associated: when such complexes were isolated from poliovirus-infected cells under conditions that disrupted the membranes, many proteins, including the RNA polymerase, associated spontaneously with liposomes in vitro. Third, membranous complexes isolated from poliovirus-infected cells contain all of the viral proteins thought to be involved in RNA replication.

Citation: Schlegel A, Kirkegaard K. 1995. Cell Biology of Enterovirus Infection, p 135-154. In Rotbart H (ed), Human Enterovirus Infections. ASM Press, Washington, DC. doi: 10.1128/9781555818326.ch6
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Morphologic changes in human embryonic lung cells upon poliovirus infection. Phase contrast photomicrographs are of uninfected (A) and infected (B) cells. Reprinted from reference 2 with permission.

Citation: Schlegel A, Kirkegaard K. 1995. Cell Biology of Enterovirus Infection, p 135-154. In Rotbart H (ed), Human Enterovirus Infections. ASM Press, Washington, DC. doi: 10.1128/9781555818326.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Electron micrographs of HEp-2 cells: (A) uninfected; (B) infected with poliovirus for 3 h; (C) infected with poliovirus for 4 h. NU, nucleus; Nu, nucleolus; rER, rough endoplasmic reticulum; G, Golgi apparatus; V, virus-induced vesicles. Images courtesy of K. Bienz and D. Egger, University of Basel.

Citation: Schlegel A, Kirkegaard K. 1995. Cell Biology of Enterovirus Infection, p 135-154. In Rotbart H (ed), Human Enterovirus Infections. ASM Press, Washington, DC. doi: 10.1128/9781555818326.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Model for vesicle accumulation and inhibition of vesicular transport in poliovirus (pv)-infected cells. In uninfected cells (A), secretory material is transported from the ER and the TEN to the -Golgi-network and via the Golgi apparatus further down the secretory pathway. Transport in this direction (anterograde transport) is inhibited by BFA, whereas backward (retrograde) transport remains unaffected by BFA. Infection (B and C) leads to the accumulation of poliovirus-induced vesicles (pvv). The inhibitory effect of BFA on poliovirus replication may be because the generation of poliovirus-induced vesicles is inhibited. A viral product may inhibit further transport of virus-induced vesicles and therefore cause vesicle accumulation and secretion inhibition. This virus-induced block of membrane traffic may lead to the disintegration of the Golgi apparatus, which may be consumed by upstream (B) or downstream (C) compartments as schematically depicted for a Golgi resident protein (☆). For details, see the text.

Citation: Schlegel A, Kirkegaard K. 1995. Cell Biology of Enterovirus Infection, p 135-154. In Rotbart H (ed), Human Enterovirus Infections. ASM Press, Washington, DC. doi: 10.1128/9781555818326.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

Models for release of poliovirus from polarized Caco-2 cells, redrawn from reference 94. (A) Cell membrane of infected cell within an epithelial sheet lyses on its apical surface only. (B) An infected cell is expelled from an epithelial sheet before lysis. (C) A portion of the cytoplasm of an infected cell that contains a high concentration of virus, termed viroplasm, is released from the infected cell without cell lysis.

Citation: Schlegel A, Kirkegaard K. 1995. Cell Biology of Enterovirus Infection, p 135-154. In Rotbart H (ed), Human Enterovirus Infections. ASM Press, Washington, DC. doi: 10.1128/9781555818326.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Amako, K.,, and S. Dales. 1967. Cytopathology of mengovirus infection. II. Proliferation of membranous cisternae. Virology 32: 201 215.
2. Bablanian, R.,, H. J. Eggers,, and I. Tamm. 1965. Studies on the mechanism of poliovirus-induced cell damage. I. Virology 26: 100 113.
3. Bablanian, R.,, H. J. Eggers,, and I. Tamm. 1965. Studies on the mechanism of poliovirus-induced cell damage. II. Virology 26: 114 121.
4. Bienz, K.,, D. Egger,, and L. Pasamontes. 1987. Association of polioviral proteins of the P2 genomic region with the viral replication complex and virus-induced membrane synthesis as visualized by electron microscopic immu-nocytochemistry and autoradiography. Virology 160: 220 226.
5. Bienz, K.,, D. Egger,, T. Pfister,, and M. Troxler. 1992. Structural and functional characterization of the poliovirus replication complex. J. Virol. 66: 2740 2747.
6. Bienz, K.,, D. Egger,, Y. Rasser,, and W. Bossart. 1980. Kinetics and location of poliovirus macromolecular synthesis in correlation to virus-induced cytopathology. Virology 100: 390 399.
7. Bienz, K.,, D. Egger,, Y. Rasser,, and W. Bossart. 1983. Intracellular distribution of poliovirus proteins and the induction of virus-specific cytoplasmic structures. Virology 131: 39 48.
8. Bienz, K.,, D. Egger,, M. Troxler,, and L. Pasamontes. 1990. Structural organization of poliovirus RNA replication is mediated by viral proteins of the P2 genomic region. J. Virol. 64: 1156 1163.
9. Bienz, K.,, D. Egger,, and D. A. Wolff. 1973. Virus replication, cytopathology, and lysosomal enzyme response of mitotic and interphase Hep-2 cells infected with poliovirus. J. Virol. 11: 565 574.
10. Bossart, W.,, and K. Bienz. 1979. Virus replication, cytopathology, and lysosomal enzyme release in enucleated HEp-2 cells infected with poliovirus. Virology 92: 331 339.
11. Butterworth, B. E.,, E. J. Shimshick,, and E. H. Yin. 1976. Association of the polioviral RNA polymerase complex with phospholipid membranes. J. Virol. 19: 457 466.
12. Caliguiri, L. A.,, and I. Tamm. 1970. The role of cytoplasmic membranes in poliovirus biosynthesis. Virology 42: 100 111.
13. Caliguiri, L. A.,, and I. Tamm. 1970. Characterization of poliovirus-specific structures associated with cytoplasmic membranes. Virology 42: 112 122.
14. Calvez, V.,, I. Pelletier,, S. Borzakian,, and E. Colbere-Garapin. 1993. Identification of a region of the poliovirus genome involved in persistent infection of HEp-2 cells. J. Virol. 67: 4432 4435.
15. Cho, M. W.,, N. Teterina,, D. Egger,, K. Bienz,, and E. Ehrenfeld. 1994. Membrane rearrangement and vesicle induction by recombinant poliovirus 2C and 2BC in human cells. Virology 202: 129 145.
16. Chou, J.,, and B. Roizman. 1992. The dl34.5 gene of herpes simplex virus 1 precludes neuroblastoma cells from triggering total shutoff of protein synthesis characteristic of programmed cell death in neuronal cells. Proc. Natl. Acad. Sci. USA 89: 3266 3270.
17. Clark, M. E.,, T. Hammerle,, E. Wimmer,, and A. Dasgupta. 1991. Poliovirus proteinase 3C converts an active form of trancription factor IIIC to an inactive form: a mechanism for inhibition of host cell polymerase III transcription by poliovirus. EMBO J. 10: 2941 2947.
18. Clark, M. E.,, P. M. Lieberman,, A. J. Berk,, and A. Dasgupta. 1993. Direct cleavage of human TATA-binding protein by poliovirus protease 3C in vivo and in vitro. Mol. Cell. Biol. 13: 1232 1237.
19. Clem, R. J.,, M. Fechheimer,, and L. K. Miller. 1991. Prevention of apoptosis by a baculovirus gene during infection of insect cells. Science 254: 1388 1390.
20. Colbere-Garapin, F.,, C. Christodoulou,, R. Crainic,, and I. Pelletier. 1989. Persistent poliovirus infection of human neuroblastoma cells. Proc. Natl. Acad. Sci. USA 86: 7590 7594.
21. Comai, L.,, N. Tanese,, and R. Tjian. 1992. The TATA-binding protein and associated factors are integral components of the RNA polymerase I transcription factor, SL1 . Cell 68: 965 976.
22. Cormack, B. P.,, and K. Struhl. 1992. The TATA-binding protein is required for transcription by all three nuclear RNA polymerases in yeast cells. Cell 69: 685 696.
23. Crawford, N.,, A. Fire,, M. Samuels, R A. Sharp, and D. Baltimore. 1981. Inhibition of transcription factor activity by poliovirus. Cell 27: 555 561.
24. Cromeans, T.,, M. D. Sobsey,, and H. A. Fields. 1987. Development of a plaque assay for a cytopathic, rapidly replicating isolate of hepatitis A virus. J. Med. Virol. 22: 45 56.
25. Dales, S.,, H. J. Eggers,, I. Tamm,, and G. E. Palade. 1965. Electron microscopic study of the formation of poliovirus. Virology 26: 379 389.
26. Das, S.,, and A. Dasgupta. 1993. Identification of the cleavage site and determinants required for poliovirus 3CPro-catalyzed cleavage of human TATA-binding transcription factor TBP. J. Virol. 67: 3326 3331.
27. Datta, U.,, and A. Dasgupta. 1994. Expression and subcellular localization of poliovirus VPg-precursor protein 3AB in eukaryotic cells: evidence for glycosylation in vitro. J. Virol. 68: 4468 4477.
28. Detjen, B. M.,, J. Lucas,, and E. Wimmer. 1978. Poliovirus single-stranded RNA and double-stranded RNA: differential infectivity in enucleate cells. J. Virol. 27: 582 586.
29. Doedens, J.,, and K. Kirkegaard. Inhibition of cellular protein secretion by poliovirus proteins 2B and 3A. EMBO J., in press.
30. Doedens, J.,, L. A. Maynell,, M. W. Klymkowsky,, and K. Kirkegaard. 1994. Secretory pathway function, but not cytoskeletal integrity, is required in poliovirus infection. Arch. Virol. 9( Suppl.): 159 172.
31. Donaldson, J. G.,, D. Finazzi,, and R. D. Klausner. 1992. Brefeldin A inhibits Golgi membrane-catalysed exchange of guanine nucleotide onto ARF protein. Nature (London) 360: 350 352.
32. Ellis, H. M.,, and H. R. Horvitz. 1986. Genetic control of programmed cell death in the nematode C. elegans. Cell 47: 817 829.
33. Etchison, D.,, S. C. Milburn,, I. Edery,, N. Sonenberg,, and J. W. B. Hershey. 1982. Inhibition of HeLa cell protein synthesis following poliovirus infection correlates with the proteolysis of a 220,000-dalton polypeptide associate with eukaryotic initiation factor 3 and a cap binding protein complex. J. Biol. Chem. 257: 14806 14810.
34. Falk, M. M.,, P. R. Grigera,, I. E. Bergmann,, A. Zibert,, G. Multhaup,, and E. Beck. 1990. Foot-and-mouth disease virus protease 3C induces specific proteolytic cleavage of host cell histone H3. J. Virol. 64: 748 756.
35. Ferro-Novick, S.,, and P. Novick. 1993. The role of GTP-binding proteins in transport along the exocytic pathway. Annu. Rep. Cell Biol. 9: 575 599.
36. Fradkin, L. G.,, S. K. Yoshinaga,, A. J. Berk,, and A. Dasgupta. 1987. Inhibition of host cell RNA polymerase Ill-mediated transcription by poliovirus: inactivation of specific transcription factors . Mol. Cell. Biol. 7: 3880 3887.
37. Franklin, R. M.,, and D. Baltimore. 1962. Patterns of macromolecular synthesis in normal and virus-infected mammalian cells. Cold Spring Harbor Symp. Quant. Biol. 27: 175 194.
38. Godman, G. C.,, R. A. Rifkind,, C. Howe,, and H. M. Rose. 1964. A description of ECHO 9 virus infection in cultured cells. I. The cytopathic effect. Am. J. Pathol. 44: 1 27.
39. Godman, G. C.,, R. A. Rifkind,, R. B. Page,, C. Howe,, and H. M. Rose. 1964. A description of ECHO 9 virus infection in cultured cells. II. Cytochemical observations. Am. J. Pathol. 44: 215 245.
40. Gokal, P. K.,, A. H. Cavanaugh,, and E. A. Thompson, Jr. 1986. The effects of cyclohex-imide upon transcription of rRNA, 5S RNA and tRNA genes. J. Biol. Chem. 261: 2536 2541.
41. Gougeon, M.,, and L. Montagnier. 1993. Apoptosis in AIDS. Science 260: 1269 1270.
42. Gregory, C. D.,, C. Dive,, S. Henderson,, C. A. Smith,, G. T. Williams, E Gordon, and A. B. Rickenson. 1991. Activation of Epstein-Barr virus latent genes protects human B cells from death by apoptosis. Nature (London) 349: 612 614.
43. Grunstein, M. 1990. Histone function in transcription. Annu. Rev. Cell Biol. 6: 643 678.
44. Guskey, L. E.,, P. C. Smith,, and D. A. Wolff. 1970. Patterns of cytopathology and lysosomal enzyme release in poliovirus-infected HEp-2 cells. J. Gen. Virol. 6: 151 161.
45. Helms, J. B.,, and J. E. Rothman. 1992. Inhibition by brefeldin A of a Golgi membrane enzyme that catalyses exchange of guanine nucleotide bound to ARF. Nature (London) 360: 352 354.
46. Hengartner, M. O.,, and H. R. Horvitz. 1994. C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2. Cell 76: 665 676.
47. Hinshaw, V. S.,, C. W. Olsen,, N. Dybdahl-Sissoko,, and D. Evans. 1994. Apoptosis: a mechanism of cell killing by influenza A and B viruses. J. Virol. 68: 3667 3673.
48. Irurzun, A.,, L. Perez,, and L. Carrasco. 1992. Involvement of membrane traffic in the replication of poliovirus genomes: effects of brefeldin A. Virology 191: 166 175.
49. Jezequel, A. M.,, and J. W. Steiner. 1966. Some ultrastructural and histochemical aspects of Coxsackie virus-cell interactions. Lab. Invest. 15: 1055 1083.
50. Joachims, M.,, and D. Etchison. 1992. Poliovirus infection results in structural alteration of a microtubule-associated protein. J. Virol. 66: 5797 5804.
51. Kaplan, G.,, A. Levy, and V R. Racaniello. 1989. Isolation and characterization of HeLa cell lines blocked at different steps in the poliovirus life cycle. J. Virol. 63: 43 51.
52. Kaplan, G.,, and V. R. Racaniello. 1991. Down regulation of poliovirus receptor RNA in HeLa cells resistant to poliovirus infection. J. Virol. 65: 1829 1835.
53. Kliewer, S.,, and A. Dasgupta. 1988. An RNA polymerase II transcription factor inactivated in poliovirus-infected cells copurifies with transcription factor TFIID. Mol. Cell. Biol. 8: 3175 3182.
54. Koch, F.,, and G. Koch. 1985. The Molecular Biology of Poliovirus. Springer-Verlag, Vienna.
55. Kreis, T. E. 1992. Regulation of vesicular and tubular membrane traffic of the Golgi complex by coat proteins . Curr. Opin. Cell Biol. 4: 609 615.
56. Lama, J.,, and L. Carrasco. 1992. Expression of poliovirus nonstructural proteins in Escherichia coli cells. Modification of membrane permeability induced by 2B and 3A. J. Biol. Chem. 267: 15932 15937.
57. Leibowitz, R.,, and S. Penman. 1971. Regulation of protein synthesis in HeLa cells. III. Inhibition during poliovirus infection. J. Virol. 8: 661 668.
58. Lenk, R.,, and S. Penman. 1979. The cytoskeletal framework and poliovirus metabolism. Cell 16: 289 301.
59. Levine, B.,, Q. Huang,, J. T. Isaacs,, J. C. G. Reed,, D. E. Griffin,, and J. M. Hardwick. 1993. Conversion of lytic to persistent alphavirus infection by the bcl-2 cellular oncogene. Nature (London) 361: 739 742.
60. Liebig, H. D.,, E. Ziegler,, R. Yan,, K. Hartmuth,, H. Klump,, H. Kowalski,, D. Blaas,, W. Sommergruber,, L. Frasel,, B. J. Lamphear,, R. E. Rhoads,, E. Kuechler,, and T. Skern. 1993. Purification of two picornaviral proteases: interaction with eIF-4 gamma and influence on in vitro translation. Biochemistry 32: 7581 7588.
61. Lloyd, R. E.,, and M. Bovee. 1993. Persistent infection of human erythroblastoid cells by poliovirus. Virology 194: 200 209.
62. Lobo, S. M.,, M. Tanaka,, M. L. Sullivan,, and N. Hernandez. 1992. A TBP complex essential for transcription from TATA-less but not TATA-containing RNA polymerase III promoters is part of the TFIIIB fraction. Cell 71: 1029 1040.
63. Lopez-Guerrero, J. A.,, L. Carrasco,, F. Martinez-Abarca,, M. Fresno,, and M. A. Alonso. 1989. Restriction of poliovirus RNA translation in a human monocytic cell line. Eur. J. Biochem. 186: 577 582.
64. Luftig, R. B. 1982. Does the cytoskeleton play a significant role in animal virus replication? J. Theor. Biol. 99: 173 191.
65. Macejak, D. G.,, and P. Sarnow. 1991. Internal initiation of translation mediated by the 5' leader of a cellular mRNA. Nature (London) 353: 90 94.
66. Maynell, L. A.,, K. Kirkegaard,, and M. W. Klymkowsky. 1992. Inhibition of poliovirus RNA synthesis by brefeldin A. J. Virol. 66: 1985 1994.
67. Melancon, P. 1993. G whizz. Curr. Biol. 3: 230 233.
68. Melnick, J. L., 1990. Enteroviruses: poliovi-ruses, coxsackieviruses, echoviruses and newer enteroviruses, p. 549 606. In B. M. Fields, and D. M. Knipe (ed.), Virology. Raven Press, New York.
69. Miura, M.,, H. Zhu,, R. Rotello,, and E. A. Y. Hartweig. 1993. Induction of apoptosis in fibroblasts by IL-lb-converting enzyme, a mammalian homology of the C. elegans cell death gene ced-3. Cell 75: 653 660.
70. Morace, G.,, G. Pisani,, F. Beneduce,, M. Divizia,, and A. Pana. 1993. Mutations in the 3A genomic region of two cytopathic strains of hepatitis A virus isolated in Italy. Virus Res. 28: 187 194.
71. Noteborn, M. H. M.,, D. Todd,, A. J. Vershueren,, H. W. F. M. de Gauw,, W. L. Curran,, S. Verdkamp,, A. J. Douglas,, M. S. McNulty,, A. J. van der Eb,, and G. Koch. 1994. A single chicken anemia virus protein induces apoptosis. J. Virol. 68: 346 351.
72. Oh, S.-K.,, M. P. Scott,, and P. Sarnow. 1992. Homeotic gene Antennapedia mRNA contains 5'-noncoding sequences that confer translational initiation by internal ribosome binding. Genes Dev. 6: 1643 1653.
73. Okada, Y.,, G. Toda,, H. Oda,, A. Nomoto,, and H. Yoshikura. 1987. Poliovirus infection of established human blood cell lines: relationship between the differentiation stage and susceptibility or cell killing. Virology 156: 238 245.
74. Ostermann, J.,, L. Orci,, K. Tani,, M. Amherdt,, M. Ravazzola,, Z. Elazar,, and J. E. Rothman. 1993. Stepwise assembly of functionally active transport vesicles. Cell 75: 1015 1025.
75. Peter, F.,, H. Plutner,, H. Zhu,, T. E. Kreis,, and W. E. Balch. 1993. β -COP is essential for transport of protein from the endoplasmic reticulum to the Golgi in vitro. J. Cell Biol. 122: 1155 1167.
76. Phillips, S. G.,, and J. B. Rattner. 1976. Dependence of centriole formation on protein synthesis. J. Cell Biol. 70: 9 19.
77. Pugh, B. F.,, and R. Tjian. 1991. Transcription from a TATA-less promoter requires a multisubunit TFIID complex. Genes Dev. 5: 1935 1945.
78. Rice, J. M.,, and D. A. Woff. 1975. Phos-pholipase in the lysosomes of HEp-2 cells and its release during poliovirus infection. Biochim. Biophys. Acta 381: 17 21.
79. Rothman, J. E.,, and L. Orci. 1992. Molecular dissection of the secretory pathway. Nature (London) 355: 409 415.
80. Rubinstein, S. J.,, T. Hammerle,, E. Wimmer,, and A. Dasgupta. 1992. Infection of HeLa cells with poliovirus results in modification of a complex that binds to the rRNA promoter. J. Virol. 66: 3062 3068.
81. Rueckert, R. R., 1990. Picornaviridae and their replication, p. 507 548. In B. M. Fields, and D. M. Knipe (ed.), Virology. Raven Press, New York.
81a. Schlegel, A.,, K. Bienz,, D. Egger,, and K. Kirkegaard. Unpublished data.
82. Schmid, S. L. 1993. Biochemical requirements for the formation of clathrin- and COP-coated transport vesicles. Curr. Opin. Cell Biol. 5: 621 627.
83. Schultz, M. C.,, R. H. Reeder,, and S. Hahnm. 1992. Variants of the TATA-binding protein can distinguish subsets of RNA polymerase I, II and III promoters. Cell 69: 697 702.
84. Skinner, M. S.,, S. Halperen,, and J. C. Harkin. 1968. Cytoplasmic membrane-bound vesicles in echovirus 12-infected cells. Virology 36: 241 253.
85. Takeda, N.,, R. J. Kuhn,, C.-F. Yang,, T. Takegami,, and E. Wimmer. 1986. Initiation of poliovirus plus-strand RNA synthesis in a membrane complex of infected HeLa cells. J. Virol. 60: 43 53.
86. Takegami, T.,, B. L. Semler,, C. W. Anderson,, and E. Wimmer. 1983. Membrane fractions active in poliovirus RNA replication contain VPg precursor polypeptides. Virology 128: 33 47.
87. Tanigawa, G.,, L. Orci,, M. Amherdt,, M. Ravazzola,, J. B. Helms,, and J. E. Rothman. 1993. Hydrolysis of bound GTP by ARF protein triggers uncoating of Golgi-de-rived COP-coated vesicles. J. Cell Biol. 123: 1365 1371.
88. Tershak, D. R. 1984. Association of poliovirus proteins with the endoplasmic reticulum. J. Virol. 52: 777 783.
89. Tesar, M.,, and O. Marquardt. 1990. Foot-and-mouth disease virus protease 3C inhibits cellular transcription and mediates cleavage of histone H3. Virology 174: 364 374.
90. Thompson, J. S.,, X. Ling,, and M. Grunstein. 1994. Histone H3 amino terminus is required for telomeric and silent mating locus repression in yeast. Nature (London) 369: 245 247.
91. Tolskaya, E. A.,, T. A. Ivannikova,, M. S. Kolesnikova,, S. G. Drozdov, and V I. Agol. 1992. Postinfection treatment with antiviral serum results in survival of neural cells productively infected with virulent poliovirus. J. Virol. 66: 5152 5156.
92. Toyoda, H.,, C.-F. Yang,, N. Takeda,, A. Nomoto,, and E. Wimmer. 1987. Analysis of RNA synthesis of type 1 poliovirus by using an in vitro molecular genetic approach. J. Virol. 61: 2816 2822.
93. Troxler, M.,, D. Egger,, T. Pfister,, and K. Bienz. 1992. Intracellular localization of poliovirus RNA by in situ hybridization at the ul-trastructural level using single-stranded ribo-probes. Virology 191: 687 697.
94. Tucker, S. P.,, C. L. Thornton,, E. Wimmer,, and R. W. Compans. 1993. Vectorial release of poliovirus from polarized human intestinal epithelial cells. J. Virol. 67: 4274 4282.
95. Urzainqui, A.,, and L. Carrasco. 1989. Degradation of cellular proteins during poliovirus infection: studies by two-dimensional gel electrophoresis. J. Virol. 63: 4729 4735.
96. Weed, H. G.,, G. Krochmalnic,, and S. Penman. 1985. Poliovirus metabolism and the cytoskeletal framework: detergent extraction and resinless section electron microscopy. J. Virol. 56: 549 557.
97. White, E. P.,, P. Sabbatini,, M. Debbas,, W. S. M. Wold,, D. I. Dusher,, and L. R. Gooding. 1992. The 19-kilodalton adenovirus E1B transforming protein inhibits programmed cell death and prevents cytolysis by tumor necrosis factor a. Mol. Cell. Biol. 12: 2570 2580.
98. White, J. M. 1992. Membrane fusion. Science 258: 917 924.
99. White, K.,, M. E. Grether,, J. M. Abrams,, L. Young,, K. Farrell,, and H. Steller. 1994. Genetic control of programmed cell death in Drosophila. Science 264: 677 683.
100. White, R. J.,, S. P. Jackson,, and P. W. J. Rigby. 1992. A role for the TATA-box binding protein component of the transcription factor IID complex as a general RNA polymerase III transcription factor. Proc. Natl. Acad. Sci. USA 89: 1949 1953.
101. Williams, G. T.,, and C. A. Smith. 1993. Molecular regulation of apoptosis: genetic controls on cell death. Cell 74: 777 779.
102. Zerial, M.,, and H. Stenmark. 1993. Rab GTPases in vesicular transport. Curr. Opin. Cell Biol. 5: 613 620.


Generic image for table

Known effects of individual viral proteins on host functions or proteins

Citation: Schlegel A, Kirkegaard K. 1995. Cell Biology of Enterovirus Infection, p 135-154. In Rotbart H (ed), Human Enterovirus Infections. ASM Press, Washington, DC. doi: 10.1128/9781555818326.ch6

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error