Chapter 11 : Biosynthesis and Function of Modified Nucleosides

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Biosynthesis and Function of Modified Nucleosides, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818333/9781555810733_Chap11-1.gif /docserver/preview/fulltext/10.1128/9781555818333/9781555810733_Chap11-2.gif


Modified nucleosides, which are derivatives of the four normal nucleosides, adenosine (A), guanosine (G), cytidine (C), and uridine (U), were found in nucleic acids as early as 1948. Modified nucleosides are contained in tRNA from all three phylogenetic domains—Archaea, Bacteria, and Eucarya—which were formerly called the kingdoms of archaebacteria, eubacteria, and eukaryotes, respectively. Although modified nucleosides are found in various positions in the tRNA, two positions, 34 and 37, contain the largest variety of modified nucleosides. This chapter presents an overview of the coding properties associated with modified nucleosides present in positions 34 and 37. Outside the anticodon, the modified nucleosides are usually “simple” modifications like methylated or thiolated derivatives, whereas all except one (archaeosine in tRNAs from Archaea) of the hypermodified nucleosides are present in the anticodon region and only in positions 34 and 37. Moreover, outside the anticodon region, only one or two kinds of modified nucleosides in each position are present, whereas a large variety of modified nucleosides are present in the anticodon region, especially in positions 34 and 37. During evolution, structural refinements of the individual tRNAs were presumably fulfilled by the evolution of the synthesis of the various modified nucleosides, including the hypermodified nucleoside. Modified nucleosides in the anticodon region exert their functions primarily in the decoding process, whereas modified nucleosides outside this region may primarily be involved in other tRNA interactions, such as interactions with translation factors or as sensors for environmental stress conditions.

Citation: Björk G. 1995. Biosynthesis and Function of Modified Nucleosides, p 165-205. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch11
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Genetic organization of region (from reference with permission). FIS = possible FIS binding site; tRNA T-arm homology = a sequence with extensive similarity to the T-loop of tRNAs; AdoMet binding = AdoMet binding site; and catalytic nucleophile = the catalytic nucleophile Cys-324. Also shown are the similarity between the P and the P1 promoter of genes and the transcriptional terminator (T) shared with the gene. The gene is the structural gene for the vitamin B receptor. The sequence is found in reference .

Citation: Björk G. 1995. Biosynthesis and Function of Modified Nucleosides, p 165-205. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Genetic organization of operon. Figures above the gene symbols indicate the number of protein molecules encoded from the respective genes per genome equivalents in cells grown at k = 1.0 hr. The Ω denotes a -independent terminator. In vitro, 60% to 70% of the transcript terminates at the first such structure ( ). Structures above the operon denote possible stem-loop structures that influence the translation of the and genes, respectively ( ). The sequence is found in reference .

Citation: Björk G. 1995. Biosynthesis and Function of Modified Nucleosides, p 165-205. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Genetic organization of operon. Figures within the parentheses indicate the size of the protein encoded by the respective genes. Dyad symmetries and possible independent terminators are denoted as → ← and Ω, respectively. Transcriptions are shown by wavy lines and the transcription pattern is only tentative, since none of the transcripts has been shown to exist in vivo. The pattern is deduced from S1 mapping of a few areas of the operon, primer extension analysis, and analysis of polarity ( ). It is presently unclear whether and are part of the operon ( ). However, a chromosomally encoded transcript covering the intracistronic region between and is present ( ). Furthermore, the -independent terminator present between and is not active ( ), suggesting that transcripts extend to the -independent terminator following the gene. The promoters P, P, and P were located on the chromosome ( ), whereas P was located on a plasmid ( ). The dedD gene seems to have its own promoter located within the gene ( ). The overlap of the asd stop codon with the start codon is also indicated, suggesting translational coupling of the expression of these two genes ( ). The sequence is found in references and .

Citation: Björk G. 1995. Biosynthesis and Function of Modified Nucleosides, p 165-205. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Genetic organization of operon. The sequence is found in reference . The location of the different promoters was established by H.-C. T. Tsui and M. Winkler ( ). Also shown is the region of translational overlap between the and genes and that translation terminates with UGA for both genes.

Citation: Björk G. 1995. Biosynthesis and Function of Modified Nucleosides, p 165-205. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Genetic organization of the operon ( ). The sequence is found in reference .

Citation: Björk G. 1995. Biosynthesis and Function of Modified Nucleosides, p 165-205. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Structure of queuosine and its derivatives.

Citation: Björk G. 1995. Biosynthesis and Function of Modified Nucleosides, p 165-205. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

Presence of modified nucleosides in position 34 (wobble position). Data compiled from reference . To the left of the different modified nucleosides are bars indicating which codons the tRNA is able to read well (filled circles). An open circle denotes less preferred pairing to that codon. Underlined nucleosides are for tRNAs from . If not otherwise stated N is an uncharacterized modified nucleoside and U* indicates a modified U; V4 = cmnmU; V5 = cmnms2U; V8 = mcnmU; V9 =cmnmUm.

Citation: Björk G. 1995. Biosynthesis and Function of Modified Nucleosides, p 165-205. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8
Figure 8

Synthesis of msioA37 and mcmoU and the links to the synthesis of chorismic acid.

Citation: Björk G. 1995. Biosynthesis and Function of Modified Nucleosides, p 165-205. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 9
Figure 9

Presence of modified nucleosides in position 37 (next to the 3-side of the anticodon) and the coding capacities of tRNAs. Note also that contains msioA instead of msiA in corresponding tRNAs (see Fig. 8 ) ( ). For explanation of symbols, see Fig. 1. Y1 (yW) = wybutosine; Y2 (oyW) = wybutoxosine; A4 = iA; A5 = msiA; Z = cis-zeatin or ioA; N for AAG codon is a modified A, probably a tA derivative.

Citation: Björk G. 1995. Biosynthesis and Function of Modified Nucleosides, p 165-205. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 10
Figure 10

Enzymatic mechanism for the synthesis of mU54. The figure is modified from reference .

Citation: Björk G. 1995. Biosynthesis and Function of Modified Nucleosides, p 165-205. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Abrell, J. W.,, E. E. Kaufman,, and M. N. Lipsett. 1971. The biosynthesis of 4-thiouridylate. Separation and purification of two enzymes in the transfer ribonucleic acid-sul-fertransferase system. J. Biol. Chem. 246: 294 301.
2. Achsel, T.,, and H. J. Gross. 1993. Identity determinants of human tRNA Ser: sequence elements necessary for serylation and maturation of tRNA with a long extra arm. EMBO J. 12: 3333 3338.
3. Agris, P. F.,, D. J. Armstrong,, K. P. Schafer,, and D. Soli. 1975. Maturation of a hypermodified nucleoside in transfer RNA. Nucleic Acids Res. 2: 691 698.
4. Agris, P. F.,, H. Koh,, and D. Soli. 1973. The effect of growth temperatures on the in vivo ribose methylation of Bacillus stearothermophilus transfer RNA. Arch. Biochem. Biophys. 154: 277 282.
5. Agris, P. F.,, T. Play,, L. Goldman,, E. Horton,, D. Woolverton,, D. Setzer,, and C. Rodi. 1983. Processing of tRNA is accomplished by a high molecular-weight enzyme complex. Recent Results Cancer Res. 84: 237 254.
6. Agris, P. F.,, H. Sierzputowska-Gracz,, W. Smith,, A. Malkiewicz,, E. Sochacka,, and B. Nawrot. 1992. Thiolation of uridine carbon-2 restricts the motional dynamics of the transfer RNA wobble position nucleoside. J. Am. Chem. Soc. 114: 2652 2656.
7. Agris, P. F.,, D. Söll,, and T. Seno. 1973. Biological function of 2-thiouridine in Escherichia coli glutamic acid transfer ribonucleic acid. Biochemistry 12: 4331 4337.
8. Agris, P. F.,, D. K. Woolverton,, and D. Setzer. 1976. Subcellular localization of S-adenosyl-L-methionine:tRNA methyltransferases with aminoacyl-tRNA synthetases in human and mouse: normal and leukemic leukocytes. Proc. Natl. Acad. Sci. USA 73: 3857 3861.
9. Andachi, Y.,, F. Yamao,, M. Iwami,, A. Muto,, and S. Osawa. 1987. Occurrence of unmodified adenine and uracil at the first position of anticodon in threonine tRNAs in Mycoplasma capricolum. Proc. Natl. Acad. Sci. USA 84: 7398 7404.
10. Andachi, Y.,, F. Yamao,, A. Muto,, and S. Osawa. 1989. Codon recognition patterns as deduced from sequences of the complete set of transfer RNA species in Mycoplasma capricolum. Resemblance to mitochondria. J. Mol. Biol. 209: 3754.
11. Arena, F.,, G. Ciliberto,, S. Ciampi,, and R. Cortese. 1978. Purification of pseudouridylate synthetase I from Salmonella typhimurium. Nucleic Acids Res. 5: 4523 4536.
12. Arnold, H. H.,, and G. Keith. 1977. The nucleotide sequence of phenylalanine tRNA from Bacillus subtilis. Nucleic Acids Res. 4: 2821 2822.
13. Arnold, H. H.,, R. Raettig,, and G. Keith. 1977. Isoaccepting phenylalanine tRNAs from Bacillus subtilis as a function of growth conditions. Differences in the content of modified nucleosides. FEBS Lett. 73: 210 214.
14. Arps, P. J.,, C. C. Marvel,, B. C. Rubin,, D. A. Tolan,, E. E. Penhoet,, and M. E. Winkler. 1985. Structural features of the hisT operon of Escherichia coli K-12. Nucleic Acids Res. 13: 5297 5315.
15. Arps, P. J.,, and M. E. Winkler. 1987. Structural analysis of the Escherichia coli K-12 hisT operon by using a kanamycin resistance cassette. J. Bacterial. 169: 1061 1070.
16. Aschhoff, H. J.,, H. Elten,, H. H. Arnold,, G. Mahal,, W. Kersten,, and H. Kersten. 1976. 7-methylguanine specific tRNA-methyltransferase from Escherichia coli. Nucleic Acids Res. 3: 3109 3122.
16a. Aström, S. U.,, and A. S. Bystrom. Personal communication.
17. Atkins, J. F.,, R. B. Weiss,, S. Thompson,, and R. F. Gesteland. 1991. Towards a genetic dissection of the basis of triplet decoding, and its natural subversion: programmed reading frame shifts and hops. Annu. Rev. Genet. 25: 201 228.
18. Bacha, H.,, M. Renaud,, J.-F. Lefevre,, and P. Remy. 1982. Conformational activation of aminoacyl-tRNA synthetases upon binding of tRNA. A facet of a multi-step adaptation process leading to the optimal biological acitivity. Eur. J. Biochem. 127: 87 95.
19. Bare, L. A.,, and O. C. Uhlenbeck. 1986. Specific substitution into the anticodon loop of yeast tyrosine transfer RNA. Biochemistry 25: 5825 5830.
20. Bartz, J. K.,, L. K. Kline,, and D. Soil. 1970. N6-(2-isopen-tenyl)adenosine: biosynthesis in vitro in transfer RNA by an enzyme purified from Escherichia coli. Biochem. Biophys. Res. Commun. 40: 1481 1487.
21. Bartz, J. K.,, D. Soli,, W. J. Burrows,, and F. Skoog. 1970. Identification of the cytokinin-active ribonucleosides in pure Escherichia coli tRNA species. Proc. Natl. Acad. Sci. USA 67: 1448 1453.
22. Beck, C. F.,, and R. A. J. Warren. 1988. Divergent promoters, a common form of gene organization. Microbiol. Rev. 52: 318 326.
23. Beier, H.,, M. Barciszewska,, G. Krupp,, R. Mitnacht,, and H. J. Gross. 1984. UAG readthrough during TMV RNA translation: isolation and sequence of two tRNAs Tyr with suppressor activity from tobacco plants. EMBO J. 3: 351 356.
24. Beier, H.,, M. Barciszewska,, and H.-D. Sickinger. 1984. The molecular basis for the differential translation of TMV RNA in tobacco protoplasts and wheat germ extracts. EMBO J. 3: 1091 1096.
25. Beier, H.,, U. Zech,, E. Zubrod,, and H. Kersten. 1987. Queuine in plants and plant tRNAs: differences between embryonic tissue and mature leaves. Plant Mol. Biol. 8: 345 353.
26. Bell-Pedersen, D.,, J. L. Galloway Salvo,, and M. Belfort. 1991. A transcription terminator in the thymidylate synthetase (thyA) structural gene of Escherichia coli and construction of a viable thyA::Km r deletion. J. Bacterial. 173: 1193 1200.
27. Bienz, M.,, and E. Kubli. 1981. Wild-type tRNA TyrG reads the TMV RNA stop codon, but Q base-modified tRNA TyrQ does not. Nature (London) 294: 188 190.
28. Björk, G. R. 1975. Identification of bacteriophage T4-specific precursor tRNA by using a host mutant defective in the methylation of tRNA. J. Virol. 16: 741 744.
29. Björk, G. R. 1975. Transductional mapping of gene trmA responsible for the production of 5-methyluridine in transfer RNA of Escherichia coli. J. Bacteriol. 124: 92 98.
30. Björk, G. R. 1980. A novel link between the biosynthesis of aromatic amino acids and transfer RNA modification in Escherichia coli. J. Mol. Biol. 140: 391 410.
31. Björk, G. R. 1984. Transfer RNA modification in different organisms. Chemica Scripta 26B: 91 95.
32. Björk, G. R., 1987. Modification of stable RNA, p. 719 731. In F. C. Neidhardt,, J. L. Ingraham,, K. B. Low,, B. Magasanik,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium. Cellular and Molecular Biology, vol. 1. American Society for Microbiology, Washington, D.C.
33. Björk, G. R., 1992. The role of modified nucleosides in tRNA interactions, p. 23D 85D. In L. Hatfield,, B. J. Lee,, and R. M. Pirtle, (ed.), Transfer RNA in Protein Synthesis. CRC Press, Boca Raton, Fla.
34. Björk, G. R.,, J. U. Ericson,, C. E. D. Gustafsson,, T. G. Hagervall,, Y. H. Jonsson,, and P. M. Wikström. 1987. Transfer RNA modification. Annu. Rev. Biochem. 56: 263 287.
35. Björk, G. R.,, and I. Svensson. 1969. Studies on microbiological RNA. Fractionation of tRNA methylases from Saccharomyces cerevisiae. Eur. ]. Biochem. 9: 207 215.
36. Björk, G. R.,, P. M. Wikström,, and A. S. Bystrom. 1989. Prevention of translational frameshifting by the modified nucleoside 1-methylguanosine. Science 244: 986 989.
37. Bochner, B. R.,, D. L. Lee,, S. W. Wilson,, C. W. Cutter,, and B. N. Ames. 1984. AppppA and related adenylated nucleotides are synthesized as a consequence of oxidation stress. Cell 37: 225 232.
38. Bognar, A. L.,, C. Osborne,, and B. Shane. 1987. Primary structure of the Escherichia coli folC gene and its folylpolyglutamate synthetase-dihydrofolate synthetase product and regulation of expression by upstream gene. J. Biol. Chem. 262: 12337 12343.
39. Bognar, A.,, C. Pyne,, M. Yu,, and G. Basi. 1989. Transcription of the folC gene encoding folylpolyglutamate synthetase-dihydrofolate synthetase in Escherichia coli. J. Bacteriol. 171: 1854 1861.
40. Borek, E.,, A. Ryan,, and J. Rockenbach. 1955. Nucleic acid metabolism in relation to the lysogeneic phenomenon. J. Bacteriol. 69: 460 467.
41. Borén, T.,, P. Elias,, T. Samuelsson,, C. Claesson,, M. Barciszewska,, C. W. Gehrke,, K. C. Kuo,, and F. Lustig. 1993. Undiscriminating codon reading with adenosine in wobble position.J. Mol. Biol. 230: 739 749.
42. Boy, E.,, F. Borne,, and J.-C. Patte. 1978. Effect of mutations affecting lysyl-tRNA Lys on the regulation of lysine biosynthesis in Escherichia coli. Mol. Gen. Genet. 159: 33 38.
43. Breitenberger, C. A.,, and U. L. RajBhandary. 1985. Some highlights of mitochondrial research based on analyses of Neurospora crassa mitochondrial DNA. Trends Biochem. Sci. 10: 478 483.
44. Brenchley, J. E.,, and L. S. Williams. 1975. Transfer RNA involvement in the regulation of enzyme synthesis. Annu. Rev. Microbiol. 29: 251 274.
45. Bresalier, R. S.,, A. A. Rizzino,, and M. Freundlich. 1975. Reduced maximal levels of derepression of the isoleucinevaline and leucine enzymes in hisT mutant of Salmonella typhimurium. Nature (London) 253: 279 280.
46. Bruni, C. B.,, V. Colantuoni,, L. Sbordone,, R. Cortese,, and F. Blasi. 1977. Biochemical and regulatory properties of Escherichia coli K-12 hisT mutants. J. Bacteriol. 130: 4 10.
46a. Buck, M. Personal communication.
47. Buck, M.,, and B. N. Ames. 1984. A modified nucleotide in tRNA as a possible regulator of aerobiosis: synthesis of cis-2-methyl-thioribosyslzeatin in tRNA of Salmonella. Cell 36: 523 531.
48. Buck, M.,, M. Connick,, and B. N. Ames. 1983. Complete analysis of tRNA-modified nucleosides by high-performanceliquid chromatography: the 29 modified nucleosides of Salmonella typhimurium and Escherichia coli tRNA. Anal.Biol. Chem. 129: 1 13.
49. Buck, M.,, and E. Griffiths. 1981. Regulation of aromatic amino acid transport by tRNA: role of 2-methylthio-N 6-(2-isopentenyl)-adenosine. Nucleic Acids Res. 9: 401 414.
50. Buck, M.,, and E. Griffiths. 1982. Iron mediated methylthiolation of tRNA as a regulator of operon expression in Escherichia coli. Nucleic Acids Res. 10: 2609 2624.
51. Buck, M.,, J. A. McCloskey,, B. Basile,, and B. N. Ames. 1982. Cis-2-methylthio-ribosylzeatin (ms 2io6A) is present in transfer RNA of Salmonella typhimurium, but not Escherichia coli. Nucleic Acids Res. 10: 5649 5662.
52. Buu, A.,, B. Menichi,, and T. Heyman. 1981. Thiomethylation of tyrosine ribonucleic acid is associated with initiation of sporulation in Bacillus subtilis: effect of phosphate concentration. J. Bacteriol. 146: 819 822.
53. Byström, A. S.,, and G. R. Björk. 1982. Chromosomal location and cloning of the gene ( trmD) responsible for the synthesis of tRNA(m 1G)methyltransferase in Escherichia coli K-12. Mol. Gen. Genet. 188: 440 446.
54. Byström, A. S.,, K. J. Hjalmarsson,, P. M. Wikström,, and G. R. Björk. 1983. The nucleotide sequence of an Escherichia coli operon containing genes for the tRNA(m 1G) methyltransferase, the ribosomal proteins S16 and L19 and a 21-K polypeptide. EMBO J. 2: 899 905.
55. Bystrom, A. S.,, A. von Gabain,, and G. R. Björk. 1989. Differentially expressed trmD ribosomal protein operon of Escherichia coli is transcribed as a single polycistronic mRNA species. J. Mol. Biol. 208: 575 586.
56. Caillet, J.,, and L. Droogmans. 1988. Molecular cloning of the Escherichia coli miaA gene involved in the formation of 2-isopentenyl adenosine in tRNA. J. Bacteriol. 170: 4147 4152.
57. Caldeira de Araujo, A.,, and A. Favre. 1986. Near ultraviolet DNA damage induces the SOS responses in Escherichia coli. EMBO J. 5: 175 179.
58. Carbon, J.,, and E. W. Fleck. 1974. Genetic alteration of structure and function in glycine transfer RNA of Escherichia coli: mechanism of suppression of the tryptophan synthetase A78 mutation. J. Mol. Biol. 85: 371 391.
59. Carbon, P.,, E. Haumont,, M. Fournier,, S. de Henau,, and H. Grosjean. 1983. Site-directed in vitro replacement of nucleosides in the anticodon loop of tRNA: application to the study of structural requirements for queuine insertase activity. EMBO J. 2: 1093 1097.
60. Cashel, M.,, and Rudd, K. E., 1987. The stringent response, p. 1410 1438. In F. C. Neidhardt,, J. L. Ingraham,, K. B. Low,, B. Magasanik,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium. Cellular and Molecular Biology, vol. 2. American Society for Microbiology, Washington, D.C.
61. Cheung, P. K.,, and M. B. Herrington. 1982. Thymine inhibits suppression by an Escherichia coli nonsense and frameshift suppressor. Mol. Gen. Genet. 186: 217 220.
62. Chheda, G. B.,, C. I. Hong,, C. F. Piskorz,, and G. A. Harmon. 1972. Biosynthesis of N-(purin-6-ylcarbamoyl)-L-threonine riboside. Incorporation of L-threonine in vivo into modified nucleoside of transfer ribonucleic acid. Biochem. J. 127: 515 519.
63. Ching, W.-M.,, B. Alzner-DeWeerd,, and T. C. Stadtman. 1985. A selenium-containing nucleotide at the first position of the anticodon in seleno-tRNA Gln from Clostridium stick-landii. Proc. Natl. Acad. Sci. USA 82: 347 350.
64. Ching, W.-M.,, and T. S. Stadtman. 1982. Selenium-containing tRNA Glu from Clostridium sticklandii: correlation of aminoacylation with selenium content. Proc. Natl. Acad. Sci. USA 79: 374 377.
65. Ching, W.-M.,, L. Tsai,, and A. J. Witwer. 1985. Selenium containing transfer RNAs. Curr. Top. Cell. Regul. 27: 497 507.
66. Choffat, Y.,, B. Suter,, R. Behra,, and E. Kubli. 1988. Pseudouridine modification in the tRNA Tyr anticodon is dependent on the presence, but independent of the size and sequence, of the intron in eucaryotic tRNA Tyr genes. Mol. Cell. Biol. 8: 3332 3337.
67. Chow, C. S.,, L. S. Behlen,, O. C. Uhlenbeck,, and J. K. Barton. 1992. Recognition of tertiary structure in tRNAs by Rh(phen)2phi3 +, a new reagent for RNA structure-function mapping. Biochemistry 31: 972 982.
68. Ciampi, M. S.,, F. Arena,, and R. Cortese. 1977. Biosynthesis of pseudouridine in the in vitro transcribed tRNA Tyr precursor. FEBS Lett. 77: 75 82.
69. Ciliberto, G.,, L. Castagnoli,, and R. Cortese. 1983. Transcription by RNA polymerase III. Curr. Top. Dev. Biol. 18: 59 88.
70. Clarkson, S. G., 1983. Transfer RNA genes, p. 239 261. In G. S. P. McLean, and R. A. Flavell (ed.), Eukaryotic Genes: Their Structure, Activity and Regulation. Butterworths, London.
71. Conlon-Hollingshead, C.,, and B. J. Ortwerth. 1980. Lys-tRNA 4 levels and cell division in mouse 3T3 cells. Exp. Cell Res. 128: 171 180.
72. Connolly, D. M.,, and M. E. Winkler. 1989. Genetic and physiological relationships among the miaA genes, 2-meth-ylthio-N 6-(2-isopentenyl)-adenosine tRNA modification, and spontaneous mutagenesis in Escherichia coli K-12. J. Bacterial. 171: 3233 3246.
73. Connolly, D. M.,, and M. E. Winkler. 1991. Structure of Escherichia coli K-12 miaA and characterization of the mutator phenotype caused by miaA insertion mutations. J. Bacterial. 173: 1711 1721.
74. Cortese, R.,, H. O. Kammen,, S. J. Spengler,, and B. N. Ames. 1974. Biosynthesis of pseudouridine in transfer ribonucleic acid. J. Biol. Chem. 249: 1103 1108.
75. Cortese, R.,, R. Landsberg,, R. A. Vonder Haar,, H. E. Umbarger,, and B. N. Ames. 1974. Pleitropy of hisT mutants blocked in pseudouridine synthesis in tRNA: leucine and isoleucine-valine operons. Proc. Natl. Acad. Sci. USA. 71: 1857 1861.
76. Crick, F. C. H. 1966. Codon-anticodon pairing: the wobble hypothesis. J. Mol. Biol. 19: 548 555.
77. Curnow, A. W.,, F.-L. Rung,, K. A. Koch,, and G. A. Garcia. 1993. tRNA-Guanine transglycosylase from Escherichia coli: gross tRNA structural requirements for recognition. Biochemistry 32: 5239 5246.
78. Davis, A. R.,, and D. P. Nierlich. 1974. The methylation of transfer RNA in Escherichia coli. Biochim. Biophys. Acta 374: 23 37.
79. Del Carmen Rodríguez-Sáinz, M.,, C. Hernández-Chico,, and F. Moreno. 1991. A hisT::Tn5 mutation affects production of microcins B17, C7, and H47 and colicin V. J. Bacterial. 173: 7018 7020.
80. Delk, A. S.,, D. P. Nagle, Jr.,, and J. C. Rabinowitz,. 1979. The methylenetetrahydrofolate-dependent biosynthesis of ribothymidine in the transfer-RNA of Streptococcus faecalis, p. 389 394. In R. L. Kisliuk, and G. M. Brown (ed.), Chemistry and Biology of Pteridines. Elsevier/North Holland, Inc., Amsterdam.
81. Delk, A. S.,, D. P. Nagle, Jr.,, and J. C. Rabinowitz. 1980. Methylentetrahydrofolate-dependent biosynthesis of ribothymidine in transfer RNA of Streptococcus faecalis. J. Biol. Chem. 255: 4387 4390.
82. Delk, A. S.,, and J. C. Rabinowitz. 1975. Biosynthesis of ribosylthymine in the tRNA of Strepococcus faecalis: a folate-dependent methylation not involving S-ade-nosylmethionine. Proc. Natl. Acad. Sci. USA 72: 528 530.
83. Delk, A. S.,, J. M. Romeo,, D. P. Nagle, Jr.,, and J. C. Rabinowitz. 1976. Biosynthesis of ribothymidine in the transfer RNA of Streptococcus faecalis and Bacillus subtilis. A methylation of RNA involving 5,10-methylenetetrahydrofolate. J. Biol. Chem. 251: 7649 7656.
84. DeRobertis, E. M.,, and K. Nishikura,. 1981. RNA processing in frog oocytes microinjected with cloned genes, p. 60 65. In H. G. Schweiger (ed.), International Cell Biology. Springer-Verlag, Berlin.
85. Deutscher, M. P. 1985. Processing of tRNA in prokaryotes and eukaryotes. Crit. Rev. Biochem. 17: 45 71.
86. Dickson, R. R.,, T. Gaal,, H. A. deBoer,, P. L. deHaseth,, and R. L. Gourse. 1989. Identification of promoter mutants defective in growth-rate-dependent regulation of rRNA transcription in Escherichia coli. J. Bacterial 171: 4862 4870.
87. Dihanich, M. E.,, D. Majarian,, R. Clark,, E. C. Gillman,, N. C. Martin,, and A. K. Hopper. 1987. Isolation and characterization of MOD5, a gene required for isopentenylation of cytoplasmic and mitochondrial tRNAs of Saccharomyces cerevisiae. Mol. Cell. Biol. 7: 177 184.
88. Dirheimer, G. 1983. Chemical nature, properties, location, and physiological and pathological variations of modified nucleosides in tRNA. Recent Results Cancer Res. 84: 15 46.
89. Droogmans, L.,, and H. Grosjean. 1987. Enzymatic conversion of guanosine 3 ' adjacent to the anticodon of yeast tRNA Phe to N 1-methylguanosine and the wye nucleoside: dependence on the anticodon sequence. EMBO J. 6: 477 483.
90. Droogmans, L.,, and H. Grosjean. 1991. 2'-0-methylation and inosine formation in the wobble position of anticodonsubstituted tRNA phe in a homologous in vitro system. Biochimie 73: 1021 1025.
91. Droogmans, L.,, E. Haumont,, S. de Henau,, and H. Grosjean. 1986. Enzymatic 2'-0-methylation of the wobble nucleoside of eukaryotic tRNA phe: specificity depends on structural elements outside the anticodon loop. EMBO J. 5: 1105 1109.
92. Dube, S. K.,, K. A. Marker,, B. F. C. Clark,, and S. Cory. 1968. Nucleotide sequence of N-formyl-methionyl-transfer RNA. Nature (London) 218: 232 233.
93. Dugré, M.,, and R. J. Cedergren. 1973. Origine de l'inosine dans les tRNA de levure. Can. J. Biochem. 52: 417 422.
94. Dunn, D. B. 1959. Additional components in ribonucleic acid of rat-liver fractions. Biochim. Biophys. Acta 34: 286 288.
95. Edmonds, C. G.,, P. F. Crain,, R. Gupta,, T. Hashizume,, C. H. Hocart,, J. A. Kowalak,, S. C. Pomerantz,, K. O. Stetter,, and J. A. McCloskey. 1991. Posttranscriptional modification of tRNA in thermophilic Archaea (Archaebacteria). J. Bacteriol. 173: 3138 3148.
96. Edqvist J.,, H. Grosjean,, and K. B. Straby. 1993. Identity elements for N 2-dimethylation of guanosine-26 in yeast tRNAs. Nucleic Acids Res. 20: 6575 6581.
97. Edqvist, J.,, and K. B. Straby. 1992. The recognition between a yeast tRNA(dimethyl G26)methyltransferase and its homologous yeast tRNA substrate. 16th International Conference on Yeast Genetics and Molecular Biology, p. 204.
98. Edqvist, J.,, K. B. Straby,, and H. Grosjean. 1993. Pleiotrophic effects of point mutations in yeast tRNA Asp on the base modification pattern. Nucleic Acids Res. 21: 413 417.
99. Ehrenreich, A.,, K. Forchhammer,, P. Tormay,, B. Veprek,, and A. Böck. 1992. Selenoprotein synthesis in E. coli. Purification and characterisation of the enzyme catalysing selenium activation. Eur. J. Biochem. 206: 767 773.
100. Eisenberg, S. P.,, M. Yarus,, and L. Soil. 1979. The effect of an Escherichia coli regulatory mutation on transfer RNA structure. J. Mol. Biol. 135: 111 126.
101. Elkins, B. N.,, and E. B. Keller. 1974. The enzymatic synthesis of N-(purin-6-ylcarbamoyl)threonine, an anticodon-adjacent base in transfer ribonucleic acid. Biochemistry 13: 4622 4628.
102. Elliott, M. S.,, J. R. Katze,, and R. W. Trewyn. 1984. Relationship between a tumor promoter-induced decrease in queuine modification of transfer RNA in normal and human cells and the expression of an altered cell phenotype. Cancer Res. 44: 3215 3219.
103. Elliott, M. S.,, and R. W. Trewyn. 1984. Inosine biosynthesis in transfer RNA by an enzymatic insertion of hypoxanthine. J. Biol. Chem. 259: 2407 2410.
104. Elliott, M. S.,, R. W. Trewyn,, and J. R. Katze. 1985. Inhibition of queuine uptake in cultured human fibroblasts by phorbol-12,13-didecanoate. Cancer Res. 45: 1079 1085.
105. Ellis, S. R.,, A. K. Hopper,, and N. C. Martin. 1987. Amino-terminal extension generated from an upstream AUG codon is not required for mitochondrial import of yeast N2,N2-dimethylguanosine-specific tRNA methyltransferase. Proc. Natl. Acad. Sci. USA. 84: 5172 5176.
106. Ellis, S. R.,, A. K. Hopper,, and N. C. Martin. 1989. Amino-terminal extension generated from an upstream AUG codon increases the efficiency of mitochondrial import of yeast N2,N2-dimethylguanosine-specific tRNA methyltransferase. Mol. Cell. Biol. 9: 1611 1620.
107. Ellis, S. R.,, M. J. Morales,, J.-M. Li,, A. K. Hopper,, and N. C. Martin. 1986. Isolation and characterization of the TRM1 locus, a gene essential for the N2,N2-dimethylguanosine modification of both mitochondrial and cytoplasmic tRNA in Saccharomyces cerevisae. J. Biol. Chem. 261: 9703 9709.
108. Elseviers, D.,, L. A. Petrullo,, and P. J. Gallagher. 1984. Novel E. coli mutants deficient in biosynthesis of 5-meth-ylaminomethyl-2-thiouridine. Nucleic Acids Res. 12: 3521 3534.
109. Emilsson, V.,, and C. G. Kurland. 1990. Growth rate dependence of transfer RNA abundance in Escherichia coli. EMBO J. 9: 4359 4366.
110. Emilsson, V.,, A. K. Naslund,, and C. G. Kurland. 1992. Thiolation of transfer RNA in Escherichia coli varies with growth rate. Nucleic Acids Res. 20: 4499 4505.
111. Engelberg-Kulka, H.,, and R. Schonlaker-Schwarz. 1988. Stop is not the end: physiological implications of translational readthrough. J. Theor. Biol. 131: 477 485.
112. Ericson, J. U.,, and G. R. Björk. 1986. Pleiotropic effects induced by modification deficiency next to the anticodon of tRNA from Salmonella typhimurium LT2. J. Bacteriol. 166: 1013 1021.
112a. Esberg, B.,, and G. R. Björk. Unpublished data.
113. Etcheverry, T.,, D. Colby,, and C. Guthrie. 1979. A precursor to a minor species of yeast tRNA Ser contains an intervening sequence. Cell 18: 11 26.
114. Farkas, W. R.,, and R. D. Singh. 1973. Guanylation of transfer ribonucleic acid by a cell-free lysate of rabbit reticulocytes. J. Biol. Chem. 248: 7780 7785.
115. Fasiolo, F.,, T. Glade,, G. Keith,, V. Buttcher,, F. Cramer,, and U. Englisch. 1993. The codon and amino acid specificity of the yeast isoleucine transfer RNAs are dependent on two distinct modified wobble bases, p. 76. 15th International tRNA Workshop.
116. Faulkner, R. D.,, and M. Uziel. 1971. Iodine modification of E. coli tRNA phe: reversible modification of 2-methylthio-N 6-isopentenyladenosine and lack of disulfide formation. Biochim. Biophys. Acta 238: 464 474.
117. Favre, A.,, E. Hajnsdorf,, K. -Thiam,, and A. Caldeira de Araujo. 1985. Mutagenesis and growth delay induced in Escherichia coli by near-ultraviolet radiations. Biochimie 67: 335 342.
118. Favre, A.,, M. Yaniv,, and A. M. Michelson. 1969. The photochemistry of 4-thiouridine in Escherichia coli tRNA val1. Biochem. Biophys. Res. Commun. 37: 266 271.
119. Fayerman, J. F.,, M. C. Vann,, L. S. Williams,, and H. E. Umbarger. 1979. ilvU, a locus in Escherichia coli affecting the derepression of isoleucyl-tRNA synthetase and the RPC-5 chromatographic profiles of tRNA Ile and tRNA Val. J. Biol. Chem. 254: 9429 9440.
120. Fittler, F.,, L. K. Kline,, and R. H. Hall. 1968. Biosynthesis of N 6-(2-isopentenyl) adenosine. Precursor relationship of acetate and mevalonate to the 2-isopentenyl group of the transfer ribonucleic acid of microorganisms. Biochemistry 7: 940 944.
121. Fittler, F.,, L. K. Kline,, and R. H. Hall. 1968. N 6-(2-isopentenyljadenosine: biosynthesis in vitro by an enzyme extract from yeast and rat liver. Biochem. Biophys. Res. Commun. 31: 571 576.
122. Fleissner, E.,, and E. Borek. 1962. A new enzyme of RNA synthesis: RNA methylase. Proc. Natl. Acad. Sci. USA 48: 1199 1203.
123. Fournier, M. J.,, E. Webb,, and G. R. Kitchingman. 1976. General and specific effects of amino acid starvation on the formation of undermodified Escherichia coli phenylalanine tRNA. Biochem. Biophys. Acta 454: 97 113.
124. French, B. T.,, D. E. Patrick,, M. G. Grever,, and R. W. Trewyn. 1991. Queuine, a tRNA anticodon wobble base, maintains the proliferative and pluripotent potential of HL-60 cell in the presence of the differentiating agent 6-thioguanine. Proc. Natl. Acad. Sci. USA 88: 370 374.
125. Frey, B.,, G. Jänel,, U. Michelsen,, and H. Kersten. 1989. Mutations in the Escherichia coli fnr and tgt genes: control of molybdate reductase activity and the cytochrome d complex by fnr. J. Bacteriol. 171: 1524 1530.
126. Frey, B.,, J. McCloskey,, W. Kersten,, and H. Kersten. 1988. New function of vitamin B 12: cobamide-dependent reduction of epoxyqueuosine to queuosine in tRNAs of Escherichia coli and Salmonella typhimurium. J. Bacteriol. 170: 2078 2082.
127. Gaal, X.,, J. Barkei,, R. R. Dickson,, H. A. deBoer,, P. L. deHaseth,, H. Alavi,, and R. L. Gourse. 1989. Saturation mutagenesis of an Escherichia coli rRNA promoter and initial characterization of promoter variants. J. Bacteriol. 171: 4852 4861.
128. Gallagher, P. J.,, I. Schwartz,, and D. Elseviers. 1984. Genetic mapping of pheU, an Escherichia coli gene for phenylalanine tRNA. J. Bacteriol. 158: 762 763.
129. Garcia, A. 1990. Thesis. Université Louis Pasteur, Strasbourg, France.
130. Gefter, M. L. 1969. The in vitro synthesis of 2'-meth-ylguanosine and 2-methylthio 6N(λ,λ, dimethylallyl) adenosine in transfer RNA of Escherichia coli. Biochem. Biophys. Res. Commun. 36: 435 441.
131. Gefter, M. L.,, and R. L. Russel. 1969. Role of modifications in tyrosine transfer RNA: a modified base affecting ribosome binding. J. Mol. Biol. 39: 145 157.
131a. Gehrke, C. Personal communication.
132. Giegé, R. A.,, J. D. Puglisi,, and C. Florentz. 1993. tRNA structure and aminoacylation efficiency. Prog. Nucleic Acid Mol. Biol. 45: 129 206.
133. Gillman, E. C.,, L. B. Slusher,, N. C. Martin,, and A. K. Hopper. 1991. MOD5 translation initiation sites determine N 6-isopentenyladenosine modification of mitochondrial and cytoplasmic tRNA. Mol. Cell. Biol. 11: 2382 2390.
134. Glasser, A.-L.,, C. E. Adlouni,, G. Keith,, E. Sochacka,, E. Malkiewicz,, M. Santos,, M. F. Tuite,, and J. Degres. 1992. Presence and coding properties of 2'-O-methyl-5-carbamoylmethyluridine (ncm 5Um) in the wobble position of the anticodon of tRNA Leu (U*AA) from brewer's yeast. FEBS Lett. 314: 381 385.
135. Glick, J. M.,, V. M. Averyhart,, and P. S. Leboy. 1978. Purification and characterization of two tRNA-(guanine)-methyltransferases from rat liver. Biochem. Biophys. Acta 518: 158 171.
136. Glick, J. M.,, and P. S. Leboy. 1977. Purification and properties of tRNA(adenine-l) methyltransferase from rat liver. J. Biol. Chem. 252: 4790 4795.
137. Glick, J. M.,, S. Ross,, and P. S. Leboy. 1975. S-adenosylhomocysteine inhibition of three purified tRNA methyltransferases from rat liver. Nucleic Acids Res. 2: 1639 1651.
138. Goddard, J. P.,, and M. Lowdon. 1981. The effect upon aminoacylation of bisulphite addition to 2-methylthio-N 6-isopentenyl adenosine of Escherichia coli phenylalanine tRNA. FEBS Lett. 130: 221 222.
139. Goldstein, J. L.,, and M. Brown. 1990. Regulation of the mevalonate pathway. Nature (London) 343: 425 430.
140. Gray, J.,, J. Wang,, and S. B. Gelvin. 1992. Mutation of the miaA gene of Agrobacterium tumefaciens results in reduced vir gene expression. J. Bacteriol. 174: 1086 1098.
141. Greenberg, R.,, and B. Dudock. 1980. Isolation and characterization of m 5U-methyltransferase from Escherichia coli. J. Biol. Chem. 255: 8296 8302.
142. Griffey, R. H.,, D. Davis,, Z. Yamaizumi,, S. Nishimura,, A. Bax,, B. Hawkins,, and C. D. Poulter. 1985. 15N-labeled Escherichia coli tRNA Metf, tRNA Glu, tRNA Tyr, and tRNA phe. Double resonance and two-dimensional NMR of N1-labeled pseudouridine. J. Biol. Chem. 260: 9734 9741.
143. Griffiths, E.,, and J. Humphreys. 1978. Alterations in tRNAs containing 2-methylthio-N 6-2-isopentenyl)-adenosine during growth of enteropathogenic Escherichia coli in the presence of iron-binding proteins. Eur. J. Biochem. 82: 503 513.
143a. Grosjean, H. Personal communication.
144. Grosjean, H.,, S. de Henau,, T. Doi,, A. Yamane,, E. Ohtsuka,, M. Ikehara,, N. Beauchemin,, K. Nicoghosian,, and R. Cedergren. 1987. The in vivo stability, maturation and aminoacylation of anticodon-substituted Escherichia coli initiator methionine tRNAs. Eur. J. Biochem. 166: 325 332.
145. Grosjean, H.,, L. Droogmans,, R. Giege,, and O. Uhlenbeck. 1990. Guanosine modifications in runoff transcripts of synthetic transfer RNA-Phe genes microinjected into Xenopus oocytes. Biochem Biophys. Acta 1050: 267 273.
146. Grosjean, H.,, E. Haumont,, L. Droogmans,, P. Carbon,, M. Fournier,, S. de Henau,, T. Doi,, G. Keith,, J. Gangloff,, K. Kretz,, and R. Trewyn,. 1987. A novel approach to the biosynthesis of modified nucleosides in the anticodon loops of eukaryotic transfer RNAs, p. 355 378. In K. S. Bruzik, and W. J. Stec (ed.), Biophosphates and Their Analogues: Synthesis, Structure, Metabolism and Activity. Elsevier, Amsterdam.
147. Grosjean, H.,, and C. Houssier. 1990. Codon recognition: evaluation of the effects of modified bases in the anticodon loop of tRNA using the temperature-jump relaxation method. J. Chromatogr. Library 45A: A255 A295.
148. Grosjean, H.,, G. Keith,, and C. Houssier. 1984. Anticodon-anticodon interactions: evaluation of the effect of 2'-O-methyl modification to ribose of cytosine-34 in yeast tRNA Trp. Arch. Int. Physiol. Biochem. 92: B137.
149. Grosjean, H.,, K. Nicoghosian,, E. Haumont,, D. Söil,, and R. Cedergren. 1985. Nucleotide sequences of two serine tRNAs with a GGA anticodon: the structure-function relationships in the serine family of E. coli tRNAs. Nucleic Acids Res. 13: 5697 5706.
150. Grossenbacher, A.-M.,, J. Kohli,, K. C. Kuo,, and C. W. Gehrke. 1990. Synthesis and function of modified nucleosides in tRNA. In Chromatograpy and modification of nucleosides. Part B. Biological roles and function of modification. J. Chromatogr. Library 45B: B13 B67.
151. Grossenbacher, A.-M.,, B. Stadelman,, W.-D. Heyer,, P. Thuriaux,, and J. Kohli. 1986. Antisuppressor mutations and sulfur-carrying nucleosides in transfer RNAs of Schizosac-charomyces pombe. J. Biol. Chem. 261: 16351 16355.
152. Gu, X.,, and D. V. Santi. 1990. High-level expression of Escherichia coli tRNA (m 5U54)methyltransferase. DNA and Cell Biol. 9: 273 278.
153. Gu, X.,, and D. V. Santi. 1991. The T-arm of tRNA is a substrate for tRNA(m 5U54)-methyltransferase. Biochemistry 30: 2999 3002.
154. Gu, X.,, and D. V. Santi. 1992. Covalent adducts between tRNA(m 5U54)-methyltransferase and RNA substrates. Biochemistry 31: 10295 10302.
155. Gustafsson, C. 1992. Ph.D. thesis. Umea University.
156. Gustafsson, C.,, and G. R. Björk. 1993. The tRNA-(m 5U54)-methyltransferase of Escherichia coli is present in two forms in vivo, one of which is covalently bound to tRNA and to a 3'-end fragment of 16S rRNA. J. Biol. Chem. 268: 1326 1331.
157. Gustafsson, C.,, P. H. R. Lindström,, T. G. Hagervall,, K. B. Esberg,, and G. R. Bjork. 1991. The trmA promoter has regulatory features and sequence elements in common with the rRNA PI promoter familly in Escherichia coli. J. Bacteriol. 173: 1757 1764.
157a. Hagervall, T.,, and J. McCloskey. Personal communication.
158. Hagervall, T. G.,, and G. R. Bjork. 1984. Undermodification in the first position of the anticodon of swpG-tRNA reduces translational efficiency. Mol. Gen. Genet. 196: 194 200.
159. Hagervall, T. G.,, and G. R. Björk. 1984. Genetic mapping and cloning of the gene (trmC) responsible for the synthesis of tRNA(mnm 5s2U)methyltransferase in Escherichia coli K12. Mol. Gen. Genet. 196: 201 207.
160. Hagervall, T. G.,, C. G. Edmonds,, J. A. McCloskey,, and G. R. Bjork. 1987. Transfer RNA(5-methylaminomethyl-2-thiouridine)methyltransferase from Escherichia coli K-12 has two enzymatic activities. J. Biol. Chem. 262: 8488 8495.
161. Hagervall, T. G.,, Y. H. Jönsson,, C. G. Edmonds,, J. A. McCloskey,, and G. R. Björk. 1990. Chorismic acid, a key metabolite in modification of tRNA. J. Bacteriol. 172: 252 259.
162. Hagervall, T. G.,, T. M. Tuohy,, J. F. Atkins,, and G. R. Bjork. 1993. Deficiency of 1-methylguanosine in tRNA from Salmonella typhimurium induces frameshifting by quadruplet translocation. J. Mol. Biol. 232: 756 765.
163. Hall, K. B.,, J. R. Sampson,, O. C. Uhlenbeck,, and A. G. Redfield. 1989. Structure of an unmodified tRNA molecule. Biochemistry 28: 5794 5801.
164. Hall, R. H. 1970. N 6-(2-isopentenyl)adenosine: chemical reactions, biosynthesis, metabolism, and significance to the structure and function of tRNA. Prog. Nucleic Acids Res. Mol. Biol. 10: 57 86.
165. Hall, R. H. 1971. The Modified Nucleosides in Nucleic Acids. Columbia University Press, New York.
166. Harada, R.,, and S. Nishimura. 1972. Possible anticodon sequences of tRNA His, tRNA Asn, and tRNA Asp from Escherichia coli B. Universal presence of nucleoside Q in the first position of the anticodons of these transfer ribonucleic acids. Biochemistry 11: 301 308.
167. Harris, C. L. 1990. High-molecular-weight forms of amino-acyl-tRNA synthetases and tRNA modifying enzymes in Escherichia coli. J. Bacteriol. 172: 1798 1803.
168. Harris, C. L.,, K. Marin,, and D. Stewart. 1977. tRNA sulfurtransferase: a member of the aminoacyl-tRNA synthetase complex in rat liver. Biochem. Biophys. Res. Commun. 79: 657 662.
169. Hasegawa, T.,, M. Miyano,, H. Himeno,, Y. Sano,, K. Kimura,, and M. Shimizu. 1992. Identity determinants of E. coli threonine tRNA. Biochem. Biophys. Res. Commun. 184: 478 484.
170. Hatfield, D. L.,, J. G. Levin,, A. Rein,, and S. Oroszlan. 1992. Translational suppression in retroviral gene expression. Adv. Virus Res. 41: 193 239.
171. Hatfield, D. L.,, D. W. E. Smith,, B. J. Lee,, P. J. Worland,, and S. Oroszlan. 1990. Structure and function of suppressor tRNAs in higher eukaryotes. Crit. Rev. Biochem. Mol. Biol. 25: 71 96.
172. Haumont, E.,, L. Droogmans,, and H. Grosjean. 1987. Enzymatic formation of queuosine and of glycerol queuosine in yeast tRNA microinjected into Xenopus laevis oocytes. The effect of the anticodon loop sequence. Eur. J. Biochem. 168: 219 225.
173. Haumont, E.,, M. Fournier,, S. deHenau,, and H. Grosjean. 1984. Enzymatic conversion of adenosine to inosine in the wobble position of yeast tRNA Asp: the dependence on the anticodon sequence. Nucleic Acids Res. 12: 2705 2715.
174. Hecht, S. M.,, L. H. Kirkegaard,, and R. M. Bock. 1971. Chemical modifications of transfer RNA species. Desulfurization with raney nickel. Proc. Natl. Acad. Sci. USA 68: 48 51.
175. Herrington, M. B.,, J. Basso,, M. Farci,, and C. Autexier. 1991. Modification of the suppressor phenotype of thymine requiring strains of Escherichia coli. Genet. Res. 58: 185 92.
176. Herrington, M. B.,, A. Kohli,, and P. H. Lapchak. 1984. Suppression by thymidine-requiring mutants of Escherichia coli K-12.J . Bacteriol. 157: 126 129.
177. Heyer, W.-D.,, P. Thuriaux,, and J. Kohli. 1984. An antisup-pressor mutation of Schizosaccharomyuces pombe affects the post-transcriptional modification of the "Wobble" base in the anticodon of tRNAs. J. Biol. Chem. 259: 2856 2862.
178. Hilderman, R. H.,, and B. J. Ortwerth. 1987. A preferential role for lysyl-tRNA 4 in the synthesis of diadenosine 5',5'-P 1,P4-tetraphosphate by an arginyl-tRNA-lysyl-tRNA synthetase complex from rat liver. Biochemistry 26: 1586 1591.
179. Hjalmarsson, K. J.,, A. Byström,, and G. R. Björk. 1983. Purification and characterization of transfer RNA(Guanine-1 )methyltransferase from Escherichia coli. J. Biol. Chem. 258: 1343 1351.
180. Hoagland, M. E.,, P. C. Zamecnik,, and M. L. Stephenson. 1957. Intermediate reactions in protein synthesis. Biochim. Biophys. Acta 24: 215 216.
181. Holmes, W. M.,, C. Andraos-Selim,, I. Roberts,, and S. Z. Wahab. 1992. Structural requirements for tRNA methylation. Action of Escherichia coli tRNA(guanosine-1) methyltransferase on tRNA Leu1 structural variants. J. Biol. Chem. 267: 13440 13445.
182. Hopper, A. K.,, A. H. Furukawa,, H. D. Pham,, and N. C. Martin. 1982. Defects in modification of cytoplasmic and mitochondrial transfer RNAs are caused by single nuclear mutations. Cell 28: 543 550.
183. Hori, H.,, M. Saneyoshi,, I. Kumagai,, K.-I. Miura,, and K. Watanabe. 1989. Effects of modification of 4-thiouridine in E. coli tRNA Metf on its methyl acceptor activity by thermostable Gm-methylases. J. Biochem. 106: 798 802.
184. Hotchkiss, R. D. 1948. The quantitative separation of purines, pyrimidines, and nucleosides by paper chromatography. J. Biol. Chem. 175: 315 332.
185. Houssier, C.,, P. Degree,, K. Nicoghosian,, and H. Grosjean. 1988. Effect of uridine dethiolation in the anticodon triplet of tRNA (Glu) on its association with tRNA (Phe). J. Biol. Mol. Struct. Dyn. 5: 1259 1266.
186. Ivanetich, K. M.,, and D. V. Santi. 1992. 5,6,-Dihydropyrimidine adducts in the reactions and interactions of pyrimidines with proteins. Prog. Nucleic Acids Res. Mol. Biol. 42: 127 156.
187. Jagger, J. 1983. Physiological effects of near-ultraviolet radiation on bacteria. Photochem. Photobiol. Rev. 7: 1 73.
188. Janner, E.,, G. Vdgeli,, and R. Fluri. 1980. The antisuppressor strain sinl of Schizosaccharomyces pombe lacks the modification isopentenyladenosine in transfer RNA. J. Mol. Biol. 139: 207 219.
189. Jensen, K. F. 1993. The Escherichia coli K-13 "wild type" W3110 and MG1655 have an rph frameshift mutation that leads to pyrimidine starvation due to low pyrE expression levels. J. Bacteriol. 175: 3401 3407.
190. Jeter, R. M.,, B. M. Olivera,, and J. R. Roth. 1984. Salmonella typhimurium synthesizes cobalamin (vitamin B 12) de novo under unaerobic growth conditions. J. Bacteriol. 159: 206 213.
191. Johnson, P. F.,, and J. Abelson. 1983. The yeast tRNA Tyr gene intron is essential for correct modification of its tRNA product. Nature (London) 302: 681 687.
192. Johnson, R.,, and M. L. Simon. 1985. Hin-mediated site-specific recombination requires two 26 bp recombination sites and a 60 bp recombinational enhancer. Cell 41: 781 791.
193. Jukes, T. H. 1973. Possibility for the evolution of the genetic code from a preceding form. Nature (London) 246: 22 26.
194. Kadner, R. J. 1978. Repression of synthesis of the vitamin B 12 receptor in Escherichia coli. J. Bacterial. 136: 1050 1057.
195. Kahmann, R. F.,, F. Rudt,, C. Koch,, and G. Marlens. 1985. G inversion in bacteriophage Mu DNA is stimulated by a site within the inverstase gene and a host factor. Cell 41: 771 780.
196. Kajitani, M.,, and A. Ishihama. 1991. Identification and sequence determination of the host factor gene for bacteriophage Q. Nucleic Acids Res. 19: 1063 1066.
197. Kammen, H. O.,, C. C. Marvel,, L. Hardy,, and E. E. Penhoet. 1988. Purification, structure, and properties of Escherichia coli tRNA pseudouridine synthase. J. Biol. Chem. 263: 2255 2263.
198. Kammen, H. O.,, and S. J. Spengler. 1970. The biosynthesis of inosinic acid in transfer RNA. Biochem. Biophys. Acta 213: 352 364.
199. Kane, S. M.,, C. Vugrinicic,, D. S. Finbloom,, and D. W. E. Smith. 1978. Purification and some properties of the histidyl-tRNA synthetase from the cytosol of rabbit reticulocytes. Biochemistry 17: 1509 1514.
200. Kang, H. S.,, R. C. Ogden,, G. Knapp,, C. L. Peebles,, and J. Abelson,. 1979. Structure of yeast tRNA precursors containing intervening sequences, p. 69 84. In R. Axel,, T. Maniatis,, and E. Fox (ed.), Eucaryotic Gene Regulation. Academic Press, Inc., New York.
201. Katze, J. R.,, M. H. Simonian,, and R. D. Mosteller. 1977. Role of methionine in the synthesis of nucleoside Q in Escherichia coli transfer RNA. J. Bacteriol. 132: 174 179.
202. Kawai, G.,, Y. Yamamoto,, T. Kamimura,, T. Masegi,, M. Sekine,, T. Hata,, T. Iimori,, T. Watanabe,, T. Miyazawa,, and S. Yokoyama. 1992. Conformational rigidity of specific pyrimidine residues in tRNA arises from posttranscriptional modifications that enhance steric interaction between the base and the 2'-hydroxyl group. Biochemistry 31: 1040 1046.
203. Kawakami, K.,, Y. H. Jönsson,, G. R. Björk,, H. Ikeda,, and Y. Nakamura. 1988. Chromosomal location and structure of the operon encoding peptide-chain-release factor 2 of Escherichia coli. Proc. Natl. Acad. Sci. USA 85: 5620 5624.
204. Kealey, J. X.,, S. Lee,, H. G. Floss,, and D. V. Santi. 1991. Sterochemistry of methyl transfer catalyzed by tRNA(m 5U54)methyltransferase — evidence of a single displacement mechanism. Nucleic Acids Res. 23: 6465 6468.
205. Kealey, J. T.,, and D. V. Santi. 1991. Identification of the catalytic nucleophile of tRNA(m 5U54)methyltransferase. Biochemistry 30: 9724 9728.
206. Keith, G.,, H. Rogg,, G. Dirheimer,, B. Menichi,, and T. Heyman. 1976. Post-transcriptional modification of tyrosine tRNA as a function of growth in Bacillus subtilis. FEBS Lett. 61: 120 123.
207. Keith, J. M.,, E. M. Winters,, and B. Moss. 1980. Purification and characterization of a HeLa cell transfer RNA-(cytosine-5)-methyltransferase. J. Biol. Chem. 255: 4636 4644.
208. Kern, D.,, and J. Lapointe. 1979. Glutamyl transfer ribonucleic acid synthetase of Escherichia coli. Effect of alteration of the 5-(methylaminomethyl)-2-thiouridine in the anticodon of glutamic acid transfer ribonucleic acid on the catalytic mechanism. Biochemistry 18: 5819 5826.
209. Kersten, H. 1984. On the biological significance of modified nucleosides in tRNA. Prog. Nucleic Acids Res. Mol. Biol. 31: 58 114.
210. Kersten, H. 1988. The nutrient factor queuine: biosynthesis, occurrence in transfer RNA and function. Biofactors 1: 27 29.
211. Kersten, H.,, and W. Kersten. 1990. Biosynthesis and function of queuine and queuosine tRNAs. In Chromatography and modification of nucleosides. Part B. Biological roles and function of modification. J. Chromatogr. Library 45B: B69 B108.
212. Kersten, H.,, R. Raettig,, J. Weissenbach,, and G. Dirheimer. 1978. Recognition of individual procaryotic and eucaryotic transfer-ribonucleic acids by B. subtilis adenine-l-meth-yltransferase specific for the dihydrouridine loop. Nucleic Acids Res. 5: 3033 3042.
213. Kersten, H.,, L. Sandig,, and H. H. Arnold. 1975. Tetrahydrofolate-dependent 5-methyluracil-tRNA transferase activity in B. subtilis. FEBS Lett. 55: 57 60.
214. Kitchingman, G. R.,, and M. J. Fournier. 1975. Unbalanced growth and the production of unique transfer ribonucleic acids in relaxed-control Escherichia coli. J. Bacteriol. 124: 1382 1394.
215. Kitchingman, G. R.,, and M. J. Fournier. 1976. In vivo maturation of an undermodified Escherichia coli leucine transfer RNA Biochem. Biophys. Res. Commun. 73: 314 322.
216. Kitchingman, G. R.,, and M. J. Fournier. 1977. Modification-deficient transfer ribonucleic acids from relaxed control Escherichia coli: structures of the major undermodified phenylalanine and leucine transfer RNAs produced during leucine starvation. Biochemistry 16: 2213 2220.
217. Kline, L. K.,, F. Fittler,, and R. H. Hall. 1969. N 6-(2-isopen-tenyl)adenosine. Biosynthesis in transfer ribonucleic acid in vitro. Biochemistry 8: 4361 4371.
218. Komine, Y.,, T. Adachi,, H. Inokuchi,, and H. Ozeki. 1990. Genomic organization and physical mapping of the transfer RNA genes in Escherichia coli K12. J. Mol. Biol. 212: 579 598.
219. Körner, A.,, and D. Söll. 1974. N-(purin-6-ylcarbamoyl)-threonine: biosynthesis in vitro in transfer RNA by an enzyme purified from Escherichia coli. FEBS Lett. 39: 301 306.
220. Kowalak, J. A.,, and J. A. McCloskey,. 1992. The determination of posttranscriptional modification in RNA, p. 79 88. In K. Nierhaus (ed.), Translational Apparatus. Springer-Verlag, Berlin.
221. Kramer, G. F.,, and B. N. Ames. 1988. Isolation and characterization of a selenium metabolism mutant of Salmonella typhimurium. J. Bacteriol. 170: 736 743.
222. Kramer, G. E.,, J. C. Baker,, and B. N. Ames. 1988. Near-UV stress in Salmonella typhimurium: 4-thiouridine in tRNA, ppGpp, and ApppGpp as components of and adaptive response. J. Bacteriol. 170: 2344 2351.
223. Kraus, J.,, and M. Staehelin. 1974. N 2-guanine specific transfer RNA methyltransferase. I. From rat liver and leukemic rat spleen. Nucleic Acids Res. 1: 1455 1478.
224. Kraus, J.,, and M. Staehelin. 1974. N 2-guanine specific transfer RNA methyltransferase. II. From rat liver. Nucleic Acids Res. 1: 1479 1496.
225. Kuchino, Y.,, E. Borek,, D. Grunberger,, J. F. Mushinski,, and S. Nishimura. 1982. Changes of post-transcriptional modification of wye base in tumor-specific tRNA phe. Nucleic Acids Res. 10: 6421 6432.
226. Kuchino, Y.,, M. Ihara,, Y. Yabusaki,, and S. Nishimura. 1982. Initiator tRNAs from archaebacteria show common unique sequence characteristics. Nature (London) 298: 684 685.
227. Kumagai, I.,, K. Watanabe,, and T. Oshima. 1980. Thermally induced biosynthesis of 2'-0-methylguanosine in tRNA from an extreme thermophile, Thermus thermophilus HB27. Proc. Natl. Acad. Sci. USA 77: 1922 1926.
228. Kumagai, I.,, K. Watanabe,, and T. Oshima. 1982. A thermostable tRNA(Guanosine-2'-)-methyltransferase from Thermus thermophilus HB27 and the effect of ribose methylation on the conformational stability of tRNA. J. Biol. Chem. 257: 7388 7395.
229. Langgut, W.,, T. Reisser,, and H. Kersten. 1990. Queunine modulates growth of HeLa cells depending on oxygen availability. Biofactors 2: 245 249.
230. Laten, H.,, J. Gorman,, and R. M. Bock. 1978. Isopentenyladenosine deficient tRNA from an antisuppressor mutant of Saccharomyces cerevisiae. Nucleic Acids Res. 5: 4329 4342.
231. Lee, P. C.,, B. R. Bochner,, and B. N. Ames. 1983. AppppA, heat shock stress, and cell oxidation. Proc. Natl. Acad. Sci. USA 80: 7496 7500.
232. Leinfelder, W.,, K. Forchhammer,, B. Veprek,, E. Zehelein,, and A. Bock. 1990. In vitro synthesis of selenocysteinyl-tRNA UCA from seryl-tRNA UCA: involvment and characterization of the selD product. Proc. Natl. Acad. Sci. USA 87: 543 547.
233. Leinfelder, W.,, K. Forchhammer,, F. Zinoni,, G. Sawers,, M.-A. Mandrand-Berthelot,, and A. Bock. 1988. Escherichia coli genes whose products are involved in selenium metabolism. J. Bacteriol. 170: 540 546.
233a. Li, J.-M.,, and G. R. Bjork. Unpublished data.
234. Li, J.-M.,, A. K. Hopper,, and N. C. Martin. 1989. N 2,N 2-dimethylguanosine-specific tRNA methyltransferase contains both nuclear and mitochondrial targeting signals in Saccharomyces cerevisiae. J. Cell Biol. 109: 1411 1419.
235. Lindahl, L.,, and J. M. Zengel. 1986. Ribosomal genes in Escherichia coli. Annu. Rev. Genet. 20: 297 326.
236. Lindström, P. H. R.,, D. Stüber,, and G. R. Björk. 1985. Genetic organization and transcription from the gene (trmA) responsible for the synthesis of tRNA(uracil-5) methyltransferase by Escherichia coli. J.Bacteriol. 164: 1117 1123.
237. Lipsett, M. N. 1972. Biosynthesis of 4-thiouridylate. Participation of a sulfurtransferase containing pyridoxal 5'-phosphate. J. Biol. Chem. 247: 1458 1461.
238. Lipsett, M. N. 1978. Enzymes producing 4-thiouridine in Escherichia coli tRNA: approximate chromosomal locations of the genes and enzyme activities in a 4-thiouridine-deficient mutant. J. Bacteriol. 135: 993 997.
239. Litwack, M. D.,, and A. Peterkofsky. 1971. Transfer ribonucleic acid deficient in N6-(2-isopentenyl)adenosine due to mevalonic acid limitation. Biochemistry 10: 994 1001.
240. Mahr, U.,, P. Bohm,, and H. Kersten. 1990. Possible involvement of queuine in control mechanisms of protein synthesis and protein psosphorylation in eukaryotes. Biofactors 2: 185 192.
241. Mao, J.-I.,, O. Schmidt,, and D. Söll. 1980. Dimeric transfer RNA precursors in S. pombe. Cell 21: 509 516.
242. Marinus, M. G.,, N. R. Morris,, D. Soil,, and T. C. Kwong. 1975. Isolation and partial characterization of three Escherichia coli mutants with altered transfer ribonucleic acid methylases. J. Bacteriol. 122: 257 265.
243. Marvel, C. C.,, P. J. Arps,, B. C. Rubin,, H. O. Kammen,, E. E. Penhoet,, and M. E. Winkler. 1985. hisT is part of a multigene operon in Escherichia coli K-12. J. Bacteriol. 161: 60 71.
244. Matsumoto, T.,, K. Watanabe, and X Ohta. 1984. Recognition mechanism of tRNA with tRNA(guanosine-2'-)methyltransferase from Thermus thermophilus HB27. Nucleic Acids Res. 15: 131 134.
245. McClain, H. W.,, and J. G. Seidman. 1975. Genetic perturbations that reveal tertiary conformation of tRNA precursor molecules. Nature ( London) 257: 106 110.
246. McCloskey, J. 1986. Nucleoside modification in Archaebacterial tRNA System. Appl. Microbiol. 7: 246 252.
247. McNamara, A. L.,, and D. W. E. Smith. 1978. The function of the histidine tRNA isoaccepting species in hemoglobin synthesis. J. Biol. Chem. 253: 5964 5970.
248. Meier, F.,, B. Suter,, H. Grosjean,, G. Keith,, and E. Kubli. 1985. Queuosine modification of the wobble base in tRNA His influences 'in vivo' decoding properties. EMBO J. 4: 823 827.
249. Melton, D. A.,, E. M. De Robertis,, and R. Cortese. 1980. Order and intracellular location of the events involved in the maturation of a spliced tRNA. Nature (London) 284: 143 148.
250. Menichi, B.,, and T. Heyman. 1976. Study of tyrosine transfer ribonucleic acid modification in relation to sporulation in Bacillus subtilis. J. Bacteriol. 127: 268 280.
251. Miller, J. P.,, Z. Hussain,, and M. P. Schweizer. 1976. The involvement of the anticodon adjacent modified nucleoside N-9-(-D-ribofuranosyl)-purine-6-ylcarbamoyl-threonine in the biological function of E. coli tRNA Ile. Nucleic Acids Res. 3: 1185 1201.
252. Morozov, I. A.,, A. S. Gamabaryan,, X. N. Lvova,, A. A. Nedospasov,, and X. V. Venkstern. 1982. Purification and characterization of tRNA(Adenine-1-)-methyl transferase from Thermuc flavus, strain 71. Eur. J. Biochem. 129: 429 436.
253. Mullenbach, G. X.,, H. O. Kammen,, and E. E. Penhoet. 1976. A heterologous system for detecting eukaryotic enzymes which synthesize pseudouridine transfer ribonucleic acids. J. Biol. Chem. 251: 4570 4578.
254. Munch, H. J.,, and R. Thiebe. 1975. Biosynthesis of the nucleoside Y in yeast tRNA Phe: incorporation of the 3-amino-3-carboxyl-group from methionine. FEBS Lett. 51: 257 258.
255. Muralidhar, G.,, J. Ochieng,, and R. W. Trewyn. 1989. Altered queuine modification of transfer RNA involved in the in vitro transformation of Chinese hamster embryo cells. Cancer Res. 49: 7110 7114.