1887

Chapter 14 : Aminoacyl-tRNA Synthetases: Occurrence, Structure, and Function

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Aminoacyl-tRNA Synthetases: Occurrence, Structure, and Function, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818333/9781555810733_Chap14-1.gif /docserver/preview/fulltext/10.1128/9781555818333/9781555810733_Chap14-2.gif

Abstract:

Translation of the genetic message into proteins implies the precise correspondence between the 64 base triplets and the 20 canonical amino acids. In this process, the tRNAs play a central role by providing the nascent polypeptide with the amino acids by which they are esterified, in response to codons on the mRNA. The pairing of mRNA codon to tRNA anticodon is independent of the nature of the amino acid esterified to the tRNA. Therefore, the accuracy of the tRNA aminoacylation reaction, ensured by the aminoacyl-tRNA synthetases (aaRS), is of first importance in all living cells, since it will govern, to a large extent, the fidelity of the translation process. Much work has been done to understand how aaRS achieve high accuracy of tRNA aminoacylation while maintaining a sufficiently high rate of catalysis, generally in the order of several turnovers per second.. Since the early description of aaRS, most of the studies have focused on the kinetic mechanisms of action of the aaRS. More recently, with the availability of the three-dimensional structure of several tRNAs and synthetases and the possibility of generating variants of these macromolecules, a static picture of their specific interaction at the atomic level has emerged. Two main functions are carried out by an aaRS: the activation of the amino acid and the recognition of the tRNA molecule. In addition, association between protomers must be ensured. The present knowledge indicates that each of these functions is distributed along the aaRS polypeptide through the formation of specialized domains.

Citation: Meinnel T, Mechulam Y, Blanquet S. 1995. Aminoacyl-tRNA Synthetases: Occurrence, Structure, and Function, p 251-292. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch14

Key Concept Ranking

Amino Acids, Peptides and Proteins
0.66331184
Basic Amino Acids
0.4666132
0.66331184
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Aminoacyldenylate synthesis through rate-limiting isomerization of a ternary complex consisting of aminoacyl-tRNA synthetase (aaRS) with ATP-Mg and amino acid. E = aaRS, aa = amino acid, and aa-AMP = aminoacyladenylate. The equilibrium dissociation constants (K) and kinetic constants (k) are indicated.

Citation: Meinnel T, Mechulam Y, Blanquet S. 1995. Aminoacyl-tRNA Synthetases: Occurrence, Structure, and Function, p 251-292. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818333.chap14
1. Akins, R. A.,, and A. M. Lambowitz. 1987. A protein required for splicing group I introns in Neurospora mitochondria is mitochondrial tyrosyl-tRNA synthetase or a derivative thereof. Cell 50: 331 345.
2. Ala, R.,, H. Xue,, L. Leung,, Y. Q. Xue,, J. T. F. Wong,, and D. S. C. Yang. 1993. Crystallization of Bacillus subtilis tryptophanyl- transfer RNA synthetase. J. Mol. Biol. 230: 1089 1090.
2a.. Amaar, Y. G.,, and D. L. Baillie. 1993. Cloning and characterization of the C. elegans histidyl- and tRNA synthetase gene. Nucleic Acids Res. 21: 4344 4347.
3. Amiri, I.,, H. Mcjdoub,, N. Hounwanou,, Y. Boulanger,, and J. Reinbolt. 1985. The complete amino acid sequence of cytoplasmic aspartyl-tRNA synthetase from Saccharomyces cerevisiae. Biochimie (Paris) 67: 607 613.
4. Ankilova, V. N.,, L. S. Reshetnikova,, M. M. Chernaya,, and O. I. Lavrik. 1988. Phenylalanyl-tRNA synthetase from Thermus thermophilus: purification and properties of the crystallizing enzyme. FEBS Lett. 227: 9 13.
5. Anselme, J.,, and M. Hartlein. 1989. Asparaginyl-rRNA synthetase from Escherichia coli has significant sequence homologies with yeast aspartyl-tRNA synthetase. Gene 84: 481 485.
6. Anselme, J.,, and M. Hartlein. 1991. Tyr-426 of the Escherichia coli asparaginyl-tRNA synthetase, an amino acid in a C-terminal conserved motif, is involved in ATP binding. FEBS Lett. 280: 163 166.
7. Avalos, J.,, L. M. Corrochano,, and S. Brenner. 1991. Cysteinyl-tRNA synthetase is a direct descendant of the first aminoacyl-tRNAsynthetase. FEBS Lett. 286: 176 180.
8. Bain, j. D.,, C. Switzer,, A. R. Chamberlin,, and S. A. Benner. 1992. Ribosome-mediated incorporation of a non-standard amino acid into a peptide through expansion of the genetic code. Nature (London) 356: 537 539.
9. Baker, M. E. 1989. Similarity between tyrosyl-tRNA synthetase and the estrogen receptor. FASEBJ. 3: 2086 2088.
10. Bange, F. C.,, T. Flohr,, U. Buwitt,, and E. C. Bdrtger. 1992. An interferon-induced protein with release factor activity is a tryptophanyl-tRNAsynthetase. FEBS Lett. 300: 162 166.
11. Barker, D. C.,, C. J. Bruton,, and G. Winter. 1982. The tyrosyl-tRNA synthetase from Escherichia coli. Complete nucleotide sequence of the structural gene. FEBS Lett. 150: 419 423.
12. Barker, D. G.,, J. P. Ebel,, and C. J. Bruton. 1982. Methionyl-tRNA synthetase from Escherichia coli. Primary structure of the active crystallised tryptic fragment. Eur. J. Biochem. 127: 449 457.
13. Barstow, D. A.,, A. F. Sharman,, T. Atkinson,, and N. P. Minton. 1986. Cloning and complete nucleotide sequence of the Bacillus stearothermophilus tryptophanyl-tRNA synthetase gene. Gene 46: 37 45.
14. Bartmann, P.,, T. Hanke,, and E. Holler. 1975. L-phenylalanine:tRNA ligase of Escherichia coli K10. A rapid kinetic investigation of the catalytic reaction. Biochemistry 14: 4777 4786.
15. Bartmannn, P.,, T. Hanke,, and E. Holler. 1975. Active site stoichiometry of L-phenyIalanine:tRNA ligase from Escherichia coli K-10. J. Biol. Chem. 250: 7668 7674.
16. Basavappa, R.,, and P. B. Sigler. 1991. The 3 A crystal structure of yeast initiator tRNA: functional implications in initiator/ elongator discrimination. EMBO J. 10: 3105 3111.
17. Bass, S.,, V. Sorrells,, and P. Youderian. 1988. Mutant Trp repressors with new DNA-binding specificities. Science 242: 240 245.
18. Bee, G.,, P. Kerjan,, X. D. Zha,, and J. P. Waller. 1989. Valyl-tRNA synthetase from rabbit liver. 1. Purification as a heterotypic complex in association with elongation factor 1. J. Biol. Chem. 264: 21131 21137.
19. Bee, G.,, and J. P. Waller. 1989. Valyl-tRNA synthetase from rabbit liver. II. The enzyme derived from the high- Mr complex displays hydrophobic as well as polyanion-binding properties. J. Biol. Chem. 264: 21138 21143.
20. Bedouelle, H. 1990. Recognition of tRNA" 1")" by tyrosyl-tRNA synthetase. Biochimie (Paris) 72: 589 598.
21. Bedouelle, H.,, and G. Winter. 1986. A model of synthetase/ transfer RNA interaction as deduced by protein engineering. Nature (London) 320: 371 373.
21a.. Belrhali, H.,, A. Yaremchuk,, M. Tukalo,, K. Larsen,, C. Bertfaet-Colominas,, R. Leberman, et al. 1994. Crystal structures at 2.5 angstrom resolution of seryl-tRNA synthetase complexed with two analogs of seryl adenylate. Science 263: 1432 1436.
22. Berg, J. M. 1986. Potential metal-binding domains in nucleic acid binding proteins. Science 232: 485 487.
23. Berg, J. M. 1990. Zinc fingers and other metal-binding domains. Elements for interactions between macromolecules. J. Biol. Chem. 265: 6513 6516.
24. Berg, P. 1961. Specificity in protein synthesis. Annu. Rev. Biochem. 30: 293 324.
25. Bhanot, P. S.,, Z. Kucan,, S. Aoyagi,, F. C. Lee,, and R. W. Chambers. 1974. Purification of tyrosine:tRNA ligase, valine:tRNA ligase, alanine:tRNA ligase, and isoleucine:tRNA ligase from Saccharomyces cerevisiae aS288C. Methods Enzymol. 29: 547 576.
26. Bhat, T. N.,, D. M. Blow,, and P. Brick. 1982. Tyrosyl-tRNA synthetase forms a mononucleotide-binding fold. J. Mol. Biol. 158: 699 709.
26a.. Biou, V.,, A. Yoremchuk,, M. Tukalo,, and S. Cusack. 1994. The 2.9 A crystal structure of T. thermophilus seryl-tRNA synthetase complexed with tRNA Ser. Science 263: 1404 1410.
27. Blanquet, S.,, P. Dessen,, and M. Iwatsubo. 1976. Anticooperative binding of bacterial and mammalian initiator tRNA Mw to methionyl-tRNA synthetase from Escherichia coli. J. Mol. Biol. 103: 765 784.
28. Blanquet, S.,, G. Fayat,, and J. P. Waller. 1974. The mechanism of action of methionyl-tRNA synthetase from Escherichia coli. Mechanism of the amino-acid activation reaction catalyzed by the native and the trypsin-modified enzymes. Eur. J. Biochem. 44: 343 351.
29. Blanquet, S.,, G. Fayat,, and J. P. Waller. 1975. The amino acid activation reaction catalyzed by methionyl-transfer RNA synthetase: evidence for synergistic coupling between the sites for methionine, adenosine and pyrophosphate. J. Mol. Biol. 94: 1 15.
30. Blanquet, S.,, G. Fayat,, J. P. Waller,, and M. Iwatsubo. 1972. The mechanism of action of methionyl-tRNA synthetase from Escherichia coli—interaction with ligands of the amino-arid-activation reaction. Eur. J. Biochem. 24: 461 469.
31. Blanquet, S.,, M. Iwatsubo,, and J.-P. Waller. 1973. The mechanism of action of methionyl-tRNA synthetase. 1. Fluorescence studies on tRNA M" binding as a function of ligands, ions and pH. Eur. J. Biochem. 36: 213 226.
32. Blanquet, S.,, G. Petrissant,, and J. P. Waller. 1973. The mechanism of action of methionyl-tRNA synthetase. 2. Interaction of the enzyme with specific and unspecific tRNAs. Eur. J. Biochem. 36: 227 233.
33. Blanquet, S.,, P. Plateau,, and A. Brevet. 1983. The role of zinc in 5',5'-diadenosine tetraphosphate production by aminoacyl-transfer RNA synthetase. Mol. Cell. Biochem. 52: 3 11.
34. Blow, D. M.,, T. N. Bhat,, A. Metcalfe,, J. L. Risler,, S. Brunie,, and C. Zelwer. 1983. Structural homology in the amino-terminal domains of two aminoacyl-tRNA synthetases. J. Mol. Biol. 171: 571 576.
35. Bochner, B. R.,, P. C. Lee,, S. C. Wilson,, C. W. Cutler,, and B. N. Ames. 1984. AppppA and related adenylylated nucleotides are synthesized as a consequence of oxidation stress. Cell 37: 225 232.
36. Bock, A. 1968. Relation between subunit structure and temperature-sensitivity of mutant phenylalanyl RNA synthetases of Escherichia coli. Eur. J. Biochem. 4: 395 400.
37. Borgford, T. J.,, N. J. Brand,, T. E. Gray,, and A. R. Fersht. 1987. The valyl-tRNA synthetase from Bacillus stearothermophilus has considerable sequence homology with the isoleucyl-tRNA synthetase from Escherichia coli. Biochemistry 26: 2480 2486.
38. Borgford, T. J.,, T. E. Gray,, N. J. Brand,, and A. R. Fersht. 1987. Site-directed mutagenesis reveals transition-state stabilization as a general catalytic mechanism for aminoacyl-tRNA synthetases. Biochemistry 26: 7246 7250.
39. Bosshard, H. R.,, G. L. E. Koch, and R S. Hartley. 1975. Aminoacyl-tRNA synthetase from B. stearothermophilus. Asymmetry of substrate binding to tyrosyl-tRNA synthetase. Eur. J. Biochem. 53: 493 498.
40. Brakhage, A. A.,, M. Wozny,, and H. Putzcr. 1990. Structure and nucleotide sequence of the Bacillus subtilis phenylalanyl-tRNA synthetase genes. Biochimie (Paris) 72: 725 734.
41. Breton, R.,, H. Sanfacon,, I. Papayannopoulos,, K. Biemann,, and J. Lapotnte. 1986. Glutamyl-tRNA synthetase of Escherichia coli. Isolation and primary structure of the gltX gene and homology with other aminoacyl-tRNA synthetases. J. Biol. Chem. 261: 10610 10617.
42. Breton, R.,, D. Watson,, M. Yaguchi,, and J. Lapointe. 1990. G lutamyl-tRNA synthetases of Bacillus subtilis 168T and of Bacillus stearothermophilus. Cloning and sequencing of the gltX genes and comparison with other aminoacyl-tRNA synthetases. J. Biol. Chem. 265: 18248 18255.
43. Brevet, A.,, J. Chen,, F. Leveque,, P. Plateau,, and S. Blanquet. 1989. In vivo synthesis of adenylated bis(5'-nucleosidyl) tetraphosphates (Ap 4N) by Escherichia coli aminoacyl-tRNA synthetases. Proc. Natl. Acad. Sci. USA 86: 8275 8279.
44. Brick, P.,, T. N. Bhat,, and D. M. Blow. 1989. Structure of tyrosyl-tRNA synthetase refined at 2.3 A resolution. Interaction of the enzyme with the tyrosyl adenylate intermediate. J. Mol. Biol. 208: 83 98.
45. Brick, P.,, and D. M. Blow. 1987. Crystal structure of a deletion mutant of a tyrosyl-tRNA synthetase complexed with tyrosine. J. Mol. Biol. 194: 287 297.
46. Brunie, S.,, P. Mellot,, C. Zelwer,, J.-L. Risler,, S. Blanquet,, and G. Fayat. 1987. Structure-activity relationships of methionyl-tRNA synthetase: graphics modelling and genetic engineering. J. Mol. Graphics 5: 16 28.
47. Brunie, S.,, C. Zelwer,, and J.-L. Risler. 1990. Crystallography study at 2.5 A resolution of the interaction of methionyl-tRNA synthetase from Escherichia coli with ATP. J. Mol. Biol. 216: 411 424.
48. Buklad, N. E.,, D. Sanborn,, and I. N. Hirshficld. 1973. Particular influence of leucine peptides on lysyl-transfer ribonucleic acid ligase formation in a mutant of Esherichia coli K-12. J. Bacterial. 116: 1477 1478.
49. Burbaum, J. J.,, and P. Schimmcl. 1991. Assembly of a class I tRNA synthetase from products of an artificially split gene. Biochemistry 30: 319 324.
50. Burbaum, J. J.,, and P. Schimmel. 1991. Structural relationships and the classification of aminoacyl-tRNA synthetases. J. Biol. Chem. 266: 16965 16968.
51. Burbaum, J. J.,, and P. Schimmel. 1992. Aminoacid binding by the Class I aminoacyl-tRNA synthetases: role for a conserved proline in the signature sequence. Protein Sci. 1: 575 581.
52. Burbaum, J. J.,, R. M. Starzyk,, and P. Schimmel. 1990. Understanding structural relationships in proteins of unsolved three-dimensional structure. Proteins 7: 99 111.
53. Buwitt, U.,, T. Flohr,, and E. C. Bottger. 1992. Molecular cloning and characterization of an interferon induced human cDNA with sequence homology to a mammalian peptide chain release factor. EMBO J. 11: 489 496.
54. Cartas, J. R.,, M. Mouricout,, and R. Julien. 1981. Chloroplastic methionyl-tRNA synthetase from wheat. Biochem. Biophys. Res. Commun. 98: 735 742.
55. Carter, C. W.,, and D. E. Coleman. 1984. Crystallization of substrate and product analog complexes of tryptophanyl-tRNA synthetase. Federation Proc. 43: 2981 2983.
56. Carter, C. W. J.,, and C. W. Carter. 1979. Protein crystallization using uncomplete factorial experiments. J. Biol. Chem. 254: 12219 12223.
57. Carter, P.,, H. Bedouelle,, and G. Winter. 1986. Construction of heterodimer tyrosyl-tRNA synthetase shows tRNA Tyr interacts with both subunits. Proc. Natl. Acad. Sci. USA 83: 1189 1192.
58. Cassio, D.,, and J.-P. Waller. 1971. Modification of methionyl-tRNA synthetase by proteolytic cleavage and properties of the trypsin-modified enzyme. Eur. J. Biochem. 20: 283 300.
58a.. Cavarelli, J.,, G. Eriani,, B. Rees,, M. Ruff,, M. Boeglin,, A. Mitschler,, E. Martin,, J. Gangloff,, J.-C. Thierry,, and D. Moras. 1994. The active site of yeast aspartyl-tRNA synthetase: structural and functional aspects of the aminoacylation reaction. EMBO J. 13: 327 337.
59. Cavarelli, J.,, B. Rees,, M. Ruff,, J. C. Thierry,, and D. Moras. 1993. Yeast transfer RNA(Asp) recognition by its cognate class-U aminoacyl-transfer RNA synthetase. Nature (London) 362: 181 184.
60. Cech, T. R. 1990. Self-splicing of group I introns. Annu. Rev. Biochem. 59: 543 568.
61. Cerini, C.,, P. Kerjan,, M. Astier,, D. Gratecos,, M. Mirande,, and M. Semeriva. 1991. A component of the multisynthetase complex is a multifunctional aminoacyl-tRNA synthetase. EMBO J. 10: 4267 4277.
62. Chan, V. L.,, and H. L. Bingham. 1992. Lysyl-tRNA synthetase gene of Campylobacter jejuni. J. Bacterial. 174: 695 701.
63. Chang, P. K.,, and J. D. Dignara. 1990. Primary structure of alanyl-tRNA synthetase and the regulation of its mRNA levels in Bombyx mori. J. Biol. Chem. 265: 20898 20906.
64. Chapeviile, F.,, F. Lipmann,, G. vonEhrcnstein,, B. Wetsblum,, W. J. J. Ray,, and S. Benzer. 1962. On the role of soluble ribonucleic acid in coding for aminoacids. Proc. Natl. Acad. Sci. USA 48: 1086 1092.
65. Cbanon, B.,, P. Walter,, J. P. Ebel,, F. Lacroute,, and F. Fasiolo. 1988. The yeast VAS1 gene encodes both mitochondrial and cytoplasmic valyl-tRNA synthetases. J. Biol. Chem. 263: 52 57.
66. Chatton, B.,, B. Winsor,, Y. Boulanger,, and F. Fasiolo. 1987. Cloning and characterization of the yeast methionyl-tRNA synthetase mutation mesl. J. Biol. Chem. 262: 15094 15097.
67. Chen, J.,, A. Brevet,, M. Lapadai-Tapolsky,, S. Blanquet,, and P. Plateau. 1994. Properties of the lysyl-tRNA synthetase gene and product from the extreme thermophile Thermus thermophilus J. Bacterial. 176: 2699 2705.
68. Chernaya, M. M.,, S. V. Korolev,, L. S. Reshetnikova,, and M. G. Safro. 1987. Preliminary crystallographic study of the phenylalanyl-tRNA synthetase from Thermus thermophilus HB8.;. Mol. Biol. 198: 555 556.
69. Cherniack, A. D.,, G. Garriga,, J. D. J. Kittle,, R. A. Akins,, and A. M. Larabowirz. 1990. Function of neurospora mitochondrial tyrosyl-tRNA synthetase in RNA splicing requires an idiosyncratic domain not found in other synthetases. Cell 62: 745 755.
70. Chow, C. M.,, R. L. Metzenberg,, and U. L. RajBhandary. 1989. Nuclear gene for mitochondrial leucyl-tRNA synthetase of Neurospora crassa: isolation, sequence, chromosomal mapping, and evidence that the leu-S locus specifies structural information. Mol. Cell. Biol. 9: 4631 4644.
71. Chow, C. M.,, and U. L. RajBhandary. 1989. Regulation of the nuclear genes encoding the cytoplasmic and mitochondrial leucyl-tRNA synthetases of Neurospora crassa. Mol. Celt. Biol. 9: 4645 4652.
72. Chow, C. M.,, and U. L. RajBhandary. 1993. Saccharomyces cerevisiae cytoplasmic tyrosyl-tRNA synthetase gene: isolation by complementation of a mutant Escherichia coli suppressor tRNA defective in aminoacylation and sequence analysis. J. Biol. Chem. 268: 12855 12863.
73. Chow, K. C.,, and T. F. Wong. 1988. Cloning and nucleotide sequence of the structural gene coding for Bacillus subtilis tryptophanyl-tRNA synthetase. Gene 73: 537 543.
74. Cigan, A. M.,, L. Feng,, and T. F. Donahue. 1988. tRNA Met1 functions in directing the scanning ribosome to the start site of translation. Science 242: 93 97.
75. Cirakoglu, B.,, and J. P. Waller. 1985. Do yeast aminoacyl-tRNA synthetases exist as 'soluble' enzymes within the cytoplasm? Eur.J. Biochem. 149: 353 361.
76. Cirakoglu, A.,, and J. P. Waller. 1985. Leucyl-tRNA and lysyl- tRNA synthetases, derived from the high- Mr complex of sheep liver, are hydrophobic proteins. Eur. J. Biochem. 151: 101 110.
77. Clark, R. L.,, and F. C. Neidhardt. 1990. Roles of the two lysyl-tRNA synthetases of Escherichia coli: analysis of nucleotide sequences and mutant behavior. J. Bacteriol. 172: 3237 3243.
78. Clarke, N. D.,, D. C. Lien,, and P. Schimmel. 1988. Evidence from cassette mutagenesis for a structure-function motif in a protein of unknown structure. Science 240: 521 523.
79. Clemens, M. J. 1990. Does protein phosphorylation play a role in translational control by eukaryotic aminoacyl-tRNA synthetases? Trends Biochem Sci. 15: 172 175.
80. Cole, F. X.,, and P. Schimmel. 1970. On the rate law and mechanism of the adenosine triphosphate-pyrophosphate isotope exchange reaction of amino acyl transfer ribonucleic acid synthetases. Biochemistry 9: 480 489.
81. Coleman, D. E.,, and C. W. Carter. 1984. Crystals of Bacillus stearothermophilus tryptophanyl-tRNA synthetase containing enzymatically formed acyl transfer product tryptophanyl-ATP, an active site marker for the 3' CCA terminus of tryptophanyl- tRNA Tnp. Biochemistry 23: 381 385.
82. Collins, R. A.,, and A. M. Lambowitz. 1985. RNA splicing in Neurospora crassa mitochondria: defective splicing of mitochondrial mRNA precursors in the nuclear mutant cyt-18-l. J. Mol. Biol. 184: 413 428.
83. Cruzen, M. E.,, and S. M. Arfin. 1991. Nucleotide and deduced amino acid sequence of human threonyl-tRNA synthetase reveals extensive homology to the Escherichia coli and yeast enzymes. J. Biol. Chem. 266: 9919 9923.
84. Csank, C.,, and D. W. Martindale. 1992. Isoleucyl-tRNA synthetase from the ciliated protozoan Tetrahymena thermophila. DNA sequence, gene regulation, and leucine zipper motifs. J. Biol. Chem. 267: 4592 4599.
85. Cusack, S.,, C. Berthet-Colominas,, M. Hartlein,, N. Nassar,, and R. Leberman. 1990. A second class of synthetase structure revealed by X-ray analysis of Escherichia coli seryl-tRNA synthetase at 2.5 A. Nature (London) 347: 249 255.
86. Cusack, S.,, M. Hartlein,, and R. Leberman. 1991. Sequence, structural and evolutionary relationships between class 2 aminoacyl-tRNA synthetases. Nucleic Acids Res. 19: 3489 3498.
87. Dang, C. V.,, and J. A. Traugh. 1989. Phosphorylation of threonyl- and seryl-tRNA synthetases by cAMP-dependent protein kinase: a possible role in the regulation of P 1, P 4-bis(5'- adenosy))-tetraphosphate (Ap 4A) synthesis. J. Biol. Chem. 264: 5861 5865.
88. Dardel, R.,, G. Fayat,, and S. Blanquet. 1984. Molecular cloning and primary structure of the Escherichia coli methionyl-tRNA synthetase gene. J. Bacteriol. 160: 1115 1122.
88a.. Delanie, M.,, A. Poterszman,, S. Nikonov,, M. Garber,, D. Moras,, and J. C. Thierry. 1994. Crystal structure of a prokaryotic aspartyl tRNA-synthetase. EMBO J. 13: 3219 3229.
89. Despons, L.,, R. Senger,, F. Fasiol,o, and P. Walter. 1992. Binding of yeast tRNA M" anticodon by the cognate methionyl-tRNA synthetase involves at least two independent peptide regions. J. Mol. Biol. 225: 897 907.
90. Despons, L.,, P. Walter,, R. Senger,, J. P. Ebel,, and F. Fasiolo. 1991. Identification of potential amino acid residues supporting anticodon recognition in yeast methionyl-tRNA synthetase. FEBS Lett. 289: 217 220.
91. Dessen, P.,, S. Blanquet,, G. Zaccai, and R Jacrot. 1978. Anticooperative binding of initiator transfer RNA Met to methionyl-transfer RNA synthetase from Escherichia coli: neutron scattering studies. J. Mol. Biol. 126: 293 313.
92. Dessen, P.,, A. Ducruix,, C. Hountondji,, R. P. May,, and S. Blanquet. 1983. Neutron scattering study of the binding of tRNA Phe to Escherichia coli phenylalanyl-tRNA synthetase. Biochemistry 22: 281 284.
93. Dessen, P.,, A. Ducruix,, R. P. May,, and S. Blanquet. 1990. Low-resolution structure of the tetrameric phenylalanyl-tRNA synthetase from Escherichia coli. A neutron small-angle scattering study of hybrids composed of protonated and deuterated promoters. Biochemistry 29: 3039 3046.
94. Dessen, P.,, G. Fayat,, G. Zaccai,, and S. Blanquet. 1982. Neutron-scattering studies of the binding of initiator tRNA Met to Escherichia coli trypsin-modified methionyl-tRNA synthetase. J. Mol. Biol. 154: 603 613.
95. Dessen, P.,, G. Zaccai,, and S. Blanquet. 1981. Identification by neutron scattering of tRNA-induced aggregation of Escherichia coli tyrosyl-tRNA synthetase. Biochimie (Paris) 63: 811 813.
96. Dessen, P.,, G. Zaccai,, and S. Blanquet. 1982. Neutron scattering studies of Escherichia coli tyrosyl-tRNA synthetase and of its interaction with tRNA Tyr. J. Mol. Biol. 159: 651 664.
97. Dcutscher, M. P. 1984. The eucaryotic aminoacyl-tRNA synthetase complex: suggestions for its structure and function. J. Cell. Biol. 99: 373 377.
98. Dever, T. E.,, L. Feng,, R. C. Wek,, T. F. Donahue,, and A. G. Hinnebusch. 1992. Phosphorylation of initiation factor 2 α by protein kinase GCN2 mediates gene-specific translational control of GCN4 in yeast. Cell 68: 585 596.
99. Diatewa, M.,, and A. J. C. Stahl. 1980. Purification and subunit structure of mitochondrial phenylalanyl-tRNA synthetase from yeast. Biochim. Biophys. Res. Commun. 1980: 189 198.
100. Dickson, L. A.,, and P. R. Schimmel. 1975. Structure of transfer RNA-aminoacy) transfer RNA synthetase complexes investigated by nuclease digestion. Arch. Biochem. Biophys. 167: 638 645.
101. Dignam, J. D.,, S. S. Dignam,, and L. L. Brumley. 1991. Alanyl-tRNA synthetase from Escherichia coli, Bombyx mori and Ratus ratus. Existence of common structural features. Eur.J. Biochem. 198: 201 210.
102. Dignam, S. S.,, and J. D. Dignam. 1984. Glycyl- and alanyl-tRNA synthetases from Bombyx mori. Purification and properties. J. Biol. Chem. 259: 4043 4048.
103. Ducruix, A.,, N. Hounwanou,, J. Reinbolt,, Y. Boulanger, and Blanquet. 1983. Purification and reversible subunit dissociation of overproduced Escherichia coli phenylalanyl-tRNA synthetase. Biochim. Biophys. Acta 741: 244 250.
104. Edwards, H.,, and P. Schimmel. 1987. An E. coli aminoacyl-tRNA synthetase can substitute for yeast mitochondrial enzyme function in vivo. Cell 51: 643 649.
105. Edwards, H.,, and P. Schimmel. 1990. A bacterial amber suppressor in Saccharomyces cerevisiae is selectively recognized by a bacterial aminoacyl-tRNA synthetase. Mol. Cell. Biol. 10: 1633 1641.
106. Edwards, H.,, V. Trezeguet,, and P. Schimmel. 1991. An Escherichia coli tyrosine transfer RNA is a leucine-specific transfer RNA in the yeast Saccharomyces cerevisiae. Proc. Natl. Acad. Set. USA 88: 1153 1156.
107. Eiler, S.,, M. Boeglin,, F. Martin,, G. Eriani,, J. Gangloff,, J. C. Thierry,, and D. Moras. 1992. Crystallization of aspartyl-tRNA synthetase-tRNA A,P complex from Escherichia coli and first crystallographic results. J. Mol. Biol. 224: 1171 1173.
108. Englisch, U.,, S. Englisch,, P. Markmeyer,, J. Schischkoff,, H. Sternbach,, H. Kratzin,, and F. Cramer. 1987. Structure of the yeast isoleucyl-tRNA synthetase gene ( ILS1). DNA-sequence, amino- acid sequence of proteolytic peptides of the enzyme and comparison of the structure to those of other known aminoacyl-tRNA synthetases. Biol. Chem. Hoppe-Seyler 368: 971 979.
109. Eriani, G.,, M. Delarue,, O. Poch,, J. Gangloff,, and D. Moras. 1990. Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature (London) 347: 203 206.
110. Eriani, G.,, G. Dirheimer,, and J. Gangloff. 1989. Isolation and characterization of the gene coding for Escherichia coli arginyl-tRNA synthetase. Nucleic Acids Res. 17: 5725 5736.
111. Eriani, G.,, G. Dirheimer,, and J. Gangloff. 1990. Aspartyl-tRNA synthetase from Escherichia coli: cloning and characterisation of the gene, homologies of its translated amino acid sequence with asparaginyl- and lysyl-tRNA synthetases. Nucleic Acids Res. 18: 7109 7118.
112. Eriani, G.,, G. Dirheimer,, and J. Gangloff. 1990. Structure-function relationship of arginyl-tRNA synthetase from Escherichia coli: isolation and characterization of the argS mutation MA5002. Nucleic Acids Res. 18: 1475 1479.
113. Eriani, G.,, G. Dirheimer,, and J. Gangloff. 1991. Cysteinyl-tRNA synthetase: determination of the last E.coli aminoacyl-tRNA synthetase primary structure. Nucleic Acids Res. 19: 265 269.
114. Eriani, G.,, G. Prevost,, D. Kern,, P. Vincendon,, G. Dirheimer,, and J. Gangloff. 1991. Cytoplasmic aspartyl-tRNA synthetase from Saccharomyces cerevisiae. Study of its functional organisation by deletion analysis. Eur. J. Biochem. 200: 337 343.
115. Eriani, G.,, V. Schue,, G. Dirheimer,, and J. Gangloff. 1991. Etude de l'organisation fonctionnelle de l'aspartyl-tRNA synthetase de levure. Regard Biochimie 6: 49 50.
116. Fasiolo, F.,, N. Befort,, Y. Boulanger,, and J. P. Ebel. 1970. Purification et quelques proprietes de la phenylalanyl-tRNA synthetase de levure de boulangerie. Biochim. Biophys. Acta 217: 305 318.
117. Fasiolo, F.,, B. W. Gibson,, P. Waller,, B. Chatton,, K. Biemann,, and Y. Boulanger. 1985. Cytoplasmic methionyl-tRNA synthetase from bakers' yeast. A monomer with a post-translationally modified N-terminus. J. Biol. Chem. 260: 15571 15576.
118. Fasiolo, R.,, P. Remy,, J. Pouyet,, and J. P. Ebel. 1974. Yeast phenylalanyl-tRNA synthetase. Molecular weight and interaction with tRNA Phe and phenylalanine. Eur. J. Biochem. 50: 227 236.
119. Fayat, G.,, S. Blanquet,, P. Dessen,, G. Batelier,, and J. P. Waller. 1974. The molecular weight and subunit composition of phenylalanyl-tRNA synthetase from Escherichia coli K-12. Biochimie (Paris) 56: 35 41.
120. Fayat, G.,, M. Fromant,, and S. Blanquet. 1977. Couplings between the sites for methionine and adenosine 5'-triphosphate in the amino acid activation reaction catalyzed by trypsin-modified methionyl-transfer RNA synthetase from Escherichia coli. Biochemistry 16: 2570 2579.
121. Fayat, G.,, J. F. Mayaux,, C. Sacerdot,, M. Fromant,, M. Springer,, M. Gmnberg-Manago,, and S. Blanquet. 1983. Escherichia coli phenylalanyl-tRNA synthetase operon region. Evidence for an attenuation mechanism. Identification of the gene for the ribosomal protein L20. J. Mol. Biol. 171: 239 261.
122. Fayat, G.,, and J.-P. Waller. 1974. The mechanism of action of methionyl-tRNA synthetase from Escherichia coli'-equilibrium- dialysis studies on the binding of methionine, ATP and ATP-Mg 2+ by the native and trypsin-modified enzymes. Biochimie 56: 35 41.
123. Felter, S.,, M. Diatewa,, C. Schneider,, and A. J. C. Stahl. 1981. Yeast mitochondrial and cytoplasmic valyl-tRNA synthetases. Biochem. Biophys. Res. Commun. 98: 727 734.
124. Fersht, A. R. 1975. Demonstration of two active sites on a monomeric aminoacyl-tRNA synthetase. Possible roles of negative cooperativity and half-of-the-site reactivity in oligomeric enzymes. Biochemistry 14: 5 12.
125. Fersht, A. R. 1977. Editing mechanisms in protein synthesis: rejection of valine by the isoleucyl-tRNA synthetase. Biochemistry 16: 1025 1030.
126. Fersht, A. R., 1986. The charging of tRNA, p. 67 82. In Kirkwood,, Rosenberg,, and Galas (ed.), Accuracy in Molecular Processes. Chapman & Hall, New York..
127. Fersht, A. R. 1987. Dissection of the structure and activity of the tyrosyl-tRNA synthetase by site-directed mutagenesis. Biochemistry 26: 8031 8037.
128. Fersht, A. R. 1988. Relationships between apparent binding energies measured in site-directed mutagenesis experiments and energetics of binding and catalysis. Biochemistry 27: 1577 1580.
129. Fersht, A. R.,, J. S. Ashford,, C. J. Bruton,, R. Jakes,, G. L. E. Koch,, and B. S. Hartley. 1975. Active site titration and aminoacyl adenylate binding stoichiometry of aminoacyl-tRNA synthetases. Biochemistry 14: 1 4.
130. Fersht, A. R.,, and C. Dingwall. 1979. Cysteinyl-tRNA synthetase from Escherichia coli does not need an editing mechanism to reject serine and alanine. High binding energy of small groups in specific molecular interactions. Biochemistry 18: 1245 1249.
131. Fersht, A. R.,, and C. Dingwall. 1979. An editing mechanism for the methionyl-tRNA synthetase in the selection of amino acids in protein synthesis. Biochemistry 18: 1250 1256.
132. Fersht, A. R.,, and C. Dingwall. 1979. Establishing the misaminoacylation/deacylation of the tRNA pathway for the editing mechanism of prokaryotic and eukaryotic valyl-tRNA synthetases. Biochemistry 18: 1238 1245.
133. Fersht, A. R.,, J. Gangloff,, and G. Dirheimer. 1978. Reaction pathway and rate-determining step in the aminoacylation of tRNA A'B catalyzed by the arginyl-tRNA synthetase from yeast. Biochemistry 17: 3740 3746.
134. Fersht, A. R.,, and M. M. Kaethner. 1976. Enzyme hypersensitivity. Rejection of threonine by the valyl-tRNA synthetase by misaminoacylation and hydrolytic editing. Biochemistry 15: 3342 3346.
135. Fersht, A. R.,, J. W. Knill-Jones,, H. Bedouelle,, and G. Winter. 1988. Reconstruction by site-directed mutagenesis of the transition state for the activation of tyrosine by the tyrosyl-tRNA synthetase: a mobile loop envelopes the transition state in an induced-fit mechanism. Biochemistry 27: 1581 1587.
136. Fersht, A. R.,, R. J. Leatherbarrow,, and T. N. C. Wells. 1986. Binding energy and catalysis: a lesson from protein engineering of the ryrosyl tRNA synthetase. Trends Biochem. Sci. 11: 321 325.
137. Fersht, A. R.,, R. S. Mulvey,, and G. L. E. Koch. 1975. Ligand binding and enzymic catalysis coupled through subunits in tyrosyl-tRNA synthetase. Biochemistry 14: 13 18.
138. Fersht, A. R.,, J.-P. Shi,, J. KniU-jones,, D. M. Lowe,, A.J. Wilkinson,, D. M. Blow,, P. Brick,, P. Carter,, M. M. Y. Wave,, and G. Winter. 1985. Hydrogen bonding and biological specificity analysed by protein engineering. Nature (London) 314: 235 238.
139. Fen, R.,, and R. Knippers. 1991. The primary structure of human glutaminyl-tRNA synthetase. A highly conserved core, amino acid repeat regions, and homologies with translation elongation factors. J. Biol. Chem. 266: 1448 1455.
139a.. First, E. A.,, and A. R. Fersht. 1993. Mutational and kinetic analysis of a mobile loop in tyrosyl-tRNA synthetase. Biochemistry 32: 13658 13663.
140. Hcckner, J.,, H. H. Rasmussen,, and J. Justescn. 1991. Human interferon γ potently induces the synthesis of a 55-kDa protein (2) highly homologous to rabbit peptide chain release factor and bovine tryptophanyl-tRNA synthetase. Proc. Natl. Acad. Sci. USA 88: 11520 11524.
141. Forchhammer, K.,, W. Leinfelder,, and A. Bock. 1989. Identification of a novel translation factor necessary for the incorporation of selenocysteine into protein. Nature (London) 342: 453 456.
142. Fourmy, D.,, F. Dardel,, and S. Blanquet. 1993. Methionyl-tRNA synthetase zinc binding site. 3-D structure and homology with rubredoxin and gag retroviral proteins. J. Mol. Biol. 231: 1078 1089.
143. Fourmy, D.,, Y. Mcchulam,, S. Brume,, S. Blanquet,, and G. Fayat. 1991. Identification of residues involved in the binding of methionine by Escherichia coli methionyl-tRNA synthetase. FEBS Lett. 292: 259 263.
144. Fourmy, D.,, T. Meinnel,, Y. Mechulam,, and S. Blanquet. 1993. Mapping of the zinc binding domain of Escherichia coli methionyl- tRNA synthetase. J. Mol. Biol. 231: 1068 1077.
145. Fournier, M.,, C. Plantard,, B. Labouesse,, and J. Labouesse. 1987. Binding stoichiometry of tRNA Trp and tryptophanyl-tRNA synthetase from bovine pancreas under pH conditions of maximum activity. Analysis by ulrracentrifugation, fluorescence quenching and chemical modification. Biochim. Byophys. Acta 916: 350 357.
146. Francklyn, C.,, K. Musier-Forsyth,, and P. Schimmel. 1992. Small RNA helices as substrates for aminoacylation and their relationship to charging of transfer RNAs. Eur. J. Biochem. 206: 315 321.
147. Francklyn, C.,, and P. Schimmel. 1989. Aminoacylation of RNA minihelices with alanine. Nature (London) 337: 478 481.
148. Frecdman, R.,, B. Gibson,, D. Donovan,, K. Biemann,, S. Eisenbeis,, J. Parker,, and P. Schimmel. 1985. Primary structure of histidine-tRNA synthetase and characterization of hisS transcripts. J. Biol. Chem. 260: 10063 10068.
149. Ftrist, W. 1989. Mechanisms of aminoacyl-tRNA synthetases: critical consideration of recent results. Biochemistry 28: 6787 6795.
150. Frolova, L. Y.,, M. E. Dalphin,, J. Justesen,, R. J. Powell,, G. Drugcon,, K. K. McCaughan,, L. L. Kisselov,, W. P. Tate,, and A. L. Haenni. 1993. Mammalian polypetide chain release factor and tryptophanyl-tRNA synthetase are distinct proteins. EMBO J. 12: 4013 4019.
151. Frolova, L. Y.,, M. A. Sudomoina,, A. Y. Grigorieva,, O. L. Zinovieva,, and L. L. Kisselev. 1991. Cloning and nucleotide sequence of the structural gene encoding for human tryptophanyl-tRNA synthetase. Gene 109: 291 296.
151a.. Gagnon, Y.,, R. Breton,, H. Putzer,, M. Palchat,, M. Grunberg-Manago,, and J. Lapointe. 1994. Clustering and co-transcription of the Bacillus subtilis genes encoding the aminoacyl-tRNA synthetases specific for glutamate and for cysteine and the first enzyme for cysteine biosynthesis. J. Biol. Chem. 269: 7473 7482.
152. Gampel, A.,, and T. R. Cech. 1991. Binding of the CBP2 protein to a yeast mitochondrial group I intron requires the catalytic core of the RNA. Genes Dev. 5: 1870 1880.
153. Gampel, A.,, and A. Tzagoloff. 1989. Homology of aspartyl-and lysyl-tRNA synthetases. Proc. Natl. Acad. Sci. USA 8: 6023 6027.
154. Garber, M. B.,, A. D. Yaremchuk,, M. A. Tukalo,, S. P. Egorova,, C. Berthet-Colominas,, and R. Leberman. 1990. Crystals of seryl- tRNA synthetase from Thermits thermophilus preliminary crystallographic data. J. Mol. Biol. 213: 631 632.
155. Garber, M. B.,, A. D. Yaremchuk,, M. A. Tukalo,, S. P. Egorova,, N. P. Fomenkova,, and S. V. Nikonov. 1990. Crystals of threonyl-tRNA synthetase from Thermus thermophilus: preliminary crystallographic data. J. Mol. Biol. 214: 819 820.
156. Garcia, A.,, and R. Giege. 1992. Foorprinting evidence for close contacts of the yeast tRNA A,P anticodon region with asparryl-tRNA synthetase. Biochem. Biophys. Res. Comm. 186: 956 962.
157. Garcia, A.,, R. Giege,, and J. P. Behr. 1989. New photoactivatable structural and affinity probes of RNAs: specific features and applications for mapping of spermine binding sites in yeast tRNA Asp and interaction of this tRNA with yeast aspartyl- tRNA synthetase. Nucleic Acids Res. 18: 89 95.
158. Garret, M.,, B. Pajot,, V. Trezeguet,, J. Labouesse,, M. Merle,, J. C. Gandar,, J. P. Benedetto,, M. L. Sallafranque,, J. Alterio,, M. Gueguen,, C. Sargcr,, B. Labouesse,, and J. Bonnet. 1991. A mammalian tryptophanyl-tRNA synthetase shows little homology to prokaryotic synthetases but near identity with mammalian peptide chain release factor. Biochemistry 30: 7809 7817.
159. Gasparini, S.,, P. Vincendon,, G. Eriani,, J. Gangloff,, Y. Boulanger,, J. Reinbolt,, and D. Kern. 1991. Identification of structurally and functionally important histidine residues in cytoplasmic asparryl-tRNA synthetase from Saccharomyces cerevisiae. Biochemistry 30: 4284 4289.
160. Gatti, D. L.,, and A. Tzagoloff. 1991. Structure and evolution of a group of related aminoacyl-tRNA synthetases. J. Mol. Biol. 218: 557 568.
161. Gazeau, M.,, F. Delort,, P. Dessen, & Blanquet, and P. Plateau. 1992. Escherichia coli leucine-responsive regulatory protein (Lrp) controls lysyl-tRNA synthetase expression. FEBS Lett. 300: 254 258.
162. Ghosh, G.,, S. Brunie,, and L. H. Schulman. 1991. Transition state stabilization by a phylogenetically conserved tyrosine residue in methionyl-tRNA synthetase. J. Biol. Chem. 266: 17136 17141.
163. Ghosh, G.,, H. Y. Kim,, J.-P. Demaret,, S. Brunie,, and L. H. Schulman. 1991. Arginine 395 is required for efficient in vivo and in vitro aminoacylation of tRNAs by Escherichia coli methionyl- tRNA synthetase. Biochemistry 30: 11767 11774.
164. Ghosh, G.,, H. Pelka,, and L. H. Schulman. 1990. Identification of the tRNA anticodon recognition site of Escherichia coli methionyl-tRNA synthetase. Biochemistry 29: 2220 2225.
165. Ghosh, G.,, H. Pelka,, L. H. Schulman,, and S. Brunie. 1991. Activation of methionine by Escherichia coli methionyl-tRNA synthetase. Biochemistry 30: 9569 9575.
166. Giege, R.,, B. Jacrot,, D. Moras,, J. C. Thierry,, and G. Zaccai. 1977. A neutron investigation of yeast valyl-tRNA synthetase interaction with tRNAs. Nucleic Acids Res. 4: 2421 2427.
167. Giege, R.,, D. Kern,, J. P. Ebel,, H. Grosjean,, S. De Henau,, and H. Chantrenne. 1974. Incorrect aminoacylations involving tRNAs or valyl-tRNA synthetase from Bacillus stearothermophilus. Eur. J. Biochem. 45: 351 362.
168. Giege, R.,, B. Lorber,, R. Ebel,, D. Moras,, J. C. Thierry,, B. Jacrot,, and G. Zaccai. 1982. Formation of a catalytically active complex between tRNA AlP and asparryl-tRNA synthetase from yeast in high concentrations of ammonium sulphate. Biochimie (Paris) 64: 357 362.
168a.. Gillet, S., et al. Unpublished data.
169. Gish, G.,, and F. Eckstein. 1988. DNA and RNA sequence determination based on phosphorotioate chemistry. Science 240: 1520 1522.
170. Glaser, P.,, F. Kunst,, M. Debarbouille,, A. Vertes,, A. Danchin,, and R. Dedonder. 1991. A gene encoding a tyrosine-tRNA synthetase is located near ascS in Bacillus subtilis. 1: 251 261.
171. Goerlich, O.,, R. Foeckler,, and E. Holler. 1982. Mechanism of synthesis of adenosine(5')tetraphospho(5')adenosine (AppppA) by aminoacyl-tRNA synthetases. Eur. J. Biochem. 126: 135 142.
172. Grivell, L. A. 1990. Trailing the itinerant intron. Nature (London) 344: 110 111.
173. Guillemaut, P.,, A. Steinmetz,, G. Burkard,, and J. H. Weil. 1975. Aminoacylation of tRNA Leu species from Escherichia coli and from the cytoplasts and mitochondria of Phaseolus vulgaris by homologous and heterologous enzymes. Biochim. Biophys. Acta 378: 64 72.
174. Guillemaut, P.,, and J. H. Weil. 1975. Aminoacylation of Phaseolus vulgaris cytoplasmic, chloroplastic and mitochondrial tRNAs Met and of Escherichia coli tRNAs Met by homologous and heterologous enzymes. Biochim. Biophys. Acta 407: 240 248.
175. Guo, Q.,, R. A. Akins,, G. Garriga,, and A. M. Lambowitz. 1991. Structural analysis of the Neurospora mitochondrial large rRNA intron and construction of a mini-intron that shows protein-dependent splicing. J. Biol. Chem. 266: 1809 1819.
176. Guo, Q. B.,, and A. M. Lambowitz. 1992. A tyrosyl-transfer RNA synthetase binds specifically to the group-I intron catalytic core. Genes Dev. 6: 1357 1372.
177. Hall, C. V.,, M. VanClccmpput,, K. H. Muench,, and C. Yanofsky. 1982. The nucleotide sequence of the structural gene for Escherichia coli tryptophanyl-tRNA synthetase. J. Biol. Chem. 257: 6132 6136.
178. Hartlein, M.,, R. Frank,, and D. Madern. 1987. Nucleotide sequence of Escherichia coli valyl-tRNA synthetase gene valS. Nucleic Acids Res. 15: 9081 9082.
179. Hartlein, M.,, and D. Madern. 1987. Molecular cloning and nucleotide sequence of the gene for Escherichia coli leucyl-tRNA synthetase. Nucleic Acids Res. 15: 10199 10210.
180. Hartlein, M.,, D. Madern,, and R. Leberman. 1987. Cloning and characterization of the gene for Escherichia coli seryl-tRNA synthetase. Nucleic Acids Res. 15: 1005 1017.
181. Hasegawa, T.,, H. Himeno,, H. Ishikura,, and M. Shimizu. 1989. Discriminator base of tRNA AsP is involved in amino acid acceptor activity. Biochem. Biophys. Res. Comm. 163: 1534 1538.
182. Hasegawa, T.,, M. Miyano,, H. Himeno,, Y. Sano,, K. Kimura,, and M. Shimizu. 1992. Identity elements of E. coli threonine tRNA. Biochem. Biophys. Res. Commun. 184: 478 484.
183. Hayase, Y.,, M. Jahn,, M. J. Rogers,, L. A. Sylvers,, M. Koizumi,, H. Inoue,, E. Ohtsuka,, and D. Soil. 1992. Recognition of bases in Escherichia coli tRNA Gln by glutaminyl-tRNA synthetase: a complete identity set. EMBO J. 11: 4159 4165.
184. Heck, J. D.,, and G. W. Hatfield. 1988. Valyl-tRNA synthetase gene of Escherichia coli K12. Primary structure and homology within a family of aminoacyl-tRNA synthetases. J. Biol. Chem. 263: 868 877.
185. Heider, J.,, C. Baron,, and A. Bock. 1992. Coding from a distance: dissection of the mRNA determinants required for the incorporation of selenocysteine into protein. EMBO J. 11: 3759 3766.
186. Helene, C.,, F. Brun,, and M. Yaniv. 1971. Fluorescence studies of interactions between Escherichia coli valyl-tRNA synthetase and its substrates. J. Mol. Biol. 58: 349 365.
187. Henkin, T. M.,, B. L. Glass,, and F. J. Grundy. 1992. Analysis of the Bacillus subtilis tyrS gene: conservation of a regulatory sequence in multiple tRNA synthetase genes. J. Bacterial. 174: 1299 1306.
188. Herbert, C. J.,, M. Labouesse,, G. Dujardin,, and P. P. Slonimski. 1988. The NAM2 proteins from S. cerevisiae and S. douglasii ate mitochondrial leucyl-tRNA synthetases, and are involved in mRNA splicing. EMBO J. 7: 473 483.
189. Hill, K.,, and P. Schimmel. 1989. Evidence that the 3' end of a tRNA binds to a site in the adenylate synthesis domain of an aminoacyl-tRNA synthetase. Biochemistry 28: 2577 2586.
190. Himeno, H.,, T. Hasegawa,, T. Ueda,, K. Watanabe,, K.-I. Miura,, and M. Shimizu. 1989. Role of the extra G-C pair at the end of the acceptor stem of tRNA His in aminoacylation. Nucleic Acids Res. 17: 7855 7863.
191. Hinchman, S. K.,, S. Henikoff,, and S. M. Schuster. 1992. A relationship between asparagine synthetase A and aspartyl tRNA synthetase. J. Biol. Chem. 267: 144 149.
192. Ho, C. K.,, and A. R. Fersht. 1986. Internal thermodynamics of position 51 mutants and natural variants of tyrosyl-tRNA synthetase. Biochemistry 25: 1891 1897.
193. Hoang, B. M. C.,, P. Dessen,, and J.-M. Schmitter. 1994. Fast protein sequence verification by matrix assisted laser desorption mass spectrometric analysis of whole enzymatic digests. C. R. Acad. Sci. Paris Life Sci. 317: 5 10.
194. Hoben, P.,, N. Royal,, A. Cheung,, F. Yamao,, K. Biemann,, and D. Soil. 1982. Escherichia coli glutaminyl-tRNA synthetase. II. Characterization of the glnS gene product. J. Biol. Chem. 257: 11644 11650.
195. Hohmann, S.,, and J. M. Thevelein. 1992. The cell division cycle gene CDC60 encodes cytosolic leucyl-transfer RNA synthetase in Saccharomyces cerevisiae. Gene 120: 43 49.
196. Holler, E.,, B. Hammer-Raber,, T. Hanke,, and P. Bartmann. 1975. The catalytic mechanism of aminoacid:tRNA ligases. Synergism and formation of the ternary enzyme-aminoacid-ATP complex. Biochemistry 14: 2496 2503.
197. Holler, E.,, P. Rainey,, A. Orme,, E. L. Bennett,, and M. Calvin. 1973. On the active site of isoleucyl transfer ribonucleic acid synthetase of Escherichia coli B. Biochemistry 12: 1150 1159.
198. Hopfield, J. J. 1974. Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc. Natl. Acad. Sci. USA 71: 4135 4139.
199. Hou, Y.-M.,, and P. Schimmel. 1988. A simple structural feature is a major determinant of the identity of a transfer RNA. Nature (London) 333: 140 145.
200. Hou, Y. M.,, and P. Schimmel. 1989. Evidence that a major determinant for the identity of a transfer RNA is conserved in evolution. Biochemistry 28: 6800 6804.
201. Hou, Y. M.,, K. Shiba,, C. Mottes,, and P. Schimmel. 1991. Sequence determination and modeling of structural motifs for the smallest monomeric aminoacyl-tRNA synthetase. Proc. Natl. Acad. Sci. USA 88: 976 980.
202. Hountondji, C.,, S. Blanquet,, and F. Lederer. 1985. Methionyl-tRNA synthetase from Escherichia coli. Primary structure at the binding site for the 3'-end of tRNA 0* 1". Biochemistry 24: 1175 1180.
203. Hountondji, C.,, P. Dessen,, and S. Blanquet. 1986. Sequence similarities among the family of aminoacyl-tRNA synthetases. Biochimie (Paris) 68: 1071 1078.
204. Hountondji, C.,, F. Lederer,, P. Dessen,, and S. Blanquet. 1986. Escherichia coli tyrosyl- and methionyl-tRNA synthetases display sequence similarity at the binding site for the 3'-end of tRNA. Biochemistry 25: 16 21.
205. Hountondji, C.,, J. M. Schmitter,, C. Beauvallet,, and S. Blanquet. 1990. Mapping of the active site of Escherichia coli methionyl-tRNA synthetase: identification of amino acid residues labeled by periodate-oxidized tRNA (fMet) molecules having modified lengths at the 3'-acceptor end. Biochemistry 29: 8190 8198.
206. Hountondji, C.,, J. M. Schmitter,, T. Fukui,, M. Tagaya,, and S. Blanquet. 1990. Affinity labeling of aminoacyl-tRNA synthetases with adenosine triphosphopyridoxal: probing Lys-Met-Ser-Lys-Ser signature sequence as the ATP-binding site in Escherichia coli methionyl- and valyl-tRNA synthetases. Biochemistry 29: 11266 11273.
207. Hsieh, S.-L.,, and R. D. Campbell. 1991. Evidence that gene G7a in a human major histocompatibility complex encodes valyl- tRNA synthetase. Biochem. J. 278: 809 816.
208. Hugues, J.,, and G. Mellows. 1980. Interaction of pseudomonic acid A with Escherichia coli B isoleucyl-tRNA synthetase. Biochem.J. 191: 209 219.
209. Hyafil, E.,, Y. Jacques,, G. Fayat,, M. Fromant,, P. Dessen,, and S. Blanquet. 1976. Methionyl-tRNA synthetase from Escherichia coli: active stoichiometry and stopped-flow analysis of methionyl adenylate formation. Biochemistry 15: 3678 3685.
210. Igloi, G. L.,, F. von der Haar,, and F. Cramer. 1977. Hydrolytic action of aminoacyl-tRNA synthetases from baker's yeast. Chemical proofreading of Thr-tRNA Val by valyl-tRNA synthetase studied with modified tRNA Val and amino acid analogues. Biochemistry 16: 1696 1702.
211. Inokuchi, H.,, P. Hoben,, F. Yamao,, H. Ozeki,, and D. Söll. 1984. Transfer RNA mischarging mediated by a mutant Escherichia coli glutaminyl-tRNA synthetase. Proc. Natl. Acad. Sci. USA 81: 5076 5080.
212. Irwin, M. J.,, J. Nyborg,, B. R. Reid,, and D. M. Blow. 1976. The crystal structure of tyrosyl-tRNA synthetase at 2.7 A resolution. J. Mol. Biol. 105: 577 586.
213. Isaki, L.,, R. Beers,, and H. C. Wu. 1990. Nucleotide sequence of the Pseudomonas fluorescens signal peptidase II gene (Isp) and flanking genes. J. Bacteriol. 172: 6512 6517.
214. Jacobo-Molina, A.,, R. Peterson,, and D. C. H. Yang. 1989. cDNA sequence, predicted primary structure, and evolving amphiphilic helix of human aspartyl-tRNA synthetase. J. Biol. Chem. 264: 16608 16612.
215. Jacobsen, J. R.,, J. R. Prudent,, L. Kochersperger,, S. Yonkovitch,, and P. G. Schultz. 1992. An efficient antibody-catalyzed aminoacylation reaction. Science 256: 365 367.
216. Jacques, Y.,, and S. Blanquet. 1977. Interrelation between transfer RNA and amino-acid-activating sites of methionyl transfer RNA synthetase from Escherichia coli. Eur. J. Biochem. 79: 433 441.
217. Jahn, M.,, M. J. Rogers,, and D. S6U. 1991. Anticodon and acceptor stem nucleotides in tRNA Gln are major recognition elements for E. coli glutaminyl-tRNA synthetase. Nature (London) 352: 258 260.
218. Jakes, R.,, and A. R. Fersht. 1975. Tyrosyl-tRNA synthetase from Escherichia coli. Stoichiometry of ligand binding and half-of-the-sites reactivity in aminoacylation. Biochemistry 14: 3344 3350.
219. Jakubowski, H. 1990. Proofreading in vivo: editing of homocysteine by methionyl-tRNA synthetase in Escherichia coli. Proc. Natl. Acad. Sci. USA 87: 4504 4508.
220. Jakubowski, H. 1991. Proofreading in vivo: editing of homocysteine by methionyl-tRNA synthetase in the yeast Saccharomyces cerevisiae. EMBO J. 10: 593 598.
221. Jakubowski, H.,, and A. R. Fersht. 1981. Alternative pathways for editing non-cognate amino acids by aminoacyl-tRNA synthetases. Nucleic Acids Res. 9: 3105 3117.
222. Jakubowski, H.,, and E. Goldman. 1992. Editing of errors in selection of amino acids for protein synthesis. Microbiol. Rev. 56: 412 429.
223. Jasin, M.,, L. Regan,, and P. Schimmel. 1983. Modular arrangement of functional domains along the sequence of an aminoacyl tRNA synthetase. Nature (London) 306: 441 447.
224. Jasin, M.,, L. Regan,, and P. Schimmel. 1984. Dispensable pieces of an aminoacyl tRNA synthetase which activate the catalytic site. Cell 36: 1089 1095.
225. Jenal, U.,, T. Rechsteiner,, P. Y. Tan,, E. Buehlmann,, L. Meile,, and T. Leisinger. 1991. Isoleucyl-tRNA synthetase of Methanobacterium thermoautotrophicum Marburg. Cloning of the gene, nucleotide sequence, and localization of a base change conferring resistance to pseudomonic acid. J. Biol. Chem. 266: 10570 10577.
226. Jinks-Robertson, S.,, and M. Nomura,. 1987. Ribosomes and tRNA, p. 1358 1385. In F. C. Neidhardt,, J. L. Ingraham,, K. B. Low,, B. Magasanik,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. American Society for Microbiology, Washington, D.C..
227. Joachimiak, A.,, and J. Barciszewski. 1980. Amino acid:tRNA ligases (EC 6.1.1.-). FEBS Lett. 119: 201 211.
228. Jones, D. H.,, A. J. McMillan,, and A. R. Fersht. 1985. Reversible dissociation of dimeric tyrosyl-tRNA synthetase by mutagenesis at the subunit interface. Biochemistry 24: 5852 5857.
229. Jones, M. D.,, D. M. Lowe,, T. Borgford,, and A. R. Fersht. 1986. Natural variation of tyrosyl-tRNA synthetase and comparison with engineered mutants. Biochemistry 25: 1887 1891.
230. Jordana, X.,, B. Chatton,, M. Paz-Weisshaar,, J. M. Buhler,, F. Cramer,, J. P. Ebel,, and F. Fasiolo. 1987. Structure of the yeast valyl-tRNA synthetase gene ( VAS1) and the homology of its translated amino acid sequence with Escherichia coli isoleucyl-tRNA synthetase. J. Biol. Chem. 262: 7189 7194.
231. Jukes, T. H.,, and S. Osawa. 1990. The genetic code in mitochondria and chloroplasts. Experientia 46: 1117 1126.
232. Kalogerakos, T.,, P. Dessen,, G. Fayat,, and S. Blanquet. 1980. Proteolytic cleavage of methionyl transfer ribonucleic acid synthetase from Bacillus stearothermophilus: effects on activity and structure. Biochemistry 19: 3712 3723.
233. Kamper, U.,, U. Ruck,, A. D. Cherniack,, and A. M. Lambowitz. 1992. The mitochondrial tyrosyl-tRNA synthetase of Podospora anserina is a bifunctional enzyme active in protein synthesis and RNA splicing. Mol. Cell. Biol. 12: 499 511.
234. Kast, P.,, and H. Hennecke. 1991. Amino acid substrate specificity of Escherichia coli phenylalanyl-tRNA synthetase altered by distinct mutations. J. Mol. Biol. 222: 99 124.
235. Kast, P.,, B. Keller,, and H. Hennecke. 1992. Identification of the pheSS mutation which causes thermosensitivity of Escherichia coli mutant NP37. J. Bacterial. 174: 1686 1689.
236. Kast, P.,, C. Wehrli,, and H. Hennecke. 1991. Impaired affinity for phenylalanine in Escherichia coli phenylalanyl-tRNA synthetase mutant caused by Gly-to-Asp exchange in motif 2 of class II tRNA synthetases. FEBS Lett. 293: 160 163.
237. Kawakami, K.,, K. Ito,, and Y. Nakamura. 1992. Differential regulation of 2 genes encoding lysyl-transfer RNA synthetases in Escherichia cofr-lysU-constitutive mutations compensate for a lysS null mutation. Mol. Microbiol. 6: 1739 1745.
238. Kawakami, K.,, Y. H. Joensson,, G. R. Bjoerk,, H. Ikeda,, and Y. Nakamura. 1988. Chromosomal location and structure of the operon encoding peptide-chain-release factor 2 of Escherichia coli. Proc. Natl. Acad. Sci. USA 85: 5620 5624.
239. Kawakami, K.,, S. Naito,, N. Inoue,, Y. Nakamura,, H. Ikeda,, and H. Uchida. 1989. Isolation and characterization of herC, a mutation of Escherichia coli affecting maintenance of ColEl. Mol. Gen. Genet. 219: 333 340.
240. Kawakami, K.,, and S. Nakamura. 1990. Autogenous suppression of an opal mutation in the gene encoding peptide chain release factor 2. Proc. Natl. Acad. Sci. USA 87: 8432 8436.
241. Kawakami, M.,, and K. Nishio. 1985. Subunit structure and tRNA-binding properties of Bombyx mori glycyl-tRNA synthetase. J. Biochem. 98: 177 186.
242. Keller, B.,, P. Kast,, and H. Hennecke. 1992. Cloning and sequence analysis of the phenylalanyl-tRNA synthetase genes (pheST) from Thermus thermophilus. FEBS Lett. 301: 83 88.
243. Kellerman, O.,, H. Tonetti,, A. Brevet,, M. Mirande,, J. P. Pailliez,, and J. P. Waller. 1982. Macromolecular complexes from sheep and rabbit containing seven aminoacyl-tRNA synthetases. Species specificities of the polypeptide composition.;. Biol. Chem. 257: 11041 11048.
244. Kerjan, P.,, M. Triconnet,, and J. P. Waller. 1992. Mammalian prolyl-tRNA synthetase corresponds to the -150 kDA subunit of the high-Mr aminoacyl-tRNA synthetase complex. Biochimie (Paris) 74: 192 205.
245. Kern, D.,, R. Giege,, and J. P. Ebel. 1972. Incorrect aminoacylations catalysed by the phenylalanyl- and valyl-tRNA synthetase from yeast. Eur. J. Biochem. 31: 148 155.
246. Kern, D.,, and J. Lapointe. 1979. Glutamyl transfer ribonucleic acid synthetase of Escherichia coli: study of the interactions with its substrates. Biochemistry 18: 5809 5818.
247. Kern, D.,, B. Lorber,, Y. Boulanger,, and R. Giege. 1985. A peculiar property of aspartyl-tRNA synthetase from baker's yeast: chemical modification of the protein by the enzymatically synthesized aminoacyl adenylate. Biochemistry 24: 1321 1332.
248. Kern, D.,, H. Mejdoub,, P. Vincendon,, Y. Boulanger,, and J. Reinbolt. 1990. The three cysteine residues of cytoplasmic aspartyl-tRNA synthetase from Saccharomyces cerevisiae are not essential for its activity. Eur. J. Biochem. 193: 97 103.
249. Kim, S. H. 1978. Three-dimensional structure of transfer RNA and its functional implications, p. 279 315. In Advances in Enzymology and Related Areas of Molecular Biology. John Wiley and Sons, Inc., New York..
250. Kim, S. H.,, and P. Schimmel. 1992. Functional independence of microhelix aminoacylation from anticodon binding in a class-I transfer RNA synthetase. J. Biol. Chem. 267: 15563 15567.
251. Kisselev, L. L.,, O. O. Favorova,, M. K. Nurbekov,, S. G. Dmitriyenko,, and W. A. Engelhardt. 1981. Bovine tryptophanyl-tRNA synthetase. A zinc metalloenzyme. Eur. J. Biochem. 120: 511 517.