1887

Chapter 16 : The tRNA Identity Problem: Past, Present, and Future

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

The tRNA Identity Problem: Past, Present, and Future, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818333/9781555810733_Chap16-1.gif /docserver/preview/fulltext/10.1128/9781555818333/9781555810733_Chap16-2.gif

Abstract:

This chapter describes the current understanding of the structural features in tRNA that determine the specificity of the interaction with the aminoacyl-tRNA synthetase (aaRS), and outlines future research in this area. Early methods of sequence comparison to predict tRNA identity determinants relied only on the structural similarities among isoacceptor tRNAs discerned by visual inspection of the sequences. Positions where the same nucleotide occurs in all isoacceptor species were considered more predictive of tRNA identity than were positions where the nucleotide differed among the isoacceptors. The newer approach relies on computer analysis of tRNA sequences and identifies not only conserved nucleotide positions within a tRNA acceptor group, but also positions with more than one nucleotide that differ from the corresponding nucleotide positions in other tRNA acceptor groups. In addition, because the between-group variation is considered, the newer method provides information for single tRNA sequences and can perform impressively when only two tRNA isoacceptor sequences are known. The chapter summarizes experiments that define specificity determinants in tRNAs for several amino acids, and includes illustrations of computer predictions. The implications of the study results are discussed, and the chapter closes with an outline of future prospects.

Citation: McClain W. 1995. The tRNA Identity Problem: Past, Present, and Future, p 335-347. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch16

Key Concept Ranking

RNA Polymerase
0.5365854
Transfer RNA
0.4942601
0.5365854
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

General tRNA structures. (A) Cloverleaf structure with bases replaced by numbers indicating the standard 76 nucleotide positions. The constant nucleotides are noted. The • symbol indicates Watson-Crick base pairings, and the thin line, other base pairings. B: L-shaped structure with shading of bases 16, 17, 20, 59, and 60 of the variable pocket (VP). Adapted from references and , with permission.

Citation: McClain W. 1995. The tRNA Identity Problem: Past, Present, and Future, p 335-347. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Histogram showing predicted determinants of tRNA identity obtained by analysis of 67 tRNA sequences. Histograms are shown for tRNA, which has five isoacceptors (A); tRNA, which has two isoacceptors (B); and tRNA, which has one acceptor (C). Frequency of correlation on the vertical axis is a function of tRNA position on the horizontal axis. Cloverleaf parts are indicated on the horizontal axis. A = acceptor stem; D = D stem; C = anticodon stem; X = anticodon; and T = T stem. The middle anticodon nucleotide, residue 35, is indicated. The base and position number of an established specificity determinant is indicated above each data bar. Adapted from references , and , with permission.

Citation: McClain W. 1995. The tRNA Identity Problem: Past, Present, and Future, p 335-347. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Cloverleaf arrangement of nucleotide sequences of tRNAs corresponding to amber suppressors, indicating standard position numbers for Gly (A), Phe (B), and Lys (C). Nucleotide modifications are not indicated. The ′ symbol represents an alignment gap. Adapted from reference , with permission.

Citation: McClain W. 1995. The tRNA Identity Problem: Past, Present, and Future, p 335-347. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Comparison of composite nucleotide sequences of amber suppressors representing tRNA-like U73 mutants of tRNA and tRNA and isoacceptors of tRNA (A); non-tRNA-like U73 mutants of tRNA and tRNA (C); and nucleotides common to A and C (B). The positions where the two composites do not contain a common nucleotide are underlined and marked with the * symbol in (B). Incompletely specified nucleotides are designated as M = AC; R = AG; W = AU; S = CG; Y = CU; K = GU; V = ACG; H = ACU; D = AGU; B = CGU; and N = ACGU. An alignment gap is indicated by the ′ symbol. Lowercase letters indicate the position contains either an alignment gap or the indicated nucleotide. Adapted from reference , with permission.

Citation: McClain W. 1995. The tRNA Identity Problem: Past, Present, and Future, p 335-347. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Histogram showing percentage of Ala inserted in suppressed protein by mutants of amber-suppressor tRNA. Panel A shows wild-type G3•U70 and the 15 possible base 3-base 70 mutant combinations. Panel B shows wild-type G3•U70, several mutants with a G•U wobble pair at position 2•71 or position 4•69, and a mutant with G3•U70 flanked by mutant base pairs. Reproduced from reference , with permission.

Citation: McClain W. 1995. The tRNA Identity Problem: Past, Present, and Future, p 335-347. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Model of variable pocket of yeast tRNA. The acceptor stem and T stem and part of the D loop are shown as viewed by looking down from a point behind and to the right of the acceptor stem, as shown in Fig. 1B . Bases are represented as hatched circles, phosphates and sugars are shown as open circles, and hydrogen bonds are shown as dashed lines. Open arrows indicate points where the polynucleotide chain continues to other parts of the molecule. Note that the variable pocket is segregated from the constant nucleotides 18, 19, 54, 55, 56, and 58. Reproduced from reference , with permission.

Citation: McClain W. 1995. The tRNA Identity Problem: Past, Present, and Future, p 335-347. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

Structure of small RNAs, including amber- suppressor tRNA (A), deleted derivative lacking the D region (B), and minihelix RNA (C). Modified nucleotides are not indicated. The ′ symbol indicates a deleted nucleotide. Adapted from reference , with permission.

Citation: McClain W. 1995. The tRNA Identity Problem: Past, Present, and Future, p 335-347. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818333.chap16
1. Atilgan, X.,, H. B. Nicholas, Jr.,, and W. H. McClain. 1986. A statistical method for correlating tRNA sequence with amino acid specificity. Nucleic Acids Res. 14: 375 380.
2. Björk, G. R., 1992. The role of modified nucleosides in tRNA interactions, p. 23 85. In D. L. Hatfield,, B. J. Lee,, and R. M. Pirtle (ed.), Transfer RNA in Protein Synthesis. CRC Press, Boca Raton, Fla..
3. Cavarelli, J.,, and D. Moras. 1993. Recognition of tRNAs by aminoacyl-tRNA synthetases. Fed. Am. Soc. Exp. Biol. J. 7: 79 86.
4. Chambers, R. W. 1971. On the recognition of tRNA by its aminoacyl-tRNA ligase. Prog. Nucleic Acid Res. Mol. Biol. 11: 489 525.
5. Chattapadhyay, R.,, H. Pelka,, and L. H. Schulman. 1990. Initiation of in vivo protein synthesis with non-methionine amino acids. Biochemistry 29: 4263 4268.
6. Crick, F. H. C., 1957. The structure of nucleic acids and their role in protein synthesis, p. 25 26. In E. M. Crook (ed.), Biochemical Society Symposium, No. 14. Cambridge University Press, Cambridge.
7. Crothers, D. M.,, T. Seno,, and D. G. Söll 1972. Is there a discriminator site in transfer RNA? Proc. Natl. Acad. Sci. USA 69: 3063 3067.
8. Cusack, S.,, C. Berthet-Colominas,, M. Härtlein,, N. Nassar,, and R. Leberman. 1990. A second class of synthetase structure revealed by X-ray analysis of Escherichia coli seryl-tRNA synthetase at 2.5 Å. Nature (London) 347: 249 255.
9. de Duve, C. 1988. The second genetic code. Nature (London) 333: 117 118.
10. Deutscher, M. 1965. The effect of polynucleotides on amino-acyl-RNA synthetases. I. Inhibition by synthetic polynucleotides. Biochem. Biophys. Res. Commun. 19: 283 288.
11. Deutscher, M. 1967. The effect of polynucleotides on aminoacyl transfer ribonucleic acid synthetases. II. Inhibition of glutamyl transfer ribonucleic acid synthetase by polyuridylic and polyinosinic acids. J. Biol. Chem. 242: 3601 3607.
12. Ebel, J.-P.,, M. Renaud,, A. Dietrich,, F. Fasiolo,, G. Keith,, O. Favorova,, S. Vassilenko,, M. Baltzinger,, R. Ehrlich,, P. Remy,, J. Bonnet,, and R. Giegé ,. 1979. Interaction between tRNA and aminoacyl-tRNA synthetase in the valine and phenylalanine systems from yeast, p. 325 343. In P. R. Schimmel,, D. Soll,, and J. N. Abelson (ed.), Transfer RNA: Structure, Properties, and Recognition. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y..
13. Edwards, H.,, V. Trezguet,, and P. Schimmel. 1991. An Escherichia coli tyrosine transfer RNA is a leucine-specific transfer RNA in the yeast Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 88: 1153 1156.
14. Englisch-Peters, S.,, J. Conley,, J. Plumbridge,, C. Leptak,, D. Soli,, and M. Rogers. 1991. Mutant enzymes and tRNAs as probes of the glutaminyl-tRNA synthetase: tRNA Gln interaction. Biochimie 73: 1501 1508.
15. Eriani, G.,, M. Delarue,, O. Poch,, J. Gangloff,, and D. Moras. 1990. Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature (London) 347: 203 206.
16. Fersht, A. R. 1986. Structure and activity of the tyrosyl-tRNA synthetase: the hydrogen bond in catalysis and specificity. Philos. Trans. R. Soc. Lond. A 317: 305 320.
17. Francklyn, C.,, and P. Schimmel. 1989. Aminoacylation of RNA minihelices with alanine. Nature (London) 337: 478 481.
18. Francklyn, C.,, J.-P. Shi,, and P. Schimmel. 1992. Overlapping nucleotide determinants for specific aminoacylation of RNA microhelices. Science 255: 1121 1125.
19. Fraser, T. H.,, and A. Rich. 1975. Amino acids are not all initially attached to the same position on transfer RNA molecules. Proc. Natl. Acad. Sci. USA 72: 3044 3048.
20. Freist, W. 1989. Mechanisms of aminoacyl-tRNA synthetases: a critical consideration of recent results. Biochemistry 28: 6787 6795.
21. Frugier, M.,, C. Florentz,, and R. Giege. 1992. Anticodon-independent aminoacylation of an RNA minihelix with valine. Proc. Natl. Acad. Sci. USA 89: 3990 3994.
22. Giegé, R.,, J. D. Puglisi,, and C. Florentz. 1993. tRNA structure and aminoacylation efficiency. Prog. Nucleic Acid Res. Mol. Biol. 45: 129 206.
23. Guillon, J.-M.,, T. Meinnel,, Y. Mechulam,, C. Lazennec,, S. Blanquet,, and G. Fayat. 1992. Nucleotides of tRNA governing the specificity of Escherichia coli methionyl-tRNA Metf for-myltransferase. J. Mol. Biol. 224: 359 367.
24. Hall, K. B.,, J. R. Sampson,, O. C. Uhlenbeck,, and A. G. Redfield. 1989. Structure of an unmodified tRNA molecule. Biochemistry 28: 5794 5801.
25. Hayase, Y.,, M. Jahn,, M. J. Rogers,, L. A. Sylvers,, M. Koizumi,, H. Inoue,, E. Ohtsuka,, and D. Soil. 1992. Recognition of bases in Escherichia coli tRNA Gln by glutaminyl-tRNA synthetase: a complete identity set. EMBO J. 11: 4159 4165.
26. Hayashi, H.,, and K. I. Miura. 1966. Functional sites in transfer ribonucleic acid. Nature (London) 209: 376 378.
27. Hecht, S. M., 1979. 2'-OH vs 3'-OH specificity in tRNA aminoacylation, p. 345 360. In P. R. Schimmel,, D. Soil,, and J. N. Abelson (ed.), Transfer RNA: Structure, Properties, and Recognition. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y..
28. Holley, R. W.,, J. Apgar,, G. A. Everett,, J. T. Madison,, M. Marquisee,, S. H. Merrill,, J. R. Penswick,, and A. Zamir. 1965. Structure of ribonucleic acid. Science 147: 1462 1465.
29. Hooper, M. L.,, R. L. Russell,, and J. D. Smith. 1972. Mis-charging in mutant tyrosine transfer RNAs. FEBS Lett. 22: 149 155.
30. Hou, Y.-M.,, and P. Schimmel. 1988. A simple structural feature is a major determinant of the identity of a transfer RNA. Nature (London) 333: 140 145.
31. Hou, Y.-M.,, and P. Schimmel. 1989. Evidence that a major determinant for the identity of a transfer RNA is conserved in evolution. Biochemistry 28: 6800 6804.
32. Hou, Y.-M.,, and P. Schimmel. 1989. Modeling with in vitro kinetic parameters for the elaboration of transfer RNA identity in vivo. Biochemistry 28: 4942 4947.
33. Jahn, M.,, M. J. Rogers,, and D. Söll. 1991. Anticodon and acceptor stem nucleotides in tRNA Gln are major recognition elements for E. coli glutaminyl-tRNA synthetase. Nature (London) 352: 258 260.
34. Kaplan, S.,, A. O. W. Stretton,, and S. Brenner. 1965. Amber suppressors: efficiency of chain propagation and suppressor specific amino acids. J. Mol. Biol. 14: 528 533.
35. Kisselev, L. L. 1985. The role of the anticodon in recognition of tRNA by aminoacyl-tRNA synthetase. Prog. Nucleic Acid Res. Mol. Biol. 32: 237 266.
36. Ladner, J. E.,, A. Jack,, J. D. Robertus,, R. S. Brown,, D. Rhodes,, B. F. C. Clark,, and A. Klug. 1975. Structure of yeast phenylalanine transfer RNA at 2.5 Å resolution. Proc. Natl. Acad. Sci. USA 72: 4414 4418.
37. McClain, W. H. 1993. Rules that govern tRNA identity in protein synthesis. J. Mol. Biol. 234: 257 280.
38. McClain, W. H. 1993. Transfer RNA identity. FASEB J. 7: 72 78.
39. McClain, W. H.,, Y.-M. Chen,, K. Foss,, and J. Schneider. 1988. Association of transfer RNA acceptor identity with a helical irregularity. Science 242: 1681 1684.
40. McClain, W. H.,, and K. Foss. 1988. Changing the identity of a tRNA by introducing a G-U wobble pair near the 3' acceptor end. Science 240: 793 796.
41. McClain, W. H.,, and K. Foss. 1988. Nucleotides that contribute to the identity of Escherichia coli tRNA Phe. J. Mol. Biol. 202: 697 709.
42. McClain, W. H.,, K. Foss,, R. A. Jenkins,, and J. Schneider. 1990. Nucleotides that determine Escherichia coli tRNA Arg and tRNA Lys acceptor identities revealed by analyses of mutant opal and amber suppressor tRNAs. Proc. Natl. Acad. Sci. USA 87: 9260 9264.
43. McClain, W. H.,, K. Foss,, R. A. Jenkins,, and J. Schneider. 1991. Four sites in the acceptor helix and one site in the variable pocket of tRNA Ala determine the molecule's acceptor identity. Proc. Natl. Acad. Sci. USA 88: 9272 9276.
44. McClain, W. H.,, K. Foss,, R. A. Jenkins,, and J. Schneider. 1991. Rapid determination of nucleotides that define tRNA Gly acceptor identity. Proc. Natl. Acad. Sci. USA 88: 6147 6151.
45. McClain, W. H.,, C. Guerrier-Takada,, and S. Altman. 1987. Model substrates for an RNA enzyme. Science 238: 527 530.
46. McClain, W. H.,, and H. B. Nicholas, Jr. 1987. Differences between transfer RNA molecules. J. Mol. Biol. 194: 635 642.
47. McCloskey, J. A.,, and S. Nishimura. 1977. Modified nucleosides in transfer RNA. Accounts Chem. Res. 10: 403 410.
48. Mirande, M. 1991. Aminoacyl-tRNA synthetase family from prokaryotes and eukaryotes: structural domains and their implications. Prog. Nucleic Acid Res. Mol. Biol. 40: 95 142.
49. Muramatsu, T.,, K. Nishikawa,, F. Nemoto,, Y. Kuchino,, S. Nishimura,, T. Miyazawa,, and S. Yokoyama. 1988. Codon and amino-acid specificities of a transfer RNA are both converted by a single post-transcriptional modification. Nature (London) 336: 179 181.
50. Musier-Forsyth, K.,, and P. Schimmel. 1992. Functional contacts of a transfer RNA synthetase with 2'-hydroxyl groups in the RNA minor groove. Nature (London) 357: 513 515.
51. Musier-Forsyth, K.,, N. Usman,, S. Scaringe,, J. Doudna,, R. Green,, and P. Schimmel. 1991. Specificity for aminoacylation of an RNA helix: an unpaired, exocyclic amino group in the minor groove. Science 253: 784 786.
52. Nazarenko, I. A.,, E. T. Peterson,, O. D. Zakharova,, O. I. Lavrik,, and O. C. Uhlenbeck. 1992. Recognition nucleotides for human phenylalanyl-tRNA synthetase. Nucleic Acids Res. 20: 475 478.
53. Nicholas, H. B., Jr.,, Y.-M. Chen,, and W. H. McClain. 1987. Comparison of tRNA sequences. Comput. Appl. Biosci. 3: 53.
54. Nicholas, H. R., Jr.,, and W. H. McClain. 1987. An algorithm for discriminating sequences and its application to yeast transfer RNA. Comput. Appl. Biosci. 3: 177 181.
55. Normanly, J.,, and J. Abelson. 1989. tRNA identity. Annu. Rev. Biocbem. 58: 1029 1049.
56. Normanly, J.,, L. G. Kleina,, J.-M. Masson,, J. Abelson,, and J. H. Miller. 1990. Construction of Escherichia coli amber suppressor tRNA genes. III. Determination of tRNA specificity. J. Mol. Biol. 213: 719 726.
57. Normanly, J.,, R. C. Ogden,, S. J. Horvath,, and J. Abelson. 1986. Changing the identity of a transfer RNA. Nature (London) 321: 213 219.
58. Normanly, J.,, T. Ollick,, and J. Abelson. 1992. Eight base changes are sufficient to convert a leucine-inserting tRNA into a serine-inserting tRNA. Proc. Natl. Acad. Sci. USA 89: 5680 5684.
59. Pan, T.,, R. R. Gutell,, and O. C. Uhlenbeck. 1991. Folding of circularly permuted transfer RNAs. Science 254: 1361 1364.
60. Perret, V.,, A. Garcia,, H. Grosjean,, J.-P. Ebel,, C. Florentz,, and R. Giegé. 1990. Relaxation of a transfer RNA specificity by removal of modified nucleotides. Nature (London) 344: 787 789.
61. Peterson, E. T.,, and O. C. Uhlenbeck. 1992. Determination of recognition nucleotides for Escherichia coli phenylalanyl-tRNA synthetase. Biochemistry 31: 10380 10389.
62. Prather, N. E.,, E. J. Murgola,, and B. H. Mims. 1984. Nucleotide substitution in the amino acid acceptor stem of lysine transfer RNA causes missense suppression. J. Mol. Biol. 172: 177 184.
63. Pütz, J.,, J. D. Puglisi,, C. Florentz,, and R. Giegé. 1991. Identity elements for specific aminoacylation of yeast tRNA Asp by cognate aspartyl-tRNA synthetase. Science 252: 1696 1699.
64. RajBhandary, U. L. 1988. Modified bases and aminoacylation. Nature (London) 336: 112 113.
65. Renaud, M.,, H. Bacha,, P. Remy,, and J.-P. Ebel. 1981. Conformational activation of the yeast phenylalanyl-tRNA synthatase catalytic site induced by tRNA Phe interaction: triggering of adenosine or CpCpA trinucleoside diphosphate aminoacylation upon binding of tRNA Phe lacking these residues. Proc. Natl. Acad. Sci. USA 78: 1606 1608.
66. Rogers, M. J.,, T. Adachi,, H. Inokuchi,, and D. Söll. 1992. Switching tRNA Gln identity from glutamine to tryptophan. Proc. Natl. Acad. Sci. USA 89: 3463 3467.
67. Rould, M. A.,, J. J. Perona,, D. Söll,, and T. A. Steitz. 1989. Structure of E. coli glutaminyl-tRNA synthetase complexed with tRNA Gln and ATP at 2.8 Å resolution. Science 246: 1135 1142.
68. Rould, M. A.,, J. J. Perona,, and T. A. Steitz. 1991. Structural basis of anticodon loop recognition by glutaminyl-tRNA synthetase. Nature (London) 352: 213 218.
69. Rudinger, J.,, J. D. Puglisi,, J. Pütz,, D. Schatz,, F. Eckstein,, C. Florentz,, and R. Giegé. 1992. Determinant nucleotides of yeast tRNA Asp interact directly with aspartyl-tRNA synthetase. Proc. Natl. Acad. Sci. USA 89: 5882 5886.
70. Ruff, M.,, S. Krishnaswamy,, M. Boeglin,, A. Poterszman,, A. Mitschler,, A. Podjarny,, B. Rees,, J. C. Thierry,, and D. Moras. 1991. Class II aminoacyl transfer RNA synthetases: crystal structure of yeast aspartyl-tRNA synthetase complexed with tRNA Asp. Science 252: 1682 1689.
71. Sampson, J. R.,, A. B. DiRenzo,, L. S. Behlen,, and O. C. Uhlenbeck. 1989. Nucleotides in yeast tRNA Phe required for the specific recognition by its cognate synthetase. Science 243: 1363 1366.
72. Sampson, J. R.,, and O. C. Uhlenbeck. 1988. Biochemical and physical characterization of an unmodified yeast phenylalanine transfer RNA transcribed in vitro. Proc. Natl. Acad. Sci. USA 85: 1033 1037.
73. Saneyoshi, M.,, and S. Nishimura. 1971. Selective inactivation of amino acid acceptor and ribosome-binding activities of Escherichia coli tRNA by modification with cyanogen bromide. Biochem. Biophys. Acta 246: 123 131.
74. Schulman, L. H. 1991. Recognition of tRNAs by aminoacyl-tRNA synthetases. Prog. Nucleic Acid Res. Mol. Biol. 41: 23 87.
75. Schulman, L. H.,, and J. Abelson. 1988. Recent excitement in understanding transfer RNA identity. Science 240: 1591 1592.
76. Schulman, L. H.,, and R. W. Chambers. 1968. Transfer RNA. II. A structural basis for alanine acceptor activity. Proc. Natl. Acad. Sci. USA 61: 308 315.
77. Shi, J.-P.,, C. Francklyn,, K. Hill,, and P. Schimmel. 1990. A nucleotide that enhances the charging of RNA minihelix sequence variants with alanine. Biochemistry 29: 3621 3626.
78. Shimura, Y.,, H. Aono,, H. Ozeki,, A. Sarabhai,, H. Lamfrom,, and J. Abelson. 1972. Mutant tyrosine tRNA of altered amino acid specificity. FEBS Lett. 22: 144 148.
79. Smith, J. D. 1972. Genetics of transfer RNA. Annu. Rev. Genet. 6: 235 256.
80. Söll, D. 1990. The accuracy of aminoacylation—ensuring the fidelity of the genetic code. Experientia 46: 1089 1095.
81. Söll, D.,, and P. R. Schimmel. 1974. Aminoacyl-tRNA synthetases. Enzymes 10: 489 538.
82. Sprinzl, M.,, and F. Cramer. 1975. Site of aminoacylation of tRNAs from Escherichia coli with respect to the 2'- or 3'-hydroxyl group of the terminal adenosine. Proc. Natl. Acad. Sci. USA 72: 3049 3053.
83. Squires, C.,, and J. Carbon. 1971. Normal and mutant glycine transfer RNAs. Nature New Biol. 233: 274 277.
84. Steitz, T. A. 1990. Structural studies of protein-nucleic acid interaction: the sources of sequence-specific binding. Q. Rev. Biophys. 23: 205 280.
85. Swanson, R.,, P. Hoben,, M. Sumner-Smith,, H. Uemura,, L. Watson,, and D. Soil. 1988. Accuracy of in vivo aminoacylation requires proper balance of tRNA and aminoacyl-tRNA synthetase. Science 242: 1548 1551.
86. Sylvers, L. A.,, K. C. Rogers,, M. Shimizu,, E. Ohtsuka,, and D. Söll. 1993. A 2-thiouridine derivative in tRNA Glu is a positive determinant for aminoacylation by Escherichia coli glutaminyl-tRNA synthetase. Biochemistry 32: 3836 3841.
87. Tamura, K.,, H. Asahara,, H. Himeno,, T. Hasegawa,, and M. Shimizu. 1991. Identity elements of Escherichia coli tRNA Ala. J. Mol. Recognition 4: 129 132.
88. Varshney, U.,, C. P. Lee,, and U. L. RajBhandary. 1993. From elongator tRNA to initiator tRNA. Proc. Natl. Acad. Sci. USA 90: 2305 2309.
89. Varshney, U.,, and U. L. RajBhandary. 1990. Initiation of protein synthesis from a termination codon. Proc. Natl. Acad. Sci. USA 87: 1586 1590.
90. Yaniv, M.,, W. R. Folk,, P. Berg,, and L. Soil. 1974. A single mutational modification of a tryptophan-specific transfer RNA permits aminoacylation by glutamine and translation of the codon UAG. J. Mol. Biol. 86: 245 260.
91. Yarus, M. 1972. Intrinsic precision of aminoacyl-tRNA synthesis enhanced through parallel systems of ligands. Nature NewBiol. 239: 106 108.
92. Yarus, M. 1988. tRNA identity: a hair of the dogma that bit us. Cell 55: 739 741.
93. Zachau, H. G. 1969. Transfer ribonucleic acids. Angew. Chem. Int. Edit. 8: 711 727.
94. Zachau, H. G.,, D. Dütting,, H. Feldmann,, F. Melchers,, and W. Karau. 1966. Serine specific transfer ribonucleic acids. XIV. Comparison of nucleotide sequences and secondary structure models. Cold Spring Harbor Symp. Quant. Biol. 31: 417 424.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error