1887

Chapter 18 : tRNA Discrimination in Aminoacylation

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

tRNA Discrimination in Aminoacylation, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818333/9781555810733_Chap18-1.gif /docserver/preview/fulltext/10.1128/9781555818333/9781555810733_Chap18-2.gif

Abstract:

The recognition of a tRNA by its aminoacyl-tRNA synthetase is a classic example of the specificity often encountered in biology. Each of the 20 aminoacyl-tRNA synthetases in a cell must distinguish its own set of isoacceptor tRNAs from the many noncognate tRNAs and efficiently catalyze the covalent attachment of the correct amino acid to the 3' end of only these species. Ultimately, the fate of the cell rests on this interaction, as there are no subsequent proof-reading steps in protein synthesis whereby the amino acid is matched against the anticodon to ensure that the proper amino acid is inserted in response to a given codon. How an aminoacyl-tRNA synthetase is able to select its tRNA substrates from a pool of noncognate species sharing similar tertiary structure has been the focus of over 20 years of research. Recent technical refinements in the types of assays used to study this interaction have contributed a wealth of new information to this field, allowing the identification of nucleotides conferring a particular amino acid acceptor identity for a number of tRNAs. The goal of this chapter is to summarize these more recent developments in tRNA recognition.

Citation: Pallanck L, Pak M, Schulman L. 1995. tRNA Discrimination in Aminoacylation, p 371-394. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch18

Key Concept Ranking

Turnip mosaic virus
0.44070813
0.44070813
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

(A) Cloverleaf structure of a typical class I tRNA, numbered according to Sprinzl et al. ( ). Bases conserved in all tRNAs are included. (B) Three-dimensional structure of yeast tRNA ( ).

Citation: Pallanck L, Pak M, Schulman L. 1995. tRNA Discrimination in Aminoacylation, p 371-394. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Major recognition elements of tRNA (A), tRNA (B), yeast tRNA (C), and tRNA (D).

Citation: Pallanck L, Pak M, Schulman L. 1995. tRNA Discrimination in Aminoacylation, p 371-394. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Kinetic effect of nucleotide substitutions of yeast, and human tRNAPhe on aminoacylation by the cognate synthetase ( ). The numbers shown refer to the fold reduction in on substitution at that site. Where variable effects of aminoacylation were observed, kinetic data for the nucleotide substitution causing the largest defect are shown.

Citation: Pallanck L, Pak M, Schulman L. 1995. tRNA Discrimination in Aminoacylation, p 371-394. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818333.chap18
1. Altman, S.,, C. Guerrier-Takada,, H. M. Frankfort,, and H. D. Robertson,. 1982. RNA processing nucleases, p. 243 274. In S. Linn, and R. Roberts (ed.), Nucleases. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
2. Atilgan, X.,, H. B., Nicholas, Jr.,, and W. H. McClain. 1986. A statistical method for correlating tRNA sequence with amino acid specificity. Nucleic Acids Res. 14: 375 380.
3. Bare, L. A.,, and O. C. Uhlenbeck. 1985. Aminoacylation of anticodon loop substituted yeast tyrosine transfer RNA. Biochemistry 24: 2354 2360.
4. Bare, L. A.,, and O. C. Uhlenbeck. 1986. Specific substitutions into the anticodon loop of yeast tyrosine transfer RNA. Biochemistry 25: 5825 5830.
5. Böck, A. 1991. Personal communication.
6. Bruce, A. G.,, and O. C. Uhlenbeck. 1982. Enzymatic replacement of the anticodon of yeast phenylalanine transfer ribonucleic acid. Biochemistry 21: 855 861.
7. Bruce, A. G.,, and O. C. Uhlenbeck. 1982. Specific interaction of anticodon loop residues with yeast phenylalanyl-tRNA synthetase. Biochemistry 21: 3921 3926.
8. Celis, J. E.,, M. L. Hooper,, and J. D. Smith. 1973. Amino acid acceptor stem of E. coli suppressor tRNA Tyr is a site of synthetase recognition. Nature New Biol. 244: 261 264.
9. Chakraburtty, K. 1975. Effect of sodium bisulfite modification on the arginine acceptance of E. coli tRNA Arg. Nucleic Acids Res. 2: 1793 1804.
10. Chambers, R. W.,, S. Aoyasi,, Y. Furukawa,, H. Zawadzka,, and O. Bhanot. 1973. Inactivation of valine acceptor activity by a C -U missense change in the anticodon of yeast valine transfer ribonucleic acid. J. Biol. Chem. 248: 5549 5551.
11. Chambers, R. W.,, O. S. Bhanot,, S. Aoyasi,, Y. Furukawa,, and H. Zawadzka. 1974. Effects of C → U transitions on the adaptor function of tRNA and tRNA Alalab. Fed. Proc. 33: 1422.
12. Chattapadhyay, R.,, H. Pelka,, and L. H. Schulman. 1990. Initiation of in vivo protein synthesis with non-methionine amino acids. Biochemistry 29: 4263 4268.
13. Cigan, A. M.,, L. Feng,, and T. F. Donahue. 1988. tRNA Met1-functions in directing the scanning ribosome to the start site of translation. Science 242: 93 97.
14. Crothers, D. M.,, T. Seno,, and D. G. Soil. 1972. Is there a discriminator site in transfer RNA? Proc. Natl. Acad. Sci. USA 69: 3063 3067.
15. deDuve, C. 1988. The second genetic code. Nature (London) 333: 117 118.
16. Dreher, T. W.,, C. Florentz,, and R. Giege. 1988. Valylation of tRNA-like transcripts from cloned cDNA of turnip yellow mosaic virus RNA demonstrate that the L-shaped region at the 3' end of the viral RNA is not sufficient for optimal aminoacylation. Biochimie 70: 1719 1727.
17. Edwards, H.,, V. Trezeguet, and R Schimmel. 1991. An Escherichia coli tyrosine transfer RNA is a leucine-specific transfer RNA in the yeast Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 88: 1153 1156.
18. Fasiolo, F.,, L. Despons,, M. Laforet,, J. R Ebel,, and P. Walter. 1991. Anticodon mediated tRNA recognition of yeast methionyl-tRNA synthetase requires at least two distinct helices in the C-terminal domain, p. 136. Abstr. 14th International tRNA Workshop.
19. Fasiolo, F.,, T. Glade,, G. Keith,, V. Büttcher,, F. Cramer,, and U. English. 1993. The codon and amino acid specificity of the yeast isoleucine transfer RNAs are dependent on two distinct modified wobble bases, p. 76. Abstr. 15th International tRNA Workshop.
20. Fersht, A., 1985. The basic equations of enzyme kinetics, p. 98 120. In A. Fersht (ed.), Enzyme Structure and Mechanism. W. H. Freeman, New York.
21. Florentz, C.,, T. W. Dreher,, J. Rudinger,, and R. Giege. 1991. Specific valylation identity of turnip yellow mosaic virus RNA by yeast valyl-tRNA synthetase is directed by the anticodon in a kinetic rather than affinity-based discrimination. Eur. J. Biochem. 195: 229 234.
22. Fralova, L.,, and L. L. Kisselev. 1964. Biokhimiya 29: 1177.
23. Francis, M. A.,, and B. S. Dudock. 1982. Nucleotide sequence of a spinach chloroplast isoleucine tRNA. J. Biol. Chem. 257: 11195 11198.
24. Francklyn, C.,, and R. Schimmel. 1989. Aminoacylation of RNA minihelices with alanine. Nature (London) 337: 478 482.
25. Francklyn, C.,, and R. Schimmel. 1990. Enzymatic aminoacylation of an eight-base-pair microhelix with histidine. Proc. Natl. Acad. Sci USA 87: 8655 8659.
26. Francklyn, C.,, and R. Schimmel. 1991. Overlapping nucleotide determinants for specific aminoacylation of RNA micro-helices. Science 255: 1121 1125.
27. Garcia, A.,, R. Giege,, and J.-P. Behr. 1990. New photoactivatable structural and affinity probes of RNAs: specific features and applications for mapping of spermine binding sites in yeast tRNA Asp and interactions of this tRNA with yeast aspartyl-tRNA synthetase. Nucleic Acids Res. 18: 89 95.
28. Garrett, M.,, B. LaBouesse,, S. Litvak,, P. Romby,, J.-P. Ebel,, and R. Giege. 1984. Tertiary structure of animal tRNA Trp in solution and interaction of tRNA Trp with tryptophanyl-tRNA synthetase. Eur. J. Biochem. 138: 67 75.
29. Ghosh, G.,, H. Pelka,, and L. H. Schulman. 1990. Identification of the tRNA anticodon recognition site of E. coli. Biochemistry 29: 2220 2225.
30. Ghysen, A.,, and J. E. Celis. 1974. Mischarging single and double mutants of Escherichia coli sup3 tyrosine transfer RNA. J. Mol. Biol. 83: 333 351.
31. Giege, R.,, J. P. Briand,, R. Mengual,, J.-P. Ebel,, and L. Hirth. 1978. Valylation of the two RNA components of turnip yellow mosaic virus and specificity of the tRNA aminoacylation reaction. Eur. J. Biol. 84: 251 256.
32. Guillemaut, P.,, and J. H. Weil. 1975. Aminoacylation of Phaseolus vulgaris cytoplasmic chloroplastic and mitochondrial tRNAs Met and of Escherichia coli tRNAs Met by homologous and heterologous enzymes. Biochim. Biophys. Acta 407: 240 248.
33. Guthrie, C.,, and W. H. McClain. 1979. Rare transfer ribonucleic acid essential for phage growth. Nucleotide sequence comparison of normal and mutant T4 isoleucine-accepting transfer ribonucleic acid. Biochemistry 18: 3786 3795.
34. Hall, K. B.,, J. R. Sampson,, O. C. Uhlenbeck,, and A. G. Redfield. 1989. Structure of an unmodified tRNA molecule. Biochemistry 28: 5794 5801.
35. Harada, F.,, and S. Nishimura. 1974. Purification and characterization of AUA specific isoleucine transfer ribonucleic acid from Escherichia coli B. Biochemistry 13: 300 307.
36. Hasegawa, T.,, H. Himeno,, H. Ishikura,, and M. Shimizu. 1989. Discriminator base of tRNA Asp is involved in amino acid acceptor activity. Biochem. Biophys. Res. Commun. 163: 1534 1538.
37. Hayase, Y.,, M. Jahn,, M. J. Rogers,, L. A. Sylvers,, M. Koizumi,, H. Inoue,, E. Ohtsuka,, and D. Soil. 1992. Recognition of bases in Escherichia coli tRNA Gln by glutaminyl-tRNA synthetase: a complete identity set. EMBO J. 11: 4159 4165.
38. Hill, C. W.,, G. Combriato,, and W. Dolph. 1973. Frameshift suppression: a nucleotide addition in the anticodon of a glycine transfer RNA. Nature New Biol. 242: 230 234.
39. Himeno, H.,, T. Hasegawa,, H. Asahara,, K. Tamura,, and M. Shimizu. 1991. Identity determinants of E. coli tryptophan tRNA. Nucleic Acids Res. 19: 6379 6382.
40. Himeno, H.,, T. Hasegawa,, T. Ueda,, K. Watanabe,, K. Miura,, and M. Shimizu. 1989. Role of the extra G-C pair at the end of the acceptor stem of tRNA His in aminoacylation. Nucleic Acids Res. 17: 7855 7863.
41. Himeno, H.,, T. Hasegawa,, T. Ueda,, K. Watanabe,, and M. Shimizu. 1990. Conversion of aminoacylation specificity from tRNA Tyr to tRNA Ser in vitro. Nucleic Acids Res. 18: 6815 6819.
42. Hoben, P.,, N. Royal,, A. Cheung,, F. Yamao,, K. Biemann,, and D. Soil. 1982. Escherichia coli glutaminyl-tRNA synthetase. J. Biol. Chem. 257: 11644 11650.
43. Hooper, M. L.,, R. Russell,, and J. D. Smith. 1972. Mischarging in mutant tyrosine transfer RNAs. FEBS Lett. 22: 149 155.
44. Horowitz, J.,, W.-C. Chu,, V. Feiz,, and W. B. Derrick. 1991. Recognition of E. coli valine tRNA by its cognate synthetase, p. 158. Abstr. 14th International tRNA Workshop.
45. Hou, Y.-M.,, and P. Schimmel. 1988. A simple structural feature is a major determinant of the identity of a transfer RNA. Nature (London) 333: 140 145.
46. Hou, Y.-M.,, and P. Schimmel. 1989. Modeling with in vitro kinetic parameters for the elaboration of transfer RNA identity in vivo. Biochemistry 28: 4942 4947.
47. Hou, Y.-M.,, and P. Schimmel. Evidence that a major determinant for the identity of a transfer RNA is conserved in evolution. Biochemistry 28: 6800 6804.
48. Hou, Y.-M.,, and P. Schimmel. 1992. Functional compensation of a recognition-defective transfer RNA by a distal base pair substitution. Biochemistry 31: 10310 10314.
49. Imura, N.,, G. B. Weiss,, and R. W. Chambers. 1969. Recon-stitution of alanine acceptor activity from fragments of yeast tRNA Ala2. Nature (London) 222: 1147 1148.
50. Inokuchi, H.,, J. E. Celis,, and J. D. Smith. 1974. Mutant tyrosine transfer ribonucleic acids of Escherichia coli: construction by recombination of a double mutant A1G82 chargeable with glutamine. J. Mol. Biol. 85: 187 191.
51. Jahn, M.,, M. J. Rogers,, and D. Söll. 1991. Anticodon and acceptor stem nucleotides in tRNA Gln are major recognition elements for E. coli glutaminyl-tRNA synthetase. Nature (London) 352: 258 260.
52. Jin, Y. X.,, M. S. Qiu,, W. Q. Li,, K. Q. Zeng,, D. Wang,, J. Bao,, P. Gong,, R. Wu,, and D. Wang. 1987. Effect of the anticodon loop size of yeast alanyl-tRNA on its biological activity. Anal. Biochem. 161: 453 459.
53. Kern, D.,, and J. Lapointe. 1979. Glutamyl transfer ribonucleic acid synthetase of Escherichia coli. Effect of alteration of the 5-(methylaminomethyl)-2-thiouridine in the anticodon of glutamic acid transfer ribonucleic acid on the catalytic mechanism. Biochemistry 18: 5819 5826.
54. Kim, S.-H.,, F. L. Suddath,, G. J. Quigley,, A. McPherson,, J. L. Sussman,, A. H. J. Wang,, N. C. Seeman,, and A. Rich. 1974. Three-dimensional tertiary structure of yeast phenylalanine transfer RNA. Science 185: 435 440.
55. Kisselev, L. L. 1985. The role of the anticodon in recognition of tRNA by aminoacyl-tRNA synthetases. Prog. Nucleic Acid Res. Mol. Biol. 32: 237 266.
56. Kleina, L. G.,, J.-M. Masson,, J. Normanly,, J. Abelson,, and J. H. Miller. 1990. Construction of Escherichia coli amber suppressor tRNA genes. II. Synthesis of additional tRNA genes and improvement of suppressor efficiency. J. Mol. Biol. 213: 705 717.
57. Knowlton, R. G.,, L. Soil,, and M. Yarus. 1980. Dual specificity of su + 7 tRNA. Evidence for translational discrimination. J. Mol. Biol. 139: 705 720.
58. Komatsoulis, G.,, and J. Abelson. 1993. Recognition of transfer RNA (CYS) by Escherichia coli cysteinyl-transfer RNA synthetase. Biochemistry 32: 7435 7444.
59. Labouze, E.,, and H. Bedouelle. 1989. Structural and kinetic bases for the recognition of tRNA Tyr by tyrosyl-tRNA synthetase. J. Mol. Biol. 205: 729 735.
60. Ladner, J. E.,, A. Jack,, J. D. Robertus,, R. S. Brown,, D. Rhodes,, B. F. C. Clark,, and A. Klug. 1975. Structure of yeast phenylalanine transfer RNA at 2.5 A resolution. Proc. Natl. Acad. Sci. USA 72: 4414 4418.
61. Lee, C. P.,, M. R. Dyson,, N. Mandal,, U. Varshney,, B. Bahramian,, and U. L. RajBhandary. 1992. Striking effects of coupling mutations in the acceptor stem on recognition of tRNAs by Escherichia coli Met-tRNA synthetase and Met-tRNA transformylase. Proc. Natl. Aacad. Sci. USA 89: 9262 9266.
62. Lee, C. P.,, B. L. Seong,, and U. L. RajBhandary. 1991. Structural and sequence elements important for recognition of E. coli formylmethionine tRNA by methionyl-tRNA transformylase are clustered in the acceptor stem. J. Biol. Chem. 266: 18012 18017.
63. Leinfelder, W.,, K. Forchhammer,, B. Veprek,, E. Zehelein,, and A. Böck. 1990. In vitro synthesis of selenocysteinyl-tRNA(UCA) from seryl-tRNA(UCA): involvement and characterization of the selD gene product. Proc. Natl. Acad. Sci. USA 87: 543 547.
64. Leinfelder, W.,, E. Zehelein,, M. Mandrand-Berthelot,, and A. Bock. 1988. Gene for a novel tRNA species that accepts L-serine and cotranslationally inserts selenocysteine. Nature (London) 331: 723 725.
65. Li, S.,, H. Pelka,, and L. H. Schulman. 1993. The anticodon and discriminator base are important for aminoacylation of Escherichia coli tRNA Asn. J. Biol. Chem. 268: 18335 18339.
66. Marinus, M. G.,, R. N. Morris,, D. Soil,, and J. C. Kwong. 1975. Isolation and partial characterization of three Escherichia coli mutants with altered transfer ribonucleic acid methylases. J. Bacteriol. 122: 257 265.
67. Martinis, S. A.,, and P. Schimmel. 1992. Enzymatic aminoacylation of sequence-specific RNA minihelices and hybrid duplexes with methionine. Proc. Natl. Acad. Sci. USA 89: 65 69.
68. Masson, J.-M.,, and J. H. Miller. 1986. Expression of synthetic suppressor tRNA genes under the control of a synthetic promoter. Gene 47: 179 183.
69. McClain, W. H.,, Y.-M. Chen,, K. Foss,, and J. Schneider. 1988. Association of transfer RNA acceptor identity with a helical irregularity. Science 242: 1681 1684.
70. McClain, W. H.,, and K. Foss. 1988. Changing the identity of a tRNA by introducing a G-U wobble pair near the 3' acceptor end. Science 240: 793 796.
71. McClain, W. H.,, and K. Foss. 1988. Changing the acceptor identity of a transfer RNA by altering nucleotides in a variable pocket. Science 241: 1804 1807.
72. McClain, W. H.,, and K. Foss. 1988. Nucleotides that contribute to the identity of Escherichia coli tRNA Phe. J. Mol. Biol. 202: 697 709.
73. McClain, W. H.,, K. Foss,, R. A. Jenkins,, and J. Schneider. 1990. Nucleotides that determine Escherichia coli tRNA Arg and tRNA Lys identities revealed by analyses of mutant opal and amber suppressor tRNAs. Proc. Natl. Acad. Sci. USA 87: 9260 9264.
74. McClain, W. H.,, K. Foss,, R. A. Jenkins,, and J. Schneider. 1991. Rapid determination of nucleotides that define tRNA G1y acceptor identity. Proc. Natl. Acad. Sci. USA 88: 6147 6151.
75. McClain, W. H.,, K. Foss,, R. A. Jenkins,, and J. Schneider. 1991. Four sites in the acceptor helix and one site in the variable pocket of tRNA Ala determine the molecule's acceptor identity. Proc. Natl. Acad. Sci. USA 88: 9272 9276.
76. McClain, W. H.,, and H. B. Nicholas, Jr. 1987. Differences between transfer RNA molecules. J. Mol. Biol. 194: 635 642.
77. Meinnel, T.,, Y. Mechulam,, G. Fayat,, and S. Blanquet. 1992. Involvement of the size and sequence of the anticodon loop in tRNA recognition by mammalian and E. coli methionyl-tRNA synthetases. Nucleic Acids Res. 20: 4741 4746.
78. Meinnel, T.,, Y. Mechulam,, G. Fayat,, and S. Blanquet. 1993. Critical role of the acceptor stem of tRNAs Met in their aminoacylation by Escherichia coli methionyl-tRNA synthetase. J. Mol. Biol. 229: 26 36.
79. Meinnel, T.,, Y. Mechulam,, D. LeCorre,, M. Panvert,, S. Blanquet,, and G. Fayat. 1991. Selection of suppressor methionyl-tRNA synthetases: mapping the tRNA anticodon binding site. Proc. Natl. Acad. Sci. USA 88: 291 295.
80. Moine, H.,, P. Romby,, M. Springer,, M. Grunberg-Manago,, J.-P. Ebel,, C. Ehresmann,, and B. Ehresmann. 1988. Messenger RNA structure and gene regulation at the translational level in Escherichia coli: the case of threonine:tRNA Thr lig-ase. Proc. Natl. Acad. Sci. USA 85: 7892 7896.
81. Muramatsu, T.,, K. Nishikawa,, F. Nemoto,, Y. Kuchino,, S. Nishimura,, T. Miyazawa,, and S. Yokoyama. 1988. Codon and amino-acid specificities of a transfer RNA are both converted by a single post-transcriptional modification. Nature (London) 336: 179 181.
82. Muramatsu, T.,, S. Yokoyama,, N. Horie,, A. Matsuda,, T. Ueda,, Z. Yamaizumi,, Y. Kuchino,, S. Nishimura,, and T. Miyazawa. 1988. A novel lysine-substituted nucleoside in the first position of the anticodon of minor isoleucine tRNA from Escherichia coli. J. Biol. Chem. 263: 9261 9267.
83. Musier-Forsyth, K.,, N. Usman,, S. Scaringe,, J. Doudna,, R. Green,, and P. Schimmel. 1991. Specificity for aminoacylation of an RNA helix: an unpaired exocyclic amino group in the minor groove. Science 253: 784 786.
84. Nameki, N.,, K. Tamura,, H. Himeno,, H. Asahara,, T. Hasa-gawa,, and M. Shimizu. 1992. Escherichia coli tRNA Asp recognition mechanism differing from that of the yeast system. Biochem. Biophys. Res. Commun. 189: 856 862.
85. Nazarenko, I.,, E. Tinkle-Peterson,, O. D. Zakharova,, O. I. Lavrik,, and O. C. Uhlenbeck. 1992. Recognition nucleotides for human phenylalanyl-tRNA synthetase. Nucleic Acids Res. 20: 475 478.
86. Nicholas, H. B.,, and W. H. McClain. 1987. An algorithm for discriminating sequences and its application to yeast transfer RNA. Cabios 3: 53.
87. Niimi, T.,, O. Nureki,, N. Hayashi,, K. Nishikawa,, K. Watanabe,, and S. Yokoyama. 1993. Recognition of a modified nucleoside residue at position 37 of tRNA Ile1 by isoleucyl-tRNA synthetase from E. coli, p. 301. Abstr. 15th International tRNA Workshop.
88. Normanly, J.,, and J. Abelson. 1989. tRNA identity. Annu. Rev. Biochem. 58: 1029 1049.
89. Normanly, J.,, L. G. Kleina,, J.-M. Masson,, J. Abelson,, and J. H. Miller. 1990. Construction of Escherichia coli amber suppressor tRNA genes. III. Determination of tRNA specificity. J. Mol. Biol. 213: 719 726.
90. Normanly, J.,, J.-M. Masson,, L. G. Kleina,, J. Abelson,, and J. H. Miller. 1986. Construction of two Escherichia coli amber suppressor genes: tRNA Phe (CUA) and tRNA Cys (CUA). Proc. Natl. Acad. Sci USA 85: 6548 6552.
91. Normanly, J.,, R. C. Ogden,, S. J. Horvath,, and J. Abelson. 1986. Changing the identity of a transfer RNA. Nature (London) 321: 213 219.
92. Ozeki, H.,, H. Inokuchi,, F. Yamao,, M. Kodaira,, T. Sakano,, T. Ikemura,, and P. R. Schimmel,. 1980. Genetics of nonsense suppressor tRNAs in Escherichia coli, p. 341 362. In D. Soil,, J. Abelson,, and P. R. Schimmel (ed.), Transfer RNA: Biological Aspects. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y..
93. Pak, M.,, L. Pallanck,, and L. H. Schulman. 1992. Conversion of a methionine initiator tRNA into a tryptophan-insert-ing elongator tRNA in vivo. Biochemistry 31: 3303 3309.
94. Pak, M.,, and L. H. Schulman. 1993. Unpublished data.
95. Pallanck, L. 1992. Ph.D. thesis, Albert Einstein College of Medicine, Bronx, N.Y..
96. Pallanck, L.,, S. Li,, and L. H. Schulman. 1992. The anticodon and discriminator base are major determinants of cysteine tRNA identity in vivo. J. Biol. Chem. 267: 7221 7223.
97. Pallanck, L.,, and L. H. Schulman. 1991. Anticodon-dependent aminoacylation of a noncognate tRNA with isoleucine, valine, and phenylalanine in vivo. Proc. Natl. Acad. Sci. USA 88: 3872 3876.
98. Park, S. J.,, Y.-M. Hou,, and P. Schimmel. 1989. A single base pair affects binding and catalytic parameters in the molecular recognition of a transfer RNA. Biochemistry 28: 2740 2746.
99.. Park, S. J.,, and P. Schimmel. 1988. Evidence for interaction of an aminoacyl transfer RNA synthetase with a region important for the identity of its cognate transfer RNA. J. Biol. Chem. 263: 16527 16530.
100. Pelka, H.,, and L. H. Schulman. 1986. Study of the interaction of Escherichia coli methionyl-tRNA synthetase with tRNA fMet using chemical and enzymatic probes. Biochemistry 25: 4450 4456.
101. Perona, J. J.,, R. Swanson,, T. A. Steitz,, and D. Soil. 1988. Overproduction and purification of Escherichia coli tRNA Gln and its use in crystallization of the glutaminyl-tRNA synthetase-tRNA Gln complex. J. Mol. Biol. 202: 121 126.
102. Perret, V.,, A. Garcia,, H. Grosjean,, J.-P. Ebel,, C. Florentz,, and R. Giege. 1990. Relaxation of a transfer RNA specificity by removal of modified nucleotides. Nature (London) 344: 787 789.
103. Petrissant, G.,, M. Boisnard,, and C. Puissant. 1970. Purification d'un tRNA accepteur de la methionine dans le foie de lapin. Biochim. Biophys. Acta 213: 223 225.
104. Pinck, M.,, P. Yot,, F. Chapeville,, and H. M. Duranton. 1970. A new principle of RNA folding based on pseudoknotting. Nucleic Acids Res. 13: 1717 1731.
105. Piitz, J.,, J. D. Puglisi,, C. Florentz,, and R. Giege. 1991. Identity elements for specific aminoacylation of yeast tRNA Asp by cognate aspartyl-tRNA synthetase. Science 252: 1696 1699.
106. Qiu, M. S.,, Y. X. Jin,, W. Q. Li,, J. R. Bao,, and D. Wang. 1988. Biological function of modified nucleotides in tRNA molecules—synthesis and biological activity of the analogues of yeast alanyl-tRNA with I 34 replaced by A 34 or G 34. Sci. Sin.[B] 31: 695 701.
107. RajBhandary, U. L. 1988. Genetic code. Modified bases and aminoacylation. Nature (London) 336: 112 113.
108. RajBhandary, U. L.,, and H. P. Ghosh. 1969. Studies on polynucleotides. XCI. Yeast methionine transfer ribonucleic acid: purification, properties and terminal nucleotide sequences. J. Biol. Chem. 244: 1104 1113.
109. Riddle, D. L.,, and J. Carbon. 1973. Frameshift suppression: a nucleotide addition in the anticodon of a glycine transfer RNA. Nature New Biol. 242: 230 234.
110. Robertes, J. D.,, J. E. Ladner,, J. T. Finch,, D. Rhodes,, R. S. Brown,, B. F. C. Clark,, and A. Klug. 1974. Structure of yeast phenylalanine tRNA at 3 Å resolution. Nature (London) 250: 546 551.
111. Roberts, J. W.,, and J. Carbon. 1974. Molecular mechanism for missense suppression in E. coli. Nature (London) 250: 412 414.
112. Rogers, M. J.,, and D. Söll. 1988. Discrimination between glutaminyl-tRNA synthetase and seryl-tRNA synthetase involves nucleotides in the acceptor helix of tRNA. Proc. Natl. Acad. Sci. USA 85: 6627 6631.
113. Romby, P.,, D. Moras,, M. Bergdoll,, P. Dumas,, V. V. Vlassov,, E. Westhof,, J.-P. Ebel,, and R. Giege. 1985. Yeast tRNA Asp tertiary structure in solution and areas of interaction of the tRNA with aspartyl-tRNA synthetase. A comparative study of the yeast phenylalanine system by phosphate alkylation experiments with ethylnitrosourea. J. Mol. Biol. 184: 455 471.
114. Rould, M. A.,, J. J. Perona,, D. Söll,, and T. A. Steitz. 1989. Structure of E. coli glutaminyl-tRNA synthetase complexed with tRNA Gln and ATP at 2.8 Å resolution. Science 246: 1135 1142.
115. Rould, M. A.,, J. J. Perona,, and T. A. Steitz. 1991. Structural basis of anticodon loop recognition by glutaminyl-tRNA synthetase. Nature (London) 352: 213 218.
116. Ruff, M.,, S. Krishnaswamy,, M. Boeglin,, A. Poterszman,, A. Mitschler,, A. Podjarny,, B. Rees,, J. C. Thierry,, and D. Moras. 1991. Class II aminoacyl-transfer RNA synthetases: crystal structure of yeast aspartyl-tRNA synthetase complexed with tRNA Asp. Science 252: 1682 1689.
117. Sabban, E. L.,, and O. Bhanot. 1982. The effect of bisulfite-induced C → U transitions on aminoacylation of Escherichia coli glycine tRNA. J. Biol. Chem. 257: 4796 4805.
118. Saks, P.,, J. R. Sampson,, and J. Abelson. 1993. Unpublished data.
119. Sampson, J. R.,, A. B. DiRenzo,, L. S. Behlen,, and O. C. Uhlenbeck. 1989. Nucleotides in yeast tRNA Phe required for the specific recognition by its cognate synthetase. Science 243: 1363 1366.
120. Sampson, J. R.,, A. B. DiRenzo,, L. S. Behlen,, and O. C. Uhlenbeck. 1990. Role of the tertiary nucleotides in the interaction of yeast phenylalanine tRNA with its cognate synthetase. Biochemistry 29: 2523 2537.
121. Sampson, J. R.,, and O. C. Uhlenbeck. 1988. Biochemical and physical characterization of an unmodified yeast phenylalanine transfer RNA in vitro. Proc. Natl. Acad. Sci. USA 85: 1033 1037.
122. Samualsson, T.,, T. Boren,, T.-I. Johanson,, and F. Lustig. 1988. Properties of a transfer RNA lacking modified nucleosides. J. Biol. Chem. 263: 13692 13699.
123. Saneyoshi, M.,, and S. Nishimura. 1971. Selective inactiva-tion of amino acid acceptor and ribosome binding activities of Escherichia coli tRNA by modification with cyanogen bromide. Biochim. Biophys. Acta 246: 123 131.
124. Schatz, D.,, R. Leberman,, and F. Eckstein. 1991. Interaction of Escherichia coli tRNA Ser with its cognate aminoacyl-tRNA synthetase as determined by footprinting with phos-phorothioate containing tRNA transcripts. Proc. Natl. Acad. Sci. USA 88: 6132 6136.
125. Scheinker, V.,, S. F. Beresten,, T. D. Mashkova,, A. M. Mazo,, and L. L. Kisselev. 1981. Role of exposed cytosine residues in aminoacylation activity of tRNA Trp. FEBS Lett. 132: 349 352.
126. Schimmel, P. 1987. Aminoacyl tRNA synthetases: general scheme of structure-function relationships in the polypeptides and recognition of transfer RNAs. Annu. Rev. Biochem. 56: 125 158.
127. Schimmel, P. 1989. Parameters for the molecular recognition of transfer RNAs. Biochemistry 28: 2747 2759.
128. Schulman, L. H. 1991. Recognition of tRNAs by aminoacyl-tRNA synthetases. Prog. Nucleic Acid Res. Mol. Biol. 41: 23 87.
129. Schulman, L. H.,, and J. Abelson. 1988>. Recent excitement in understanding transfer RNA identity. Science 240: 1591 1592.
130. Schulman, L. H.,, and J. P. Goddard. 1973. Loss of methionine acceptor activity resulting from a base change in the anticodon of Escherichia coli formylmethionine transfer ribonucleic acid. J. Biol. Chem. 248: 1341 1345.
131. Schulman L. H.,, and H. Pelka. 1977. Structural requirements for aminoacylation of E. coli formylmethionine tRNA. Biochemistry 16: 4256 4265.
132. Schulman, L. H.,, and H. Pelka. 1983. Anticodon loop size and sequence requirements for recognition of formylmethionine tRNA by methionyl-tRNA synthetase. Proc. Natl. Acad. Sci. USA 80: 6755 6759.
133. Schulman, L. H.,, and H. Pelka. 1985. In vitro conversion of a methionine to a glutamine-acceptor tRNA. Biochemistry 24: 7309 7314.
134. Schulman, L. H.,, and H. Pelka. 1988. Anticodon switching changes the identity of methionine and valine transfer RNAs. Science 242: 765 768.
135. Schulman, L. H.,, and H. Pelka. 1989. The anticodon contains a major element of the identity of arginine transfer RNAs. Science 246: 1595 1597.
136. Schulman, L. H.,, and H. Pelka. 1990. An anticodon change switches the identity of E. coli tRNA Metm from methionine to threonine. Nucleic Acids Res. 18: 285 289.
137. Schulman, L. H.,, and H. Pelka. 1991. Unpublished data.
138. Senger, B.,, L. Despons,, P. Walter,, and F. Fasiolo. 1992. The anticodon triplet is not sufficient to confer methionine acceptance to a transfer RNA. Proc. Natl. Acad. Sci. USA 89: 10768 10771.
139. Seong, B. L.,, C.-P. Lee,, and U. L. RajBhandary. 1989. Suppression of amber codons in vivo as evidence that mutants derived from Escherichia coli initiator tRNA can act at the step of elongation in protein synthesis. J. Biol. Chem. 264: 6504 6508.
140. Seong, B. L.,, and U. L. RajBhandary. 1987. Mutants of Escherichia coli formylmethionine tRNA: a single base change enables initiator tRNA to act as an elongator in vitro. Proc. Natl. Acad. Sci. USA 84: 8859 8863.
141. Shi, J.-P.,, C. Francklyn,, K. Hill,, and P. Schimmel. 1990. A nucleotide that enhances the charging of RNA minihelix sequence variants with alanine. Biochemistry 29: 3621 3626.
142. Shi, J.-P.,, and P. Schimmel. 1991. Aminoacylation of alanine minihelices. J. Biol. Chem. 266: 2705 2708.
143. Shimizu, M. 1991. Personal communication.
144. Shimizu, M.,, H. Asahara,, K. Tamura,, T. Hasegawa,, and H. Himeno. 1992. The role of anticodon bases and the discriminator nucleotide in the recognition of some E. coli tRNAs by their aminoacyl-tRNA synthetases. J. Mol. Evol. 35: 436 443.
145. Shimura, Y.,, A. Aono,, H. Ozeki,, A. Sabrabhai,, H. Lamfrom,, and J. Abelson. 1972. Mutant tyrosine tRNA of altered amino acid specificity. FEBS Lett. 22: 144 148.
146. Singer, C. E.,, and G. R. Smith. 1972. Histidine regulation in Salmonella typhimurium. J. Biol. Chem. 247: 2989 3000.
147. Smith, J. D., 1979. Suppressor tRNAs in prokaryotes, p. 109 125. In J. E. Celis, and J. D. Smith (ed.), Nonsense Mutations and tRNA Suppressors. Academic Press, Inc., New York.
148. Smith, J. D.,, and J. E. Celis. 1973. Mutant tyrosine transfer RNA that can be charged with glutamine. Nature New Biol. 243: 66 71.
149. Springer, M.,, M. Graffe,, J. S. Butler,, and M. Grunberg-Manago. 1986. Genetic definition of the translational operator of the threonine-tRNA ligase gene in Escherichia coli. Proc. Natl. Acad. Sci. USA 83: 4384 4388.
150. Springer, M.,, M. Graffe,, J. Dondon,, and M. Grunberg-Manago. 1989. tRNA-like structures and gene regulation at the translational level: a case of molecular mimicry in Escherichia coli. EMBO J. 8: 2417 2424.
151. Springer, M.,, M. Graffe,, J. Dondon,, M. Grunberg-Manago,, P. Romby,, B. Ehresmann,, and C. Ehresmann,, and J.-P. Ebel. 1988. Translational control in E. coli: the case of threonyl-tRNA synthetase. Biosci. Rep. 8: 619 632.
152. Sprinzl, M.,, T. Hartmann,, J. Weber,, J. Blank,, and R. Zeidler. 1989. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 17: rl rl72.
153. Squires, C.,, and J. Carbon. 1971. Normal and mutant glycine transfer RNAs. Nature New Biol. 233: 274 277.
154. Stern, L.,, and L. H. Schulman. 1977. Role of anticodon bases in aminoacylation of E. coli methionine tRNAs. J. Biol. Chem. 252: 6403 6408.
155. Swanson, R.,, P. Hoben,, M. Sumner-Smith,, H. Uemura,, L. Watson,, and D. Soil. 1988. Accuracy of in vivo aminoacylation requires proper balance of tRNA and aminoacyl-tRNA synthetase. Science 242: 1548 1551.
156. Sylvers, L. A.,, K. C. Rogers,, M. Shimizu,, E. Ohtsuka,, and D. Soli. 1993. A 2-thiouridine derivative in tRNA Glu is a positive determinant for aminoacylation by Escherichia coli glutamyl-tRNA synthetase. Biochemistry 32: 3836 3841.
157. Tamura, K.,, H. Himeno,, H. Asahara,, T. Hasegawa,, and M. Shimizu. 1992. In vitro study of E. coli tRNA Arg and tRNA Lys identity elements. Nucleic Acids Res. 20: 2335 2339.
158. Theobald, A.,, M. Springer,, M. Grunberg-Manago,, J.-P. Ebel,, and R. Giege. 1974. Tertiary structure of Escherichia coli tRNA THR3 in solution and interaction of this tRNA with the cognate threonyl-tRNA synthetase. Eur. J. Biochem. 175: 511 524.
159. Tinkle-Peterson, E.,, and O. C. Uhlenbeck. 1992. Determination of recognition nucleotides for Escherichia coli phe-nylalanyl-tRNA synthetase. Biochemistry 31: 10380 10389.
160. Tsai, C.-H.,, and T. W. Dreher. 1991. Turnip yellow mosaic virus RNAs with anticodon loop substitutions that result in decreased valylation fail to replicate efficiently. J. Virol. 65: 3060 3067.
161. Uhlenbeck, O. C. 1986. Structure and function of RNA. Chemica Scripta 26B: 97.
162. Varshney, U.,, C.-P. Lee,, and U. L. RajBhandary. 1991. Direct analysis of aminoacylation levels of tRNAs in vivo. Application to studying recognition of Escherichia coli initiator tRNA mutants by glutaminyl-tRNA synthetase. J. Biol. Chem. 266: 24712 24718.
163. Varshney, U.,, C. P. Lee,, B. L. Seong,, and U. L. RajBhandary. 1991. Mutants of initiator tRNA that function both as initiators and elongators. J. Biol. Chem. 266: 18018 18024.
164. Varshney, U.,, and U. L. RajBhandary. 1990. Initiation of protein synthesis from a termination codon. Proc. Natl. Acad. Sci. USA 87: 1586 1590.
165. Westhof, E.,, P. Dumas,, and D. Moras. 1985. Crystallographic refinement of yeast aspartic acid transfer RNA. J. Mol. Biol. 184: 119 145.
166. Yamao, F.,, H. Inokuchi,, A. Cheung,, H. Ozeki,, and D. Söll. 1982. Escherichia coli glutaminyl-tRNA synthetase. J. Biol. Chem. 257: 11639 11643.
167. Yaniv, M.,, W. R. Folk,, P. Berg,, and L. Soli. 1974. A single mutational modification of a tryptophan-specific transfer RNA permits aminoacylation by glutamine and translation of the codon UAG. J. Mol. Biol. 86: 245 260.
168. Yams, M. 1972. Intrinsic precision of aminoacyl-tRNA synthesis enhanced through parallel systems of ligands. Nature New Biol. 239: 106 108.
169. Yarus, M. 1988. tRNA identity: a hair of the dogma that bit us. Cell 55: 739 741.
170. Yarus, M.,, S. W. Cline,, P. Wier,, L. Breeden,, and R. C. Thompson. 1986. Actions of the anticodon arm in translation on the phenotypes of RNA mutants. J. Mol. Biol. 192: 235 255.
171. Yarus, M.,, R. G. Knowlton,, and L. Soli,. 1977. Aminoacylation of the ambivalent Su +7 amber suppressor tRNA, p. 391 408. In H. Vogel (ed.), Nucleic Acid-Protein Recognition. Academic Press, Inc., New York.
172. Yokoyama, S. 1991. Personal communication.

Tables

Generic image for table
Table 1

Role of the anticodon in recognition of tRNAs

Ec, Sc, L, lysidine; H, Human; Bov, bovine; Q, queuosine; and W, wheat germ.

The tRNA amber and opal suppressors are inactive in vivo.

Anticodon is required for in vivo identity ( ).

, and refer to positions of the three anticodon nucleotides.

See text for additional references.

Based on the fact that serine isoacceptor tRNAs contain base changes at all three positions of the anticodon.

Additional anticodon recognition sites may exist.

Data using the tRNA-like structure from TYMV RNA.

Citation: Pallanck L, Pak M, Schulman L. 1995. tRNA Discrimination in Aminoacylation, p 371-394. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch18
Generic image for table
Table 2

amber-suppressor tRNAs classified according to their amino acid acceptor identities

Data from reference and additional references therein.

Also known as (SuUAG).

Also known as (SuUAG), (SuUAG), and (SuUAG), respectively.

Citation: Pallanck L, Pak M, Schulman L. 1995. tRNA Discrimination in Aminoacylation, p 371-394. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch18
Generic image for table
Table 3

Role of discriminator base in identity of tRNAs

Citation: Pallanck L, Pak M, Schulman L. 1995. tRNA Discrimination in Aminoacylation, p 371-394. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch18
Generic image for table
Table 4

Summary of known recognition elements for some tRNAs

Additional as yet unidentified recognition elements may also be present. See Table 1 for abbreviations.

See text for additional references.

See Table 3 for additional references.

See Table 1 for additional references.

Citation: Pallanck L, Pak M, Schulman L. 1995. tRNA Discrimination in Aminoacylation, p 371-394. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch18

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error