1887

Chapter 26 : The Selenocysteine-Inserting tRNA Species: Structure and Function

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

The Selenocysteine-Inserting tRNA Species: Structure and Function, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818333/9781555810733_Chap26-1.gif /docserver/preview/fulltext/10.1128/9781555818333/9781555810733_Chap26-2.gif

Abstract:

The occurrence of the amino acid selenocysteine in proteins was first demonstrated for protein A of glycine reductase from in 1976, and questions were immediately raised on its mechanism of incorporation. At that time, the universality of the 20 proteinogenic amino acids was taken for granted, as was the fact that the 64 codons of the "universal" genetic code are assigned either to code for one of these 20 amino acids or to serve as termination signals. Thus, it seemed unlikely that selenocysteine would be considered as a classical amino acid. In principle, the definition of such a 21st amino acid would require (i) that its incorporation proceeds via a cotranslational mechanism, (ii) that it is directed by a specific codon, and (iii) that a specific tRNA mediates its transport to the ribosome. This chapter illustrates that selenocysteine fulfills these criteria. It first describes the unusual structural properties of tRNA, and then discusses the unique pathway of selenocysteine insertion that has been worked out for , which has finally led to the proposal of a model for the co-translational incorporation process at the ribosome. The chapter further compares the pathway established in with the current knowledge on the mammalian system. Finally, it addresses the interesting question of the evolution of the pathway for the incorporation of selenocysteine that differs from that of the 20 standard amino acids in many respects.

Citation: Baron C, Bock A. 1995. The Selenocysteine-Inserting tRNA Species: Structure and Function, p 529-544. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch26
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Cloverleaf structures of tRNA from (A) and (B). The numbering of tRNAS is according to Sprinzl et al. ( ); the nucleotides 5a and 67a designate extra nucleotides renamed in order to keep the standard numbering system ( ). The numbering of tRNA is according to Sturchler et al. ( ); the extra nucleotides in the acceptor stem were renamed to keep the standard numbering system.

Citation: Baron C, Bock A. 1995. The Selenocysteine-Inserting tRNA Species: Structure and Function, p 529-544. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Stereo view of three-dimensional model of solution structure of tRNA from ( ).

Citation: Baron C, Bock A. 1995. The Selenocysteine-Inserting tRNA Species: Structure and Function, p 529-544. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Biosynthesis and incorporation of selenocysteine into proteins of compared with that of the 20 standard amino acids. The selenocysteine pathway involves the action of seryl-tRNA synthetase and the gene products. The discrimination of the UGA (selenocysteine) from UGA (stop) codons is mediated by a stem-loop structure immediately 3' to the UGA codons in the and mRNAs. Selenium is also incorporated in the anticodon of tRNAclu and tRNALys isoacceptors; the modification at U34 is 5-methylaminomethyl-2-selenouridine (mnm5se2U).

Citation: Baron C, Bock A. 1995. The Selenocysteine-Inserting tRNA Species: Structure and Function, p 529-544. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Postulated reaction mechanism for conversion of seryl-tRNA to selenocysteyl-tRNA in active site of selenocysteine synthase ( ).

Citation: Baron C, Bock A. 1995. The Selenocysteine-Inserting tRNA Species: Structure and Function, p 529-544. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Cloverleaf structure of mutated tRNA variant (tRNAdelAc), where extra base pair 5a-67a in acceptor stem has been deleted, and functional consequences of this deletion.

Citation: Baron C, Bock A. 1995. The Selenocysteine-Inserting tRNA Species: Structure and Function, p 529-544. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Electron micrographs of selenocysteine synthase from different angles free and complexed with aminoacryloyl-tRNASec ( ). Selenocysteine synthase is shown symmetrized fivefold in top view orientation (A) and in side view projection (B). Selenocysteine synthase is also shown bound with five molecules of aminoacryloyl-tRNASec in top view projection (C) and in side view projection (D). Note the additional densities under and above the plane, which correspond to the additional densities of the tRNA.

Citation: Baron C, Bock A. 1995. The Selenocysteine-Inserting tRNA Species: Structure and Function, p 529-544. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

Dissection of mRNA determinants for selenocysteine insertion into proteins of A DNA segment corresponding to the UGA codon and the 3' adjacent stem-loop structure of the mRNA was fused in the correct reading frame into the gene. Selenocysteine insertion was assessed by the measurement of β-galactosidase activity and selenium labeling experiments (not shown). The values displayed correspond to the read-through activities of constructs in which the mutations indicated had been introduced, in percent relative to that of a wild-type construct ( ).

Citation: Baron C, Bock A. 1995. The Selenocysteine-Inserting tRNA Species: Structure and Function, p 529-544. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8
Figure 8

Quaternary complex formation of the SELB protein with GTP, selenocysteyl-tRNASec, and mRNA recognition element of fdhF mRNA demonstrated by gel retardation assays in nondenaturing polyacrylamide gels ( ). A: 5'-[32P]-labeled mRNA transcript was incubated with increasing amounts of SELB • GTP or SELB-GTP• selenocysteyl-tRNASec complex as indicated and subjected to electrophoretic separation. B: Parallel experiment performed on unlabeled mRNA and [14C]-amino acid-labeled tRNASec.

Citation: Baron C, Bock A. 1995. The Selenocysteine-Inserting tRNA Species: Structure and Function, p 529-544. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 9
Figure 9

Model for co-translational incorporation of selenocysteine into proteins.

Citation: Baron C, Bock A. 1995. The Selenocysteine-Inserting tRNA Species: Structure and Function, p 529-544. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818333.chap26
1. Atkins, J. F.,. R. B. Weiss,, and R. F. Gesteland. 1990. Ribosome gymnastics: degree of difficulty 9.5, style 10.0. Cell 62: 413 423.
2. Atwater, J. A.,. R. Wisdom,, and I. M. Verma. 1990. Regulated mRNA stability. Annu. Rev. Genet. 24: 519 541.
3. Axley, M. J.,. A. Bock,, and T. C. Stadtman. 1991. Catalytic properties of an Escherichia coli formate dehydrogenase mutant in which sulfur replaces selenium. Proc. Natl. Acad. Sci. USA 88: 8450 8454.
4. Baron, C.,, and A. Bock. 1991. The length of the aminoacyl-acceptor stem of the selenocysteine-specific tRNASec of Escherichia coli is the determinant for binding to elongation factors SELB or Tu. J. Biol. Chem. 266: 20375 20379.
5. Baron, C.,, J. Heider,, and A. Bock. 1989. Mutagenesis of selC, the gene for the selenocysteine-inserting tRNA-species in E. coli: effects on in vivo function. Nucleic Acids Res. 18: 6761 6766.
6. Baron, C.,, J. Heider,, and A. Bock. 1993. Interaction of translation factor SELB with the formate dehydrogenase H se-lenopeptide mRNA. Proc. Natl. Acad. Sci. USA 90: 4181 4185.
7. Baron, C.,, E. Westhof,, A. Bock,, and R. Giegé. 1993. Solution structure of selenocysteine-inserting tRNASec from Escherichia coli. Comparison with canonical tRNAser. J. Mol. Biol. 231: 274 292.
8. Behne, D.,. H. Hilmert,. S. Scheid,. H. Gessner,, and W. Elger. 1988. Evidence for specific selenium target tissues and new biologically important selenoproteins. Biochem. Biophys. Acta 966: 12 21.
9. Behne, D.,. A. Kyriakopoulos,. H. Meinhold,, and J. Köhrle. 1990. Identification of Type I iodothyronine 5'-deiodinase as a selenoenzyme. Biochem. Biophys. Res. Commun. 173: 1143 1149.
10. Berg, B. L.,, C. Baron,, and V. Stewart. 1991. Nitrate-inducible formate dehydrogenase in Escherichia coli K-12. II. Evidence that a mRNA stem-loop structure is essential for decoding opal (UGA) as selenocysteine. J. Biol. Chem. 266: 22386 22391.
11. Berg, B. L.,, J. Li,, J. Heider,, and V. Stewart. 1991. Nitrate-inducible formate dehydrogenase in Escherichia coli K-12. I. Nucleotide sequence of the fdnGHl operon and evidence that opal (UGA) encodes selenocysteine. J. Biol. Chem. 266: 22380 22385.
12. Berry, M. L.,. L. Banu,. Y. Chen,. S. J. Mandei,. J. D. Kieffer,. J. W. Harney,, and P. R. Larsen. 1991. Recognition of UGA as a selenocysteine codon in type I deiodinase requires sequences in the 3' untranslated region. Nature (London) 353: 273 276.
13. Berry, M. L.,. L. Banu,, and P. R. Larsen. 1991. Type I iodothyronine deiodinase is a selenocysteine-containing enzyme. Nature (London) 349: 438 440.
14. Berry, M.,. J. D. Kieffer,. J. W. Harney,, and P. R. Larsen. 1991. Selenocysteine confers the biochemical properties characteristic of the type I iodothyronine deiodinase. J. Biol. Chem. 266: 14155 14158.
15. Bock, A.,. K. Forchhammer,. J. Heider,, and C. Baron. 1991. Selenoprotein synthesis: an expansion of the genetic code. Trends Biochem. Sci. 16: 463 467.
16. Bock, A.,. K. Forchhammer,. J. Heider,. W. Leinfelder,. G. Sawers,. B. Veprek,, and F. Zinoni. 1991. Selenocysteine: the 21st amino acid. Mol. Microbiol. 5: 515 520.
17. Brown, C. M.,. P. A. Stockwell,. C. N. A. Trotman,, and W. P. Tate. 1990. The signal for the termination of protein synthesis in prokaryotes. Nucleic Acids Res. 18: 2079 2086.
18. Casey, J. L.,. M. W. Hentze,. D. K. Koeller,. S. W. Caughman,. T. A. Rouault,. R. D. Klausner,, and J. B. Harford. 1988. Iron-responsive elements: regulatory RNA sequences that control mRNA levels and translation. Science 240: 924 928.
19. Chambers, I.,. J. Frampton,. P. Goldfarb,. N. Affara,. W. Mc-Bain,, and P. R. Harrison. 1986. The structure of the mouse glutathione peroxidase gene: the selenocysteine in the active site is encoded by the "termination" codon TGA. EMBO J. 5: 1221 1227.
20. Cheong, C.,, G. Varani,, and I. Tinoco, Jr. 1990. Solution structure of an unusually stable RNA hairpin, 5'-GGAC(UUCG)GUCC. Nature (London) 346: 680 682.
21. Ching, W. M.,. L. Tsai,, and A. J. Wittwer. 1985. Selenium-containing transfer RNAs. Curr. Top. Cell. Regul. 27: 497 507.
22. Cone, J. E.,. R. Martin del Rio,. J. N. Davis,, and T. C. Stadtman. 1976. Chemical characterization of the selenoprotein component of clostridial glycine reductase: identification of selenocysteine as the organoselenium moiety. Proc. Natl. Acad. Sci. USA 73: 2659 2663.
23. Diamond, A. M.,. B. Dudock,, and D. Hatfield. 1981. Structure and properties of a bovine liver UGA suppressor serine tRNA with a tryptophan anticodon. Cell 25: 497 506.
24. Diamond, A. M.,. Y. Montero-Puerner,. B. J. Lee,, and D. Hatfield. 1990. Selenocysteine tRNAs are likely generated by tRNA editing. Nucleic Acids Res. 18: 6727.
25. Ehrenreich, A.,. K. Forchhammer,. P. Tormay,. B. Veprek,, and A. Bock. 1992. Selenoprotein synthesis in E. coli. Purification and characterization of the enzyme catalyzing selenium activation. Eur. J. Biochem. 206: 767 773.
26. Engelhardt, H.,. K. Forchhammer,. S. Muller,. A. Engel,, and A. Bock. 1992. Structure of selenocysteine synthase from Escherichia coli and location of tRNA in the seryl-tRNASec-en-zyme complex. Mol. Microbiol. 6: 3461 3467.
27. Flohé, L., 1989. The selenoprotein glutathione peroxidase, p. 643 731. In D. Dolphin,, R. Poulson,, and O. Avramovic (ed.), Glutathione: Chemical, Biochemical, and Medical Aspects, Part A. John Wiley & Sons, Inc., New York.
28. Forchhammer, K.,, and A. Bock. 1991. Selenocysteine synthase from Escherichia coli. Analysis of the reaction sequence. J. Biol. Chem. 266: 6324 6328.
29. Forchhammer, K.,, K. BoesmUler,, and A. Böck. 1991. The function of selenocysteine synthase and SELB in the synthesis and incorporation of selenocysteine. Biochimie 73: 1481 1486.
30. Forchhammer, K.,, L. Leinfelder,, and A. Bock. 1989. Identification of a novel translation factor necessary for the incorporation of selenocysteine into protein. Nature (London) 342: 453 456.
31. Forchhammer, K.,, W. Leinfelder,. K. Boesmiller,. B. Veprek,, and A. Bock. 1991. Selenocysteine synthase from Escherichia coli. Nucleotide sequence of the gene (selA) and purification of the protein. J. Biol. Chem. 266: 6318 6323.
32. Forchhammer, K.,, K. P. Rücknagel,, and A. Böck. 1990. Purification and biochemical characterization of SELB, a translation factor involved in selenoprotein synthesis. J. Biol. Chem. 265: 9346 9350.
33. Förster, C.,, G. Ott,, K. Forchhammer,, and M. Sprinzl. 1990. Interaction of a selenocysteine-incorporating tRNA with elongation factor Tu from E. coli. Nucleic Acids Res. 18: 487 491.
34. Garcia, G. E.,, and T. C. Stadtman. 1992. Clostridium stick-landii glycine reductase selenoprotein A gene: cloning, sequencing, and expression in Escherichia coli. J. Bacteriol. 174: 7080 7089.
35. Gavis, E. R.,, and R. Lehmann. 1992. Localization of nanos RNA controls embryonic polarity. Cell 71: 301 313.
36. Gelpi, C.,, E. J. Sontheimer,, and J. L. Rodriguez-Sanchez. 1992. Autoantibodies against a serine tRNA-protein complex implicated in cotranslational selenocysteine insertion. Proc. Natl. Acad. Sci. USA 89: 9739 9743.
37. Gesteland, R. F.,, R. B. Weiss,, and J. F. Atkins. 1992. Receding: reprogrammed genetic decoding. Science 257: 1640 1641.
38. Halboth, S.,, and A. Klein. 1992. Methanococcus voltae harbors four gene clusters potentially encoding two [NiFe] and two [NiFeSe] hydrogenases, each of the cofactor F420-reduc-ing or F420-non-reducing types. Mol. Gen. Genet. 233: 217 224.
39. Hatfield, D.,. I. S. Choi,, S. Mischke,, and L. D. Owens. 1992. Selenocysteyl-tRNAs recognize UGA in Beta vulgaris, a higher plant, and in Gliocladium virens, a filamentous fungus. Bio-chem. Biophys. Res. Commun. 184: 254 259.
40. Hatfield, D.,. B. J. Lee,. L. Hampton,, and A. M. Diamond. 1991. Selenium induces changes in the selenocysteine tRNA[Ser]Sec population in mammalian cells. Nucleic Acids Res. 19: 939 943.
41. Hatfield, D.,. B. J. Lee,. N. M. Price,, and T. C. Stadtman. 1991. Selenocysteyl-tRNA occurs in the diatom Thalassiosira and in the ciliate Tetrahymena. Mol. Microbiol. 5: 1183 1186.
42. Hatfield, D.,. D. W. E. Smith,. B. L. Lee,. P. J. Worland,, and S. Oroszlan. 1990. Structure and function of suppressor tRNAs in higher eucaryotes. Crit. Rev. Biochem. Mol. Biol. 25: 71 96.
43. Heider, J.,. C. Baron,, and A. Bock. 1992. Coding from a distance: dissection of the mRNA determinants required for the incorporation of selenocysteine into protein. EMBO J. 11: 3759 3766.
44. Hill, K. E.,. R. S. Lloyd,. J. G. Yang,, R. Read,, and R. F. Burk. 1991. The cDNA for rat selenoprotein P contains 10 TGA codons in the open reading frame. J. Biol. Chem. 266: 10050 10053.
45. Hodges, P.,, and J. Scott. 1992. Apolipoprotein B mRNA editing: a new tier for the control of gene expression. Trends Biochem. Sci. 17: 77 81.
46. Ip, C., 1989. Is selenium metabolism necessary for its anticar-cinogenic activity?, p. 305 312. In A. Wendel (ed.), Selenium in Biology and Medicine. Springer-Verlag, Berlin.
47. Lee, B. L.,, M. Rajagopalan,, Y. S. Kim,, K. H. You,, K. B. Jacobson,, and D. Hatfield. 1990. Selenocysteine tRNA[Ser]Sec gene is ubiquitous within the animal kingdom. Mol. Cell. Biol. 10: 1940 1949.
48. Lee, B. L.,. P. J. Worland,. J. N. Davis,. T. C. Stadtman,, and D. Hatfield. 1989. Identification of a selenocysteyl-tRNASer in mammalian cells that recognizes the nonsense codon UGA. J. Biol. Chem. 264: 9724 9727.
49. Leinfelder, W.,. K. Forchhammer,. B. Veprek,. E. Zehelein,, and A. Bock. 1990. In vitro synthesis of selenocysteyl-tRNAUCA from seryl-tRNAUCA: involvement and characterization of the selD gene product. Proc. Natl. Acad. Sci. USA 87: 543 547.
50. Leinfelder, W.,. K. Forchhammer,. F. Zinoni,. G. Sawers,. M. A. Mandrand-Berthelot,, and A. Bock. 1988. Escherichia coli genes whose products are involved in selenium metabolism. J. Bacteriol. 170: 540 546.
51. Leinfelder, W.,. T. C. Stadtman,, and A. Bock. 1989. Occurrence in vivo of selenocysteyl-tRNAUCA in Escherichia coli. Effect of sel mutations, J. Biol. Chem. 264: 9720 9723.
52. Leinfelder, W.,. E. Zehelein,. M. A. Mandrand-Berthelot,, and A. Bock. 1988. Gene for a novel tRNA species that cotransla-tionally inserts selenocysteine. Nature (London) 331: 723 725.
53. Li, N. Q.,. P. S. Reddy,, K. Thyagaraju,. A. P. Reddy,. B. L. Hsu,. R. W. Scholz,. C. P. D. Tu,, and C. C. Reddy. 1990. Elevation of rat liver mRNA for selenium-dependent glutathione peroxidase by selenium deficiency. J. Biol. Chem. 265: 108 113.
54. Li, W. Q.,, and M. Yaras. 1992. Bar to normal UGA translation by the selenocysteine tRNA. J. Mol. Biol. 223: 9 15.
55. Menon, N. K.,. H. D. Peck, Jr.,, J. Le Gall,, and A. E. Przybyla. 1988. Cloning and sequencing of the genes encoding the large and small subunits of the periplasmic [NiFeSe] hydrogenase of Desulfovibrio baculatus. J. Bacteriol. 170: 4429.
56. Mizutani, T. 1989. Some evidence of the enzymatic conversion of bovine suppressor phosphoseryl-tRNA to se-lenocysteyl-tRNA. FEBS Lett. 250: 142 146.
57. Mizutani, T.,, H. Kurata,, and K. Yamada. 1991. Study of mammalian selenocysteyl-tRNA synthesis with [75Se] HSe-. FEBS Lett. 289: 59 63.
58. Mizutani, T.,, H. Kurata,, K. Yamada,, and T. Totsuka. 1992. Some properties of murine selenocysteine synthase. Biochem.J. 284: 827 834.
59. Mizutani, T.,, N. Maruyama,, T. Hitaka,, and Y. Sukenaga. 1989. The detection of natural opal suppressor seryl-tRNA in Escherichia coli by the dot blot hybridization and its phosphorylation by a tRNA kinase. FEBS Lett. 247: 345 348.
60. Mullenbach, G. T.,, A. Tabrizi,, B. D. Irvine,. G. I. Bell,, J. A. Tainer,, and R. B. Hallewell. 1988. Selenocysteine's mechanism of incorporation and evolution revealed in cDNAs of three glutathione peroxidases. Protein Eng. 2: 239 246.
60a. Müller, S.,, H. Senn,, B. Gsell,, W. Vetter,, C. Baron,, and A. Böck. 1994. The formation of diselenide bridges in proteins by incorporation of selenocysteine residues: biosynthesis and characterisation of (Se)2-thioredoxin. Biochemistry 33: 3404 3412.
61. Normanly, J.,. T. Ollick,, and J. Abelson. 1992. Eight base changes are sufficient to convert a leucine-inserting tRNA into a serine-inserting tRNA. Proc. Natl. Acad. Sci. USA 89: 5680 5684.
62. Osawa, S.,, T. H. Jukes,. K. Watanabe,, and A. Muto. 1992. Recent evidence for evolution of the genetic code. Microbiol. Rev. 56: 229 264.
63. Puglisi, J. D.,, J. R. Wyatt,, and I. Tinoco, Jr. 1991. RNA pseudoknots. Accounts Chem. Res. 24: 152 158.
64. Rein, A.,, and J. G. Levin. 1992. Readthrough suppression in the mammalian type C retroviruses and what it has taught us. New Biologist 4: 283 289.
65. Roy, K. L.,, and D. Söil. 1970. Purification of five serine transfer ribonucleic acid species from Escherichia coli and their acylation by homologous and heterologous seryl-transfer ribonucleic acid synthetases. J. Biol. Chem. 245: 1394 1400.
66. Schön, A.,, A. Bock,. G. Ott,, M. Sprinzl,, and D. Soli. 1989. The selenocysteine-inserting opal suppressor serine tRNA from E. coli is highly unusual in structure and modification. Nucleic Acids Res. 17: 7159 7165.
67. Schuckelt, R.,, R. Brigelius -Flohé,, M. Maiorino,, A. Roveri,, J. Reumkens,, W. Stra/3burger,, F. Ursini,, B. Wolf,, and L. Flohé. 1991. Phospholipid hydroperoxide glutathione peroxidase is a selenoenzyme distinct from the classical glutathione peroxidase as evident from cDNA and amino acid sequencing. Free Rad. Res. Commun. 14: 343 361.
68. Sprinzl, M.,, N. Dank,. S. Nock,, and A. Schön. 1991. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 19( Suppl.): 2127 2171.
69. Stadtman, T. C. 1990. Selenium biochemistry. Annu. Rev. Biochem. 59: 111 127.
70. Sturchler, C.,, E. Westhof,, P. Carbon,, and A. Krol. 1993. Unique secondary and tertiary structural features of the euca-ryotic selenocysteine tRNASec. Nucleic Acids Res. 21: 1073 1079.
71. Sunde, R. A. 1990. Molecular biology of selenoproteins. Annu. Rev. Nutr. 10: 451 474.
72. Takahashi, K.,, M. Akasaka,, Y. Yamamoto,, C. Kobayashi,, J. Mizoguchi,, and J. Koyama. 1990. Primary structure of human plasma glutathione peroxidase deduced from cDNA sequences. J. Biochem. 108: 145 148.
73. Veres, Z.,. L. Tsai,, T. D. Scholz,, M. Politino,. R. S. Balaban,, and T. C. Stadtman. 1992. Synthesis of 5-meth-ylaminomethyl-2-selenouridine in tRNAs: 31P NMR studies show the labile selenium donor synthesized by the selD gene product contains selenium bonded to phosphorus. Proc. Natl. Acad. Sci. USA 89: 2975 2979.
74. Wickens, M. 1990. In the beginning is the end: regulation of poly(A) addition and removal during early development. Trends Biochem. Sci. 15: 320 324.
75. Wittwer, A. J.,, and W. M. Ching. 1989. Selenium-containing tRNAGlu and tRNALys from Escherichia coli: purification, codon specificity and translational activity. BioFactors 2: 27 34.
76. Wittwer, A. J.,, and T. C. Stadtman. 1986. Biosynthesis of 5-methylaminomethyl-2-selenouridine, a naturally occurring nucleoside in Escherichia coli tRNA. Arch. Biochem. Biophys. 248: 540 550.
77. Woese, C. R. 1987. Bacterial evolution. Microbiol. Rev. 51: 221 271.
78. Wyatt, J. R.,. J. D. Puglisi,, and I. Tinoco, Jr. 1989. RNA folding: pseudoknots, loops and bulges. BioEssays 11: 100 106.
79. Young, R. A.,, and I. I. Kaiser. 1975. Aminoacylation of Escherichia coli cysteine tRNA by selenocysteine. Arch. Biochem. Biophys. 171: 483 489.
80. Zinoni, R.,, A. Birkmann,, W. Leinfelder,, and A. Bock. 1987. Cotranslational insertion of selenocysteine into formate dehydrogenase from Escherichia coli directed by a UGA codon. Proc. Natl. Acad. Sci. USA 84: 3156 3160.
81. Zinoni, F.,. A. Birkmann,, T. C. Stadtman,, and A. Böck. 1986. Nucleotide sequence and expression of the selenocysteine-con-taining polypeptide of formate dehydrogenase (formate-hy-drogen-lyase-linked) from Escherichia coli. Proc. Natl. Acad. Sci. USA 83: 4650 4654.
82. Zinoni, F.,. J. Heider,, and A. Böck. 1990. Features of the formate dehydrogenase mRNA necessary for decoding of the UGA codon as selenocysteine. Proc. Natl. Acad. Sci. USA 87: 4660 4664.

Tables

Generic image for table
Table 1

Selenocysteine incorporation into proteins of all three lines of descent

This table lists only those selenoproteins where the presence of the uga codon was confirmed by sequencing of the corresponding genes.

Citation: Baron C, Bock A. 1995. The Selenocysteine-Inserting tRNA Species: Structure and Function, p 529-544. In tRNA. ASM Press, Washington, DC. doi: 10.1128/9781555818333.ch26

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error