1887

Chapter 14 : Genetic Approaches to Understanding Pathogenicity

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Genetic Approaches to Understanding Pathogenicity, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818340/9781555810825_Chap14-1.gif /docserver/preview/fulltext/10.1128/9781555818340/9781555810825_Chap14-2.gif

Abstract:

This chapter presents selected examples of how genetic approaches have been used to identify virulence factors. The genetic approaches are based on five distinct concepts and assumptions about what might characterize virulence genes. The identification of -specific genes is based on the potential relationship between a pathogen-specific gene and the pathogenic phenotype. The biochemical and molecular functions of the gene products have remained elusive, but current speculations suggest that they may be involved in bacterial modulation of host immune cells. In summary, the comparison of strains with nonpathogenic strains or species has been a very useful approach to the identification of virulence genes. In many cases, the subsequent identification and mutagenesis of bacterial genes involved in putative virulence phenotypes have led to the identification of virulence genes. An alternative and more general approach has been to study in vitro systems in which species are able to survive interaction with primary or cultured macrophages. Examination of certain noninvasive mutants in animal infection models provides strong support for the importance of bacterial entry into intestinal cells. Bacterial binding and utilization of the enterochelin-iron complex is facilitated by Chr-TonB, an outer membrane receptor. Bacterial motility and chemotaxis require 50 different genes which encode chemical sensors, physical motors, directional switches, and components of the flagellar structure, as well as specific factors which export and assemble the flagellar structure. In fact, it has been speculated that motility and chemotaxis may be important for virulence.

Citation: Lee C. 1994. Genetic Approaches to Understanding Pathogenicity, p 215-234. In Miller V, Kaper J, Portnoy D, Isberg R (ed), Molecular Genetics of Bacterial Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555818340.ch14

Key Concept Ranking

Outer Membrane Proteins
0.47013167
Type 1 Fimbriae
0.44468454
Peyer's Patches
0.44468454
Urinary Tract Infections
0.41032588
Bacterial Virulence Factors
0.4052045
0.47013167
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555818340.chap14
1. Alpuche Aranda, C. M.,, J. A. Swanson,, W. P. Loomis,, and S. I. Miller. 1992. Salmonella typhimurium activates virulence gene transcription within acidified macrophage phagosomes. Proc. Natl. Acad. Sci. USA 89: 10079 10083.
2. Altmeyer, R. M.,, J. K. McNern,, J. C. Bossio,, I. Rosenshine,, B. B. Finlay,, and J. E. Galán. 1993. Cloning and molecular characterization of a gene involved in Salmonella adherence and invasion of cultured epithelial cells. Mol. Microbiol. 7: 89 98.
3. Bajaj, V.,, and C. A. Lee. Unpublished data.
4. Behlau, I.,, and S. I. Miller. 1993. A PhoP-repressed gene promotes Salmonella typhimurium invasion of epithelial cells. J. Bacterio!. 175: 4475 4484.
5. Benjamin, W. H., Jr.,, C. L. Turnbough, Jr.,, B. S. Posey,, and D. E. Briles. 1985. The ability of Salmonella typhimurium to produce the siderophore enterobactin is not a virulence factor in mouse typhoid. Infect. Immun. 50: 392 397.
6. Benjamin, W. H., Jr.,, J. Yother,, P. Hall,, and D. E. Briles. 1991. The Salmonella typhimurium locus mviA regulates virulence in Ity s but not Ity r mice: functional mviA results in avirulence; mutation (nonfunctional) mviA results in virulence. J. Exp. Med. 174: 1073 1083.
7. Bette, J.,, and B. B. Finlay. 1992. Identification of Salmonella typhimurium invasiveness loci. Can. J. Microbiol. 38: 852 857.
8. Bliska, J. B.,, J. E. Galán,, and S. Falkow. 1993. Signal transduction in the mammalian cell during bacterial attachment and entry. Cell 73: 903 920.
9. Buchmeier, N. A.,, C. J. Lipps,, M. Y. So,, and F. Heffron. 1993. Recombination-deficient mutants of Salmonella typhimurium are avirulent and sensitive to the oxidative burst of macrophages. Mol. Microbiol. 7: 933 936.
10. Carter, P. B.,, and F. M. Collins. 1974. The route of enteric infection in normal mice. J. Exp. Med. 139: 1189 1203.
11. Collins, F. M. 1969. Effect of specific immune mouse serum on the growth of Salmonella enteritidis in nonvaccinated mice challenged by various routes. J. Bacteriol. 97: 667 675.
12. Curtiss, R., III,, and S. M. Kelly. 1987. Salmonella typhimurium deletion mutants lacking adenylate cyclase and cyclic AMP receptor protein are avirulent and immunogenic. Infect. Immun. 55: 3035 3043.
13. Dormán, C. J.,, S. Chatfield,, C. F. Higgins,, C. Hayward,, and G. Dougan. 1989. Characterization of porin and ompR mutants of a virulent strain of Salmonella typhimurium: ompR mutants are attenuated in vivo. Infect. Immun. 57: 2136 2140.
14. Elsinghorst, E. A. Personal communication.
15. Elsinghorst, E. A.,, L. S. Baron,, and D. J. Kopecko. 1989. Penetration of human intestinal epithelial cells by Salmonella: molecular cloning and expression of Salmonella typhi invasion determinants in Escherichia coli. Proc. Natl. Acad. Sci. USA 86: 5173 5177.
16. Falkow, S. 1988. Molecular Koch's postulates applied to microbial pathogenicity. Rev. Infect. Dis. 10: S274 S276.
17. Fields, P. I.,, E. A. Groisman,, and F. Heffron. 1989. A Salmonella locus that controls resistance to microbicidal proteins from phagocytic cells. Science 243: 1059 1062.
18. Fields, P. I.,, R. V. Swanson,, C. G. Haidaris,, and F. Heffron. 1986. Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proc. Natl. Acad. Sci. USA 83: 5189 5193.
19. Finlay, B. B.,, M. N. Starnbach,, >C. L. Francis,, B. A. Stocker,, S. Chatfield,, G. Dougan,, and S. Falkow. 1988. Identification and characterization of TnphoA mutants of Salmonella that are unable to pass through a polarized MDCK epithelial cell monolayer. Mol. Microbiol. 2: 757 766.
20. Fitte, R. 1985. Development of a DNA-DNA hybridization test for the presence of Salmonella in foods. Food Technol. 39: 95 102.
21. Galán, J. E.,, and R. Curtiss III. 1989. Cloning and molecular characterization of genes whose products allow Salmonella typhimurium to penetrate tissue culture cells. Proc. Natl. Acad. Sci. USA 86: 6383 6387.
22. Galán, J. E.,, and R. Curtiss III. 1990. Expression of Salmonella typhimurium genes required for invasion is regulated by changes in DNA supercoiling. Infect. Immun. 58: 1879 1885.
23. Groisman, E. A.,, E. Chiao,, C. J. Lipps,, and F. Heffron. 1989. Salmonella typhimurium phoP virulence gene is a transcriptional regulator. Proc. Natl. Acad. Sci. USA 86: 7077 7081.
24. Groisman, E. A.,, and F. Heffron. Personal communication.
25. Groisman, E. A.,, and H. Ochman. 1993. Cognate gene clusters govern invasion of host epithelial cells by Salmonella typhimurium and Shigella flexneri. EMBO J. 12: 3779 3787.
26. Groisman, E. A.,, C. Parra-Lopez,, M. Salcedo,, C. J. Lipps,, and F. Heffron. 1992. Resistance to host antimicrobial peptides is necessary for Salmonella virulence. Proc. Natl. Acad. Sci. USA 89: 11939 11943.
27. Groisman, E. A.,, M. A. Sturmoski,, F. R. Solomon,, R. Lin,, and H. Ochman. 1993. Molecular, functional, and evolutionary analysis of sequences specific to Salmonella. Proc. Natl. Acad. Sci. USA 90: 1033 1037.
28. Gulig, P. A.,, H. Danbara,, D. G. Guiney,, A. J. Lax,, F. Norel,, and M. Rhen. 1993. Molecular analysis of spv virulence genes of the salmonella virulence plasmids. Mol. Microbiol. 7: 825 830.
29. Gulig, P. A.,, and T. J. Doyle. 1993. The Salmonella typhimurium virulence plamid increases the growth rate of salmonellae in mice. Infect. Immun. 61: 504 511.
30. Jones, B. D.,, and S. Falkow. Personal communication.
31. Jones, B. D.,, C. A. Lee,, and S. Falkow. 1992. Invasion of Salmonella typhimurium is affected by the direction of flagellar rotation. Infect. Immun. 60: 2475 2480.
32. Lee, C. A., and S. Falkow. 1990. The ability of Salmonella to enter mammalian cells is affected by bacterial growth state. Proc. Natl. Acad. Sci. USA 87: 4304 4308.
33. Lee, C. A.,, B. D. Jones,, and S. Falkow. 1992. Identification of a Salmonella typhimurium invasion locus by selection for hyperinvasive mutants. Proc. Natl. Acad. Sci. USA 89: 1847 1851.
34. Litwin, C. M.,, and S. B. Calderwood. 1993. Role of iron in regulation of virulence genes. Clin. Microbiol. Rev. 6: 137 149.
35. Lockman, H. A.,, and R. Curtiss III. 1990. Salmonella typhimurium mutants lacking flagella or motility remain virulent in BALB/c mice. Infect. Immun. 58: 137 143.
36. Lockman, H. A.,, and R. Curtiss III. 1992. Virulence of non-type 1-fimbriated and nonfimbriated nonflagellated Salmonella typhimurium mutants in murine typhoid fever. Infect. Immun. 60: 491 496.
37. Macnab, R. M. 1992. Genetics and biogenesis of bacterial flagella. Annu. Rev. Genet. 26: 131 158.
38. Mahan, M. J.,, J. M. Slauch,, and J. J. Mekalanos. 1993. Selection of bacterial virulence genes that are specifically induced in host tissues. Science 259: 686 688.
39. Mekalanos, J. J. 1992. Environmental signals controlling the expression of virulence determinants in bacteria. J. Bacteriol. 174: 1 7.
40. Miller, L.,, D. Maskell,, C. Hormaeche,, K. Johnson,, D. Pickard,, and G. Dougan. 1989. Isolation of orally attenuated Salmonella typhimurium following TnphoA mutagenesis. Infect. Immun. 57: 2758 2763.
41. Miller, S. I.,, A. M. Kukral,, and J. J. Mekalanos. 1989. A two component regulatory system (phoP and phoQ) controls Salmonella typhimurium virulence. Proc. Natl. Acad. Sci. USA 86: 5054 5058.
42. Miller, S. I.,, and J. J. Mekalanos. 1990. Constitutive expression of the PhoP regulon attenuates Salmonella virulence and survival within macrophages. J. Bacteriol. 172: 2485 2490.
43. Miller, S. I.,, W. S. Pulkkinen,, M. E. Selsted,, and J. J. Mekalanos. 1990. Characterization of defensin resistance phenotypes associated with mutations in the phoP virulence regulon of Salmonella typhimurium. Infect. Immun. 58: 3706 3710.
44. Miller, V. M.,, K. B. Beer,, W. P. Loomis,, J. A. Olson,, and S. I. Miller. 1992. An unusual pagC--ln-phoA mutation leads to an invasion- and virulence-defective phenotype in Salmonellae. Infect. Immun. 60: 3763 3770.
45. Mills, D. M.,, and C. A. Lee. Unpublished data.
46. Pace, J.,, M. J. Hayman,, and J. E. Galán. 1993. Signal transduction and invasion of epithelial cells by S. typhimurium. Cell 72: 505 514.
47. Pulkkinen, W. S.,, and S. I. Miller. 1991. A Salmonella typhimurium virulence protein is similar to a Yersinia enterocolitica invasion protein and a bacteriophage lambda outer membrane protein. J. Bacteriol. 173: 86 93.
48. Sampson, B. A.,, and E. C. Gotschlich. 1992. Elimination of the vitamin B 12 uptake or synthesis pathway does not diminish the virulence of Escherichia coli Kl or Salmonella typhimurium in three model systems. Infect. Immun. 60: 3518 3522.
49. Siitonen, A.,, and M. Nurminen. 1992. Bacterial motility is a colonization factor in experimental urinary tract infection. Infect. Immun. 60: 3918 3920.
50. Sinai, A. P.,, and P. M. Bavoil. 1993. Hyper-invasive mutants define a novel pho-regulated invasion pathway in Escherichia coli. Mol. Microbiol. 10: 1125 1137.
51. Stocker, B. A. D.,, and P. H. Mäkëla. 1986. Genetic determination of bacterial virulence, with special reference to Salmonella. Curr. Top. Microbiol. Immunol. 124: 149 172.
52. Stone, B. J.,, C. M. Garcia,, J. L. Badger,, T. Hassett,, R. I. F. Smith,, and V. L. Miller. 1992. Identification of novel loci affecting entry of Salmonella enteritidis into eukaryotic cells. J. Bacteriol. 174: 3945 3952.
53. Straus, D.,, and F. M. Ausubel. 1990. Genomic substraction for cloning DNA corresponding to deletion mutations. Proc. Natl. Acad. Sci. USA 87: 1889 1893.
54. Takeuchi, A. 1967. Electron microscope studies of experimental Salmonella infection. I. Penetration into the intestinal epithelium by Salmonella typhimurium. Am. J. Pathol. 50: 109 136.
55. Vidal, S. M.,, D. Malo,, K. Vogan,, E. Skamene,, and P. Gros. 1993. Natural resistance to infection with intracellular parasites: isolation of a candidate for Beg. Cell 73: 469 485.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error