Chapter 24 : Immune Mechanisms of Protection

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Immune Mechanisms of Protection, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818357/9781555819101_Chap24-1.gif /docserver/preview/fulltext/10.1128/9781555818357/9781555819101_Chap24-2.gif


This chapter focuses on the immune mechanisms involved in protective immunity against tuberculosis, with the awareness that in most cases the immune response activated during infection with may be remarkably powerful yet insufficient. M. Lurie and E. Suter independently found that macrophages from immune animals expressed tuberculostatic activities, whereas those from normal animals permitted unrestricted bacillary multiplication. Although these studies suggested involvement of specific immune mechanisms, the investigators did not contest alternative strategies when they realized that immune serum did not influence tuberculostasis by mononuclear phagocytes (MP). The use of oxygen radical scavengers to probe the significance of reactive oxygen intermediates (ROI) in the antimycobacterial function of macrophages can potentially generate misleading information because of nonspecific effects of peroxynitrite anion, NO, superoxide anion chemicals. More importantly, the role that RNIs play in defense against pathogens has not been established in humans. Mycobactins, a group of iron-chelating growth factors of mycobacteria, have been considered a possible virulence factor of . In tuberculosis, the port of entry as well as the major organ of disease is the lung. Due the relationship between and host immunity underlying infection is a labile one, any diminution of protective immunity will cause progression into clinical disease.

Citation: Chan J, Kaufmann S. 1994. Immune Mechanisms of Protection, p 389-415. In Bloom B (ed), Tuberculosis. ASM Press, Washington, DC. doi: 10.1128/9781555818357.ch24
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Antituberculous macrophage activities and evasion mechanisms. Accumulating evidence suggests that M. tuberculosis enters macrophages via specific binding to cell surface molecules of phagocytes. It has been reported that the tubercle bacillus can bind directly to the mannoase receptor via the cell wall-associated, mannosylated glycolipid LAM (1) or indirectly via complement receptors of the integrin family (CR1, CR3) or Fc receptors (2). Phagocytosis (3), triggered by engaging certain cell surface molecules such as the Fc receptor, stimulates the production of ROI via activation of the oxidative burst (4). Experimental data indicate that M. tuberculosis can interfere with the toxic effect of ROI by various mechanisms. First, various mycobacterial compounds including glycolipids (GL), sulfatides (ST), and LAM can downregulate the oxidative cytotoxic mechanism (5; see text for details). Second, uptake via CR1 bypasses activation of the respiratory burst. Cytokine-activated macrophages produce RNI that, at least in the mouse system, mediate potent antimycobacterial activity (6). The acidic condition of the phagolysosomal vacuole can be conducive to the toxic effect of RNI (7). However, NH4+ production by M. tuberculosis may attenuate the potency of the l-arginine-dependent antimycobacterial mechanism and that of lysosomal enzymes (8), which operate best at an acidic pH. In addition, mycobacterial products such as sulfatides and NH4+ may interfere with phagolysosomal fusion (9). Finally, the tubercle bacillus may evade the highly toxic environment by escaping into the cytoplasm via the production of hemolysin (10).

Citation: Chan J, Kaufmann S. 1994. Immune Mechanisms of Protection, p 389-415. In Bloom B (ed), Tuberculosis. ASM Press, Washington, DC. doi: 10.1128/9781555818357.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Relationship between intracellular persistence of M. tuberculosis, antigen type, and T-cell subset activation. (1) M. tuberculosis replicating in the phagosome secretes proteins that are degraded into peptides and then translocated to the cell surface by MHC class II molecules. (2) MHC class I molecules capture M. tuberculosis peptides derived from secreted proteins in the cytoplasm. Either the proteins or peptides had been translocated from the endosomal into the cytoplasmic compartment, or they were secreted into the cytoplasm by M. tuberculosis after its evasion of the phagosome. Later, M. tuberculosis is killed and degraded, thus giving rise to somatic proteins. (3) Peptides derived from M. tuberculosis killed in the phagosome contact MHC class II molecules. (4) Peptides from somatic proteins present in the cytoplasm are charged to MHC class I molecules. (5) Neither the source of peptides nor the presentation molecules involved in γ/δ T-cell stimulation are fully understood. This sequence of events leads to a first wave of T cells with specificity for secreted proteins followed by a second wave of T cells with specificity for somatic proteins. Ag, antigen.

Citation: Chan J, Kaufmann S. 1994. Immune Mechanisms of Protection, p 389-415. In Bloom B (ed), Tuberculosis. ASM Press, Washington, DC. doi: 10.1128/9781555818357.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Adams, J. S.,, and M. A. Gacad. 1985. Characterization of 1-alpha hydroxylation of vitamin D 3 sterols by cultured alveolar macrophages from patients with sarcoidosis. J. Exp. Med. 161: 755 765.
2. Albelda, S. M.,, and C. A. Buck. 1990. Integrins and other cell adhesion molecules. FASEB J. 4: 2868 2880.
3. Amiri, P.,, R. M. Locksley,, T. G. Parslow,, M. Sadick,, E. Rector,, D. Ritter,, and J. H. McKerrow. 1992. Tumor necrosis factor a restores granulomas and induces parasite egg-laying in schistosome-infected SCID mice. Nature (London) 356: 604 607.
4. Anonymous. 1935. Die Sauglingstuberkulose in Lubeck. Julius Springer, Berlin.
5. Armstrong, J. A.,, and P. D'Arcy Hart. 1971. Response of cultured macrophages to Mycobacterium tuberculosis, with observations on fusion of lysosomes with phagosomes. J. Exp. Med. 134: 713 740.
6. Armstrong, J. A.,, and P. D'Arcy Hart. 1975. Phagosome-lysosome interactions in cultured macrophages infected with virulent tubercle bacilli. Reversal of the usual fusion pattern and observations on bacterial survival. J. Exp. Med. 142: 1 16.
7. Arruda, S.,, G. Bomfim,, R. Knights,, T. Huima-Byron,, and L. W. Riley. 1993. Cloning of an M. tuberculosis DNA fragment associated with entry and survival inside cells. Science 261: 1454 1457.
8. Augustin, A.,, R. T. Kubo,, and G.-K. Sim. 1989. Resident pulmonary lymphocytes expressing the c/d T-cell receptor. Nature (London) 340: 239 241.
9. Bail, O. 1910. Ubertragung der Tuberkulinempfindlichkeit. Z. Immunitaetsforsch. 4: 470 485.
10. Bainton, D. F. 1981. The discovery of lysosomes. J.Cell Biol. 91: 66S 76S.
11. Bancroft, G. J.,, R. D. Schreiber,, and E. R. Unanue. 1991. Natural immunity: a T-cell-independent pathway of macrophage activation defined in the scid mouse. Immunol. Rev. 124: 5 24.
12. Barnes, P. F.,, S. D. Mistry,, C. L. Cooper,, C. Pirmez,, T. H. Rea,, and R. L. Modlin. 1989. Compartmentalization of a CD4+ T lymphocyte subpopulation in tuberculous pleuritis. J. Immunol. 142: 1114 1119.
13. Beckman, J. S.,, T. W. Beckman,, J. Chen,, P. A. Marshall,, and B. A. Freeman. 1990. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci. USA 87: 1620 1624.
14. Bermudez, L. E. 1993. Production of transforming growth factor-p by Mycobacterium avium-infected human macrophages is associated with unresponsiveness to IFN-γ. J. Immunol. 150: 1838 1845.
15. Bermudez, L. E.,, and J. Champsi. 1993. Infection with Mycobacterium avium induces production of interleukin-10 (IL-10), and administration of anti-IL-10 antibody is associated with enhanced resistance to infection in mice. Infect. Immun. 61: 3093 3097.
16. Bielecki, J.,, P. Youngman,, P. Connelly,, and D. A. Portnoy. 1990. Bacillus subtilis expressing a haemolysin gene from Listeria monocytogenes can grow in mammalian cells. Nature (London) 345: 175 176.
17. Bloom, B. R.,, and B. Bennett. 1966. Mechanism of a reaction in vitro associated with delayed-type hypersensitivity. Science 153: 80 82.
18. Brennan, P. J. 1989. Structure of mycobacteria: recent developments in denning cell wall carbohydrates and proteins. J. Infect. Dis. 11: S420 S430.
19. Brennan, P. J.,, S. W. Hunter,, M. McNeil,, D. Chatterjee,, and M. Daffe,. 1990. Reappraisal of the chemistry of mycobacterial cell walls, with a view to understanding the roles of individual entities in disease processes, p. 55 75. In E. M. Ayoub,, G. H. Cassell,, W. C. Branche, Jr.,, and T. J. Henry (ed.), Microbial Determinants of Virulence and Host Response. American Society for Microbiology, Washington, D.C..
20. Brennt, C. E.,, A. C. Wright,, S. K. Dutta,, and J. G. Morris, Jr. 1991. Growth of Vibrio vulnificus in serum from alcoholics: association with high transferrin iron saturation. J. Infect. Dis. 164: 1030 1032.
21. Brozna, J. P.,, M. Horan,, J. M. Rademacher,, K. A. Pabst,, and M. J. Pabst. 1991. Monocyte responses to sulfatide from Mycobacterium tuberculosis: inhibition of priming for enhanced release of superoxide, associated with increased secretion of interleukin-1 and tumor necrosis factor alpha, and altered protein phosphorylation. Infect. Immun. 59: 2542 2548.
22. Bullen, J. J.,, P. B. Spalding,, C. G. Ward,, and J. M. C. Gutteridge. 1991. Hemochromatosis, iron, and septicemia caused by Vibrio vulnificus. Arch. Intern. Med. 151: 1606 1609.
23. Bullock, W. E.,, and S. D. Wright. 1987. Role of the adherence-promoting receptors, CR3, LFA-1, and pl50,95 in binding of Histoplasma capsulatum by human macrophages. J. Exp. Med. 165: 195 210.
24. Cahall, D. L.,, and C. P. Youmans. 1975a. Conditions for production, and some characteristics, of mycobacterial growth inhibitory factor produced by spleen cells from mice immunized with viable cells of the attenuated H37Ra strain of Mycobacterium tuberculosis. Infect. Immun. 12: 833 840.
25. Cahall, D. L.,, and C. P. Youmans. 1975b. Molecular weight and other characteristics of mycobacterial growth inhibitory factor produced by spleen cells obtained from mice immunized with viable cells of the attenuated mycobacterial cells. Infect. Immun. 12: 841 850.
26. Chan, J.,, and B. R. Bloom. Unpublished observations.
27. Chan, J.,, X.-D. Fan,, S. W. Hunter,, P. J. Brennan,, and B. R. Bloom. 1991. Lipoarabinomannan, a possible virulence factor involved in persistence of Mycobacterium tuberculosis within macrophages. Infect. Immun. 59: 1755 1761.
28. Chan, J.,, T. Fujiwara,, P. Brennan,, M. McNeil,, S. J. Turco,, J.-C. Sibille,, M. Snapper,, P. Aisen,, and B. R. Bloom. 1989. Microbial glycolipids: possible virulence factors that scavenge oxygen radicals. Proc. Natl. Acad. Sci. USA 86: 2453 2457.
29. Chan, J.,, Y. Xing,, R. S. Magliozzo,, and B. R. Bloom. 1992. Killing of virulent Mycobacterium tuberculosis by reactive nitrogen intermediates produced by activated murine macrophages. J. Exp. Med. 175: 1111 1122.
30. Chase, M. W. 1945. The cellular transfer of cutaneous hypersensitivity to tuberculin. Proc. Soc. Exp. Biol. Med. 59: 134 135.
31. Chatterjee, D.,, K. Lowell,, B. Rivoire,, M. R. McNeil,, and P. J. Brennan. 1992a. Lipoarabinomannan of Mycobacterium tuberculosis. Capping with mannosyl residues in some strains. J. Biol. Chem. 267: 6234 6239.
32. Chatterjee, D.,, A. D. Roberts,, K. Lowell,, P. J. Brennan,, and I. M. Orme. 1992b. Structural basis of capacity of lipoarabinomannan to induce secretion of tumor necrosis factor. Infect. Immun. 60: 1249 1253.
33. Cheever, A. W.,, F. D. Finkelman,, P. Caspar,, S. Heiny,, J. G. Macedonia,, and A. Sher. 1992. Treatment with anti-IL-2 antibodies reduces hepatic pathology and eosinophilia in Schistosoma mansoni-infected mice while selectively inhibiting T cell IL-5 production. J. Immunol. 148: 3244 3248.
34. Chensue, S. W.,, I. G. Otterness,, G. I. Higashi,, C. S. Forsch,, and S. L. Kunkel. 1989. Monokine production by hypersensitivity (Schistosoma mansoni egg) and foreign body (Sephadex bead)-type granuloma macrophages. Evidence for sequential production of IL-1 and tumor necrosis factor. J. Immunol. 142: 1281 1286.
35. Chensue, S. W.,, P. D. Terebuh,, K. S. Warmington,, S. D. Hershey,, H. L. Evanoff,, S. L. Kunkel,, and G. I. Higashi. 1992. Role of IL-4 and IFN-γ in Schistosoma mansoni egg-induced hypersensitivity granuloma formation. Orchestration, relative contribution, and relationship to macrophage function. J. Immunol. 148: 900 906.
36. Cohn, Z. A. 1963. The fate of bacteria within phagocytic cells. I. The degradation of isotopically labeled bacteria by polymorphonuclear leucocytes and macrophages. J. Exp. Med. 117: 27 42.
37. Comstock, G. W. 1978. Tuberculosis in twins: a re-analysis of the Prophit survey. Am. Rev. Respir. Dis. 117: 621 624.
38. Cooper, A. M.,, D. K. Dalton,, T. A. Stewart,, J. P. Griffin,, D. G. Russell,, and I. M. Orme. 1993. Disseminated tuberculosis in interferon-γ gene-disrupted mice. J. Exp. Med. 178: 2243 2247.
39. Crowle, A. J.,, E. J. Ross,, and M. H. May. 1987. Inhibition by l,25(OH) 2-vitamin D 3 of the multiplication of virulent tubercle bacilli in cultured human macrophages. Infect. Immun. 55: 2945 2950.
40. Cunha, F. Q.,, S. Moncada,, and F. Y. Liew. 1992. Interleukin-10 (IL-10) inhibits the induction of nitric oxide synthase by interferon-gamma in murine macrophages. Biochem. Biophys. Res. Commun. 182: 1155 1159.
41. Daffe, M.,, C. Lacave,, M.-A. Laneelle,, and G. Laneelle. 1987. Structure of the major triglycosyl phenolphthiocerol of Mycobacterium tuberculosis (strain Canetti). Eur. J. Biochem. 167: 144 160.
42. Dalton, D.,, S. Pitts-Meek,, S. Keshav,, I. S. Figari,, A. Bradley,, and T. A. Stewart. 1993. Multiple defects of immune cell function in mice with disrupted interferon--/ genes. Science 259: 1739 1742.
43. D'Andrea, A.,, M. Rengaraju,, N. M. Valiente,, J. Chehimi,, M. Kubin,, M. Aste,, S. H. Chan,, M. Kobayashi,, D. Young,, E. Nickbarg,, R. Chizzonite,, S. F. Wolf,, and G. Trinchieri. 1992. Production of natural killer cell stimulatory factor (interleukin 12) by peripheral blood mononuclear cells. J. Exp. Med. 176: 1387 1398.
44. D'Arcy Hart, P.,, M. R. Young,, A. H. Gordon,, and K. H. Sullivan. 1987. Inhibition of phagosome-lysosome fusion in macrophages by certain mycobacteria can be explained by inhibition of lysosomal movements observed after phagocytosis. J. Exp. Med. 166: 933 946.
45. D'Arcy Hart, P.,, M. R. Young,, M. M. Jordan,, W. J. Perkins,, and M. J. Geisow. 1983. Chemical inhibitors of phagosome-lysosome fusion in cultured macrophages also inhibit saltatory lysosomal movements. A combined microscopic and computer study. J. Exp. Med. 158: 477 492.
46. David, J. R. 1966. Delayed hypersensitivity in vitro: its mediation by cell-free substances formed by lymphoid cell-antigen interaction. Proc. Natl. Acad. Sci. USA 56: 72 77.
47. de Duve, C.,, and R. Wattiaux. 1966. Functions of lysosomes. Annu. Rev. Physiol. 28: 435 492.
48. DeLibero, G.,, I. Flesch,, and S. H. E. Kaufmann. 1988. Mycobacteria reactive Lyt2+ T cell lines. Eur. J. Immunol. 18: 59 66.
49. Denis, M. 1991a. Killing of Mycobacterium tuberculosis within human monocytes: activation by cytokines and calcitriol. Clin. Exp. Immunol. 84: 200 206.
50. Denis, M. 1991b. Interferon-gamma-treated murine macrophages inhibit growth of tubercle bacilli via the generation of reactive nitrogen intermediates. Cell. Immunol. 132: 150 157.
51. Denis, M. 1991c. Tumor necrosis factor and granulocyte macrophage colony-stimulating factor stimulate human macrophages to restrict growth of virulent Mycobacterium avium and to kill avirulent M. avium: killing effector mechanism depends on the generation of reactive nitrogen intermediates. J. Leukocyte Biol. 49: 380 387.
52. Denis, M.,, and E. Ghadirian. 1991. Transforming growth factor (TGF-(31) plays a detrimental role in the progression of experimental Mycobacterium avium infection; in vivo and in vitro evidence. Microb. Pathog. 11: 367 372.
53. Doi, T.,, M. Ando,, T. Akaike,, M. Suga,, K. Sato,, and H. Maeda. 1993. Resistance to nitric oxide in Mycobacterium avium complex and its implication in pathogenesis. Infect. Immun. 61: 1980 1989.
54. Douvas, G. S.,, D. L. Looker,, A. E. Vatter,, and A. J. Crowle. 1985. Gamma interferon activates human macrophages to become tumoricidal and leishmanicidal but enhances replication of macrophage-associated mycobacteria. Infect. Immun. 50: 1 8.
55. Drapier, J.-C,, H. Hirling,, J. Wietzerbin,, P. Kaldy,, and L. C. Kuhn. 1993. Biosynthesis of nitric oxide activates iron regulatory factor in macrophages. EMBO J. 12: 3643 3649.
56. Dunn, C. J.,, M. M. Hardee,, A. J. Gibbons,, N. D. Staite,, and K. A. Richard,. 1988. Interleukin-1 induces chronic granulomatous inflammation, p. 329 334. In M. C. Powanda,, J. J. Oppenheim,, M. J. Kluger,, and C. A. Dinarello (ed.), Monokines and Other Non-lymphocytic Cytokines. Alan R. Liss, Inc., New York.
57. Eaton, J. W.,, P. Brandt,, and J. R. Mahoney. 1982. Haptoglobin: a natural bacteriostat. Science 215: 691 693.
58. Emmrich, F.,, J. Thole,, J. D. A. Van Embden,, and S. H. E. Kaufmann. 1986. A recombinant 64 kilodalton protein of Mycobacterium bovis BCG specifically stimulates human T4 clones reactive to mycobacterial antigens. J. Exp. Med. 163: 1024 1029.
59. Falini, B.,, L. Flenghi,, S. Piled,, P. Pelicci,, M. Fagioli,, M. F. Martelli,, L. Moretta,, and E. Ciccone. 1989. Distribution of T cells bearing different forms of the T cell receptor c/d in normal and pathological human tissues. J. Immunol. 143: 2480 2488.
60. Falkow, S.,, R. R. Isberg,, and D. A. Portnoy. 1992. The interaction of bacteria with mammalian cells. Annu. Rev. Cell Biol. 8: 333 363.
61. Fan, X.-D.,, M. Goldberg,, and B. R. Bloom. 1988. Interferon-gamma-induced transcriptional activation is mediated by protein kinase C. Proc. Natl. Acad. Sci. USA 85: 5122 5125.
62. Filley, E. A.,, and G. A. W. Rook. 1991. Effect of mycobacteria on sensitivity to the cytotoxic effects of tumor necrosis factor. Infect. Immun. 59: 2567 2572.
63. Flesch, I. E. A.,, and S. H. E. Kaufmann. 1987. Mycobacterial growth inhibition by interferon-γ-activated bone marrow macrophages and differential susceptibility among strains of Mycobacterium tuberculosis. J. Immunol. 138: 4408 4413.
64. Flesch, I. E. A.,, and S. H. E. Kaufmann. 1988. Attempts to characterize the mechanisms involved in mycobacterial growth inhibition by gamma-interferon-activated bone marrow macrophages. Infect. Immun. 56: 1464.
65. Flesch, I. E. A.,, and S. H. E. Kaufmann. 1990a. Activation of tuberculostatic macrophage functions by gamma interferon, interleukin-4, and tumor necrosis factor. Infect. Immun. 58: 2675 2677.
66. Flesch, I. E. A.,, and S. H. E. Kaufmann. 1990b. Stimulation of antibacterial macrophage activities by B-cell stimulatory factor 2 (interleukin-6). Infect. Immun. 58: 269 271.
67. Flesch, I. E. A.,, and S. H. E. Kaufmann. 1991. Mechanisms involved in mycobacterial growth inhibition by gamma interferon-activated bone marrow macrophages: role of reactive nitrogen intermediates. Infect. Immun. 59: 3213 3218.
68. Flynn, J. L.,, and B. R. Bloom. Personal communication.
69. Flynn, J. L.,, J. Chan,, K. J. Triebold,, D. K. Dalton,, T. A. Stewart,, and B. R. Bloom. 1993. An essential role for IFN-γ in resistance to Mycobacterium tuberculosis infection. J. Exp. Med. 178: 2249 2254.
70. Flynn, J. L.,, M. A. Goldstein,, K. J. Treibold,, B. Roller,, and B. R. Bloom. 1992. Major histocompatibility complex class I-restricted T cells are required for resistance to Mycobacterium tuberculosis infection. Proc. Natl. Acad. Sci. USA 89: 12013 12017.
71. Flynn, J. L.,, D. Mathis,, and B. R. Bloom. Unpublished observations.
72. Flynn, J. L.,, R. Schreiber,, and B. R. Bloom. Personal communication.
73. Follows, G. A.,, M. E. Munk,, A. J. Gatrill,, P. Conradt,, and S. H. E. Kaufmann. 1992. Interferon-7 and interleukin 2 but no detectable interleukin 4 in γ/δ T-cell cultures after activation with bacteria. Infect. Immun. 60: 1229 1231.
74. Forrest, C. B.,, J. R. Forehand,, R. A. Axtell,, R. L. Roberts,, and R. B. Johnston, Jr. 1988. Clinical features and current management of chronic granulomatous disease. Hematol. Oncol. Clin. N. Am. 2: 253 265.
75. Friedland, J. S.,, D. G. Remick,, R. Shattock,, and G. E. Griffin. 1992. Secretion of interleukin-8 following phagocytosis of Mycobacterium tuberculosis by human monocyte cell lines. Eur. J. Immunol. 22: 1373 1378.
76. Friedland, J. S.,, R. J. Shattock,, J. D. Johnson,, D. G. Remick,, R. E. Holliman,, and G. E. Griffin. 1993. Differential cytokine gene expression and secretion after phagocytosis by a human monocytic cell line of Toxoplasma gondii compared with Mycobacterium tuberculosis. Clin. Exp. Immunol. 91: 282 286.
77. Gavioli, R.,, S. Spisani,, A. Giuliani,, and S. Traniello. 1987. Protein kinase C mediates human neutrophil cytotoxicity. Biochem. Biophys. Res. Commun. 148: 1290 1294.
78. Gazzinelli, R. T.,, S. Hieny,, T. A. Wynn,, S. Wolf,, and A. Sher. 1993. Interleukin 12 is required for the T-lymphocyte-independent induction of interferon γ by an intracellular parasite and induces resistance in T-cell-deficient hosts. Proc. Natl. Acad. Sci. USA 90: 6115 6119.
79. GazzineUi, R. T.,, I. P. Oswald,, S. L. James,, and A. Sher. 1992. IL-10 inhibits parasite killing and nitrogen oxide production by IFN-gamma-activated macrophages. J. Immunol. 148: 1792 1796.
80. Gennaro, R.,, C. Florio,, and O. Romeo. 1985. Activation of protein kinase C in neutrophil cytoplasts. FEBS Lett. 180: 185 190.
81. Goodman, R. M.,, and A. G. Motulsky. 1979. Genetic Diseases among Askenazi Jews, p. 301. Raven Press, Inc., New York.
82. Gordon, A. H.,, P. D'Arcy Hart,, and M. R. Young. 1980. Ammonia inhibits phagosome-lysosome fusion in macrophages. Nature (London) 286: 79 81.
83. Goren, M. B.,, O. Brokl,, P. Roller,, H. M. Fales,, and B. C. Das. 1976a. Sulfatides of Mycobacterium tuberculosis: the structure of the principal sulfatide (SL-1). Biochemistry 15: 2728.
84. Goren, M. B.,, O. Brokl,, and W. B. Schaeffer. 1974. Lipids of putative relevance to virulence in Mycobacterium tuberculosis: correlation of virulence with elaboration of sulfatides and strongly acidic lipids. Infect. Immun. 9: 142 149.
85. Goren, M. B.,, P. D'Arcy Hart,, M. R. Young,, and J. A. Armstrong. 1976b. Prevention of phagosome-lysosome fusion in cultured macrophages by sulfatides of Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 73: 2510 2514.
86. Goren, M. B.,, A. E. Vatter,, and J. Fiscus. 1987a. Polyanionic agents as inhibitors of phagosome-lysosome fusion in cultured macrophages: evolution of an alternative interpretation. J. Leukocyte Biol. 41: 111 121.
87. Goren, M. B.,, A. E. Vatter,, and J. Fiscus. 1987b. Polyanionic agents do not inhibit phagosome-lysosome fusion in cultured macrophages. J. Leukocyte Biol. 41: 122 129.
88. Griffiths, E.,, H. J. Rogers,, and J. J. Bullen. 1980. Iron, plasmids and infection. Nature (London) 284: 508 509.
89. Gros, P.,, E. Skamene,, and A. Forget. 1983. Cellular mechanisms of genetically controlled host resistance to Mycobacterium bovis (BCG). J. Immunol. 131: 1966 1973.
90. Hamilton, T. A.,, and D. O. Adams. 1987. Molecular mechanisms of signal transduction in macrophages. Immunol. Today 8: 151 158.
91. Hamilton, T. A.,, D. L. Becton,, S. D. Somers,, P. W. Gray,, and D. O. Adams. 1984. Interferon-γ modulates protein kinase C activity in murine peritoneal macrophages. J. Biol. Chem. 260: 1378 1381.
92. Heinzel, F. P.,, D. S. Schoenhaut,, R. M. Rerko,, L. E. Rosser,, and M. K. Gately. 1993. Recombinant interleukin 12 cures mice infected with Leishmania major. J. Exp. Med. 177: 1505 1509.
93. Helmholz, H. F. 1909. Uber passive Ubertragung der Tuberkulin-Uberempfindlichkeit bei Meerschweinchen. Z. Immunitaetsforsch. 3: 371 375.
94. Hibbs, J. B.,, C. Westenfelder,, R. Taintor,, Z. Vavrin,, C. Kablitz,, R. L. Baranowski,, J. H. Ward,, R. L. Menlove,, M. P. McMurry,, J. P. Kushner,, and W. E. Samlowski. 1992. Evidence for cytokine-inducible nitric oxide synthesis from L-arginine in patients receiving interleukin-2 therapy. J. Clin. Invest. 89: 867 877.
95. Hunter, S. W.,, and P. J. Brennan. 1981. A novel phenolic glycolipid from Mycobacterium leprae possibly involved in immunogenicity and pathogenicity. J. Bacteriol. 147: 728 735.
96. Hunter, S. W.,, and P. J. Brennan. 1991. Evidence for the presence of a phosphatidylinositol anchor on the lipoarabinomannan and lipomannan of Mycobacterium tuberculosis. J. Biol. Chem. 265: 9272 9279.
97. Hunter, S. W.,, T. Fujiwara,, and P. J. Brennan. 1982. Structure and antigenicity of the major specific glycolipid antigen of Mycobacterium leprae. J. Biol. Chem. 257: 15072 15078.
98. Hunter, S. W.,, H. Gay lord,, and P. J. Brennan. 1986. Structure and antigenicity of the phosphorylated lipopolysaccharide antigens from the leprosy and tubercle bacilli. J. Biol. Chem. 261: 12345 12351.
99. Huygen, K.,, P. Vandenbussche,, and H. Heremans. 1991. Interleukin-6 production in Mycobacterium bovis BCG-infected mice. Cell. Immunol. 137: 224 231.
100. Inoue, T.,, Y. Yoshikai,, G. Matsuzaki,, and K. Nomoto. 1991. Early appearing γ/δ-bearing T cells during infection with Calmette Gugrin bacillus. J. Immunol. 146: 2754 2762.
101. Isberg, R. R. 1991. Discrimination between intracellular uptake and surface adhesion of bacterial pathogens. Science 252: 934 938.
102. Iyer, G. Y. N.,, M. F. Islam,, and J. H. Quastel. 1961. Biochemical aspects of phagocytosis. Nature (London) 192: 535 541.
103. Izzo, A. A.,, and R. J. North. 1992. Evidence for an α/β T cell-independent mechanism of resistance to mycobacteria. Bacillus-Calmette-Guenn causes progressive infection in severe combined immunodeficient mice, but not in nude mice or in mice depleted of CD4+ and CD8+ T cells. J. Exp. Med. 176: 581 586.
104. Janis, E. M.,, S. H. E. Kaufmann,, R. H. Schwartz,, and A. M. Pardoll. 1989. Activation of γ/δ T cells in the primary immune response to Mycobacterium tuberculosis. Science 244: 713 717.
105. Joiner, K. A.,, S. A. Fuhrman,, H. M. Miettinen,, L. H. Kasper,, and I. Mellman. 1990. Toxoplasma gondii: fusion competence of parasitophorous vacuoles in Fc receptor-transfected fibroblasts. Science 249: 641 646.
106. Kabelitz, D.,, A. Bender,, S. Schondeimaier,, B. Schoel,, and S. H. E. Kaufmann. 1990. A large fraction of human peripheral blood γ/δ+ T cells is activated by Mycobacterium tuberculosis but not by its 65-kD heat shock protein. J. Exp. Med. 171: 667 679.
107. Kamijo, R.,, J. Le,, D. Shapiro,, E. A. Havell,, S. Huang,, M. Aguet,, M. Bosland,, and J. Vilcek. 1993. Mice that lack the interferon-7 receptor have profoundly altered responses to infection with Bacillus Calmette-Guerin and subsequent challenge with lipopolysaccharide. J. Exp. Med. 178: 1435 1440.
108. Kasahara, K.,, K. Kobayashi,, Y. Shikama,, I. Yoneya,, K. Soezima,, H. Ide,, and T. Takahashi. 1988. Direct evidence for granuloma-inducing activity of inter-leukin-1. Induction of experimental pulmonary granuloma formation in mice by interleukin-l-coupled beads. Am. J. Pathol. 130: 629 638.
109. Kaufmann, S. H. E. 1988. CD8 + T lymphocytes in intracellular microbial infections. Immunol. Today 9: 168 174.
110. Kaufmann, S. H. E.,, C. Blum,, and S. Yamamoto. 1993. Crosstalk between α/β T cells and α/βT cells in vivo: activation of α/β T cell responses after α/β T cell modulation with the monoclonal antibody GL3. Proc. Natl. Acad. Sci. USA 90: 9620 9624.
111. Kaufmann, S. H. E.,, and I. Flesch. 1986. Function and antigen recognition pattern of L3T4+ T cell clones from Mycobacterium tuberculosis-immune mice. Infect. Immun. 54: 291 296.
112. Kaufmann, S. H. E.,, M. E. Munk,, T. Koga, et al. 1989. Effector T cells in bacterial infections, p. 963 970. In F. Melchers (ed.), Progress in Immunology. Spring Verlag, Stuttgart, Germany.
113. Kaufmann, S. H. E.,, H. R. Rodewald,, E. Hug,, and G. DeLibero. 1988. Cloned Listeria monocytogenes specific non-MHC-restricted Lyt2+ T cells with cytolytic and protective activity. J. Immunol. 140: 3173 3179.
114. Kindler, V.,, A.-P. Sappino,, G. E. Gran,, P.-F. Piquet,, and P. Vassalli. 1989. The inducing role of tumor necrosis factor in the development of bactericidal granulomas during BCG infection. Cell 56: 731 740.
115. King, C.,, M. Sathish,, J. T. Crawford,, and T. M. Shinnick. 1993. Expression of contact-dependent cytolytic activity of Mycobacterium tuberculosis and isolation of the locus encoding the activity. Infect. Immun. 61: 2708 2712.
116. Klebanoff, S. J., 1980. In R. Van Furth (ed.), Mononuclear Phagocytes, Functional Aspects, part 2, p. 1105 1141. Nijhoff, Boston.
117. Klun, C. L.,, and G. P. Youmans. 1973a. The effect of lymphocyte supernatant fluids on the intracellular growth of virulent tubercle bacilli. J. Reticuloendothel. Soc. 13: 263 274.
118. Klun, C. L.,, and G. P. Youmans. 1973b. The induction by Listeria monocytogenes and plant mitogens of lymphocyte supernatant fluids which inhibit the growth of Mycobacterium tuberculosis within macrophages in vitro. J. Reticuloendothel. Soc. 13: 275 285.
119. Kobayashi, K.,, C. Allred,, S. Cohen,, and T. Yoshida. 1985. Role of interleukin 1 in experimental granuloma in mice. J. Immunol. 134: 358 364.
120. Kobayashi, M.,, L. Fitz,, M. Ryan,, R. M. Hewick,, S. C. Clark,, S. Chan,, R. Loudon,, F. Sherman,, B. Perussia,, and G. Trinchieri. 1989. Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes. J. Exp. Med. 170: 827.
121. Koch, R. 1882. Die Atiologie der Tuberkulose. Berliner Klin. Wochenschr. 19: 221 230.
122. Koch, R. 1890. Weitere Mitteilungen uber ein Heilmittel gegen Tuberkulose. Dtsch. Med. Wochenschr. 16: 1029 1032.
123. Koeffler, H. P.,, H. Reichel,, J. E. Bishop,, and A. W. Norman. 1985. Gamma interferon stimulates production of 1,25-dihydroxyvitamin D 3 by normal human macrophages. Biochem. Biophys. Res. Commun. 127: 596 603.
124. Kornfeld, S. 1987. Trafficking of lysosomal enzymes. FASEB J. 1: 462 468.
125. Kurlander, R. J.,, S. M. Shawar,, M. L. Brown,, and R. R. Rich. 1992. Specialized role for a murine class I-b MHC molecule in prokaryotic host defenses. Science 257: 678 679.
126. Kwon, N. S.,, C. F. Nathan,, and D. J. Stuehr. 1989. Reduced biopterin as a cofactor in the generation of nitrogen oxides by murine macrophages. J. Biol. Chem. 264: 20496 20501.
127. Ladel, C.,, and S. H. E. Kaufmann. Unpublished data.
128. Larsen, C. A.,, A. O. Anderson,, E. Apella,, J. J. Oppenheim,, and K. Matsushima. 1989. The neutrophil-activating protein (NAP-1) is also chemotactic for T lymphocytes. Science 243: 1464.
129. Leake, E. S.,, Q. N. Myrvik,, and M. J. Wright. 1984. Phagosomal membranes of Mycobacterium bovis BCG-immune alveolar macrophages are resistant to disruption by Mycobacterium tuberculosis. Infect. Immun. 45: 443 446.
130. Li, Y.,, A. Severn,, M. V. Rogers,, R. M. J. Palmer,, S. Moncada,, and F. Y. Liew. 1992. Catalase inhibits nitric oxide synthesis and the killing of intracellular Leishmania major in murine macrophages. Eur. J. Immunol. 22: 441 446.
131. Liew, F. Y.,, and F. E. G. Cox. 1991. Nonspecific defence mechanism: the role of nitric oxide. Immunol. Today 12A: 17 21.
132. Liew, F. Y.,, Y. Li,, A. Severn,, S. Millott,, J. Schmidt,, M. Salter,, and S. Moncada. 1991. A possible novel pathway of regulation by murine T helper type-2 (Th2) cells of a Thl cell activity via the modulation of the induction of nitric oxide synthase on macrophages. J. Immunol. 21: 2489 2494.
133. Locksley, R. M. 1993. Interleukin 12 in host defense against microbial pathogens. Proc. Natl. Acad. Sci. USA 90: 5879 5880.
134. Lurie, M. B. 1942. Studies on the mechanism of immunity in tuberculosis. The fate of tubercle bacilli ingested by mononuclear phagocytes derived from normal and immunized animals. J. Exp. Med. 75: 247.
135. Lurie, M. B. 1964. Resistance to Tuberculosis. Harvard University Press, Cambridge, Mass.
136. Mackaness, G. B. 1969. The influence of immunologically committed lynphoid cells on macrophage activation in vivo. J. Exp. Med. 129: 973.
137. Mackaness, G. B.,, and R. V. Blanden. 1967. Cellular immunity. Prog. Allergy 11: 89 140.
138. Mathew, R. C., , S. Ragheb,, and D. L. Boros. 1990. Recombinant IL-2 therapy reverses diminished granulomatous responsiveness in anti-L3T4-treated, Schistosoma mansoni-infected mice. J. Immunol. 144: 4356 4361.
139. McDonough, K. A.,, Y. Kress,, and B. R. Bloom. 1993. Pathogenesis of tuberculosis: interaction of Mycobacterium tuberculosis with macrophages. Infect. Immun. 61: 2763 2773.
140. Mclnnes, A.,, and D. M. Rennick. 1988. Interleukin 4 induces cultured monocytes/macrophages to form giant multinucleated cells. J. Exp. Med. 167: 598 611.
141. Metchnikoff, E. 1905. Immunity to Infectious Diseases. Cambridge University Press, London.
142. Middlebrook, G.,, C. M. Coleman,, and W. B. Schaeffer. 1959. Sulfolipid from virulent tubercle bacilli. Proc. Natl. Acad. Sci. USA 45: 1801 1804.
143. Modlin, R. L.,, C. Pirmez,, F. M. Hofmann,, V. Torigian,, K. Uyemura,, T. H. Rea,, B. R. Bloom,, and M. B. Brenner. 1989. Lymphocytes bearing antigen-specific c/d T-cell receptors accumulate in human infectious disease lesions. Nature (London) 339: 544 548.
144. Molloy, A.,, P. A. Meyn,, K. D. Smith,, and G. Kaplan. 1993. Recognition and destruction of bacillus Calmette-GueYin-infected human monocytes. J. Exp. Med. 177: 1691 1698.
145. Mombaerts, P.,, J. Arnoldi,, F. Russ,, S. Tonegawa,, and S. H. E. Kaufmann. 1993. Differential roles of α/β and γ/δ T cells in immunity against an intracellular bacterial pathogen. Nature (London) 365: 53 56.
146. Mombaerts, P.,, A. R. Clarke,, M. A. Rudnicki,, J. Iacomini,, S. Itohara,, J. J. Lafaille,, L. Wang,, Y. Ichikawa,, R. Jaenisch,, M. L. Hooper,, and S. Tonegawa. 1992. Mutations in T-cell antigen receptor genes a and b block thymocyte development at different stages. Nature (London) 360: 225 231.
147. Mosser, D. M.,, and P. J. Edelson. 1987. The third component of complement (C3) is responsible for the intracellular survival of Leishmania major. Nature (London) 327: 329 331.
148. Motulsky, A. G. 1979 Human Genetics. Raven Press, Inc., New York.
149. Muller, I.,, S. P. Cobbold,, H. Waldmann,, and S. H. E. Kaufmann. 1987. Impaired resistance against Mycobacterium tuberculosis infection after selective in vivo depletion of L3T4 + and Lyt2 + T cells. Infect. Immun. 55: 2037 2041.
150. Munk, M. E.,, A. Gat rill,, and S. H. E. Kaufmann. 1990. Antigen-specific target cell lysis and interleukin-2 secretion by Mycobacterium tuberculosis-acliv&ted γ/δ T cells. J. Immunol. 145: 2434 2439.
151. Muroaka, S.,, K. Takeya,, and K. Nomoto. 1976a. In vitro studies on the mechanism of acquired resistance to tuberculous infection. I. The relationship between lymphocytes and macrophages in cellular immunity to tuberculous infection. Jpn. J. Microbiol. 20: 115 122.
152. Muroaka, S.,, K. Takeya,, and K. Nomoto. 1976b. In vitro studies on the mechanism of acquired resistance to tuberculous infection. II. The effects of the culture supernatants of specifically-sensitized lymphocytes on the growth of tubercle bacilli within macrophages. Jpn. J. Microbiol. 20: 365 373.
153. Murray, C. J. L.,, K. Styblo,, and A. Rouillon. 1990. Tuberculosis in developing countries: burden, intervention, and cost. Bull. Int. Union Tuberc. 65: 2.
154. Myrvik, Q. N.,, E. S. Leake,, and M. J. Wright. 1984. Disruption of phagosomal membranes of normal alveolar macrophages by the H37Rv strain of Mycobacterium tuberculosis. Am. Rev. Respir. Dis. 129: 322 328.
155. Nathan, C. 1992. Nitric oxide as a secretory product of mammalian cells. FASEB J. 6: 3051 3064.
156. Nathan, C. F.,, and J. B. Hibbs, Jr. 1991. Role of nitric oxide synthesis in macrophage antimicrobial activity. Curr. Opin. Immunol. 3: 65.
157. Neilands, J. B. 1981. Microbial iron compounds. Annu. Rev. Biochem. 50: 715 731.
158. Neill, M. A.,, and S. J. Klebanoff. 1988. The effect of phenolic glycolipid-I from Mycobacterium leprae on the antimicrobial activity of human macrophages. J. Exp. Med. 167: 30 42.
159. Nelson, B. J.,, P. Ralph,, S. J. Green,, and C. A. Nacy. 1991. Differential susceptibility of activated macrophage cytotoxic effector reactions to the suppressive effects of transforming growth factorβ1. J. Immunol. 146: 1849 1857.
160. Neu, H. C. 1992. The crisis in antibiotic resistance. Science 257: 1064 1073.
161. Nussler, A.,, M. Di Silvio,, T. R. Billiar,, R. A. Hoffman,, D. A. Gelier,, R. Selby,, J. Madariaga,, and R. L. Simmons. 1992. Stimulation of nitric oxide synthase pathway in human hepatocytes by cytokines and endotoxin. J. Exp. Med. 176: 261 266.
162. Ochoa, J. B.,, B. Curti,, A. B. Peitzman,, R. L. Simmons,, T. R. Billiar,, R. Hoffman,, R. Rault,, D. L. Longo,, W. J. Urba,, and A. C. Ochoa. 1992. Increased circulating nitrogen oxides after human tumor immunotherapy: correlation with toxic hemodynamic changes. J. Natl. Cancer Inst. 84: 864 867.
163. Ochoa, J. B.,, A. O. Udekwu,, T. R. Billiar,, R. D. Cur ran,, F. B. Cerra,, R. L. Simmons,, and A. B. Peitzman. 1991. Nitrogen oxide levels in patients after trauma and during sepsis. Ann. Surg. 214: 621 626.
164. Ohkuma, S.,, Y. Moriyama,, and T. Takano. 1982. Identification and characterization of a proton pump on lysosomes by fluorescein isothiocyanate-dextran fluorescence. Proc. Natl. Acad. Sci. USA 79: 2758 2762.
165. Ohkuma, S.,, and B. Poole. 1978. Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc. Natl. Acad. Sci. USA 75: 3327 3331.
166. Oppenheim, J. J.,, C. O. C. Zachariae,, N. Mukaida,, and K. Matsushima. 1991. Properties of the novel proinflammatory supergene "intercrine" cytokine family. Annu. Rev. Immunol. 9: 617 648.
167. Orme, I. M. 1987. The kinetics of emergence and loss of mediator T lymphocytes acquired in response to infection with Mycobacterium tuberculosis. J. Immunol. 138: 293 298.
168. Orme, I. M.,, and F. M. Collins. 1984. Adoptive protection of the Mycobacterium tuberculosis-infected lung. Dissociation between cells that passively transfer protective immunity and those that transfer delayed type hypersensitivity to tuberculin. Cell. Immunol. 84: 113 120.
169. Oswald, I. P.,, R. T. Gazzinelli,, A. Sher,, and S. L. James. 1992. IL-10 synergizes with IL-4 and transforming growth factor-beta to inhibit macrophage cytotoxic activity. J. Immunol. 148: 3578 3582.
170. Ottenhoff, T. H. M.,, A. B. Kale,, J. D. A. Van Embden,, J. E. R. Thole,, and R. Kiessling. 1988. The recombinant 65 kD heat shock protein of Mycobacterium bovis BCG/M. tuberculosis is a target molecule for CD4+ cytotoxic T lymphocytes that lyse human monocytes. J. Exp. Med. 168: 1947 1952.
171. Pabst, M. J.,, J. M. Gross,, J. P. Prozna,, and M. B. Goren. 1988. Inhibition of macrophage priming by sulfatide from Mycobacterium tuberculosis. J. Immunol. 140: 634 640.
172. Pamer, E. G.,, M. J. Bevan,, and K. Fischer Lindahl. 1993. Do nonclassical, class lb MHC molecules present bacterial antigens to T cells? Trends Microbiol. 1: 35 38.
173. Pamer, E. G.,, C.-R. Wang,, L. Flaherty,, K. Fischer Lindahl,, and M. J. Bevan. 1992. H-2M3 presents a Listeria monocytogenes peptide to cytotoxic T lymphocytes. Cell 70: 215 223.
174. Patterson, R. J.,, and G. P. Youmans. 1970. Demonstration in tissue culture of lymphocyte-mediated immunity to tuberculosis. Infect. Immun. 1: 600 603.
175. Payne, N. R.,, and M. A. Horwitz. 1987. Phagocytosis of Legionella pneumophila is mediated by human monocyte complement receptors. J. Exp. Med. 166: 1377 1389.
176. Pedrazzini, T.,, K. Hug,, and J. A. Louis. 1987. Importance of L3T4+ and Lyt-2+ cells in the immunologic control of infection with Mycobacterium bovis strain bacillus Calmette-Guenn in mice. Assessment by elimination of T cell subsets in vivo. J. Immunol. 139: 2032 2037.
177. Pfeffer, K.,, B. Schoel,, H. Guile,, S. H. E. Kaufmann,, and H. Wagner. 1990. Primary responses of human T cells to mycobacteria: a frequent set of γ/δ T cells are stimulated by protease-resistant ligands. Eur. J. Immunol. 20: 1175 1179.
178. Pfeifer, J. D.,, M. J. Wick,, R. L. Robert,, K. Findlay,, S. J. Normark,, and C. V. Harding. 1993. Phagocytic processing of bacterial antigens for class I MHC presentation to T cells. Nature (London) 361: 359 362.
179. Pontyremoli, S.,, E. Melloni,, F. Salamino,, B. Sparatore,, M. Michetti,, O. Sacco,, and B. L. Horecker. 1986. Activation of NADPH oxidase and phosphorylation of membrane proteins in human neutrophils: coordinate inhibition by a surface antigen-directed monoclonal. Biochem. Biophys. Res. Commun. 140: 1121 1126.
180. Rao, S. P.,, K. Ogata,, and A. Catanzaro. 1993. Mycobacterium avium-M. intracellular binds to the integrin receptor α vβ3 on human monocytes and monocyte-derived macrophages. Infect. Immun. 61: 663 670.
181. Rees, A. D. M.,, A. Scoging,, A. Mehlert,, D. B. Young,, and J. Ivanyi. 1988. Specificity of proliferative response of human CD8 clones to mycobacterial antigens. Eur. J. Immunol. 18: 1881 1887.
182. Reichel, H.,, H. P. Koeffler,, and A. W. Norman. 1987. Synthesis in vitro of 1,25-dihydroxyvitamin D 3 and 24,25-dihydroxyvitamin D 3 by interferon-γ-stimu-lated normal human bone marrow and alveolar macrophages. J. Biol. Chem. 262: 10931 10987.
183. Relman, D.,, E. Yuomanen,, S. Falkow,, D. T. Golenbock,, K. Saukkonen,, and S. D. Wright. 1990. Recognition of a bacterial adhesin by an integrin: macrophage CR3 (α Mβ2, CDllb/CD18) binds filamentous hemagglutinin of Bordetella pertussis. Cell 61: 1375 1382.
184. Rook, G. A. W. 1988. The role of vitamin D in tuberculosis. Am. Rev. Respir. Dis. 138: 768 770.
185. Rook, G. A. W. 1990. The role of activated macrophages in protection and immunopathology in tuberculosis. Res. Microbiol. 141: 253 256.
186. Rook, G. A. W.,, J. Steele,, M. Ainsworth,, and B. R. Champion. 1986. Activation of macrophages to inhibit proliferation of Mycobacterium tuberculosis: comparison of the effects of recombinant gamma interferon on human monocytes and murine peritoneal macrophages. Immunology 59: 333 338.
187. Russell, D. G.,, and S. D. Wright. 1988. Complement receptor type 3 (CR3) binds to an Arg-Gly-Sap-containing region of the major surface glycoprotein, gp63, of Leishmania promastigotes. J. Exp. Med. 168: 279 292.
188. Sansonetti, P. J.,, A. Ryer,, P. Clerc,, A. T. Maurelli,, and J. Mounier. 1986. Multiplication of Shigella flexneri within HeLa cells: lysis of the phagocytic vacuole and plasmid-mediated contact hemolysis. Infect. Immun. 51: 461 469.
189. Sbarra, A. J.,, and M. L. Karnovsky. 1959. The biochemical basis of phagocytosis. I. Metabolic changes during the ingestion of particles by polymorphonuclear leukocytes. J. Biol. Chem. 234: 1355 1362.
190. Schade, A. L.,, and L. Caroline. 1944. Raw hen egg white and the role of iron in growth inhibition of Shigella dysenteriae, Staphylococcus aureus, Escherichia coli, and Saccharomyces cerevisiae. Science 100: 14 15.
191. Schlesinger, L. S. 1993. Macrophage phagocytosis of virulent but not attenuated strains of Mycobacterium tuberculosis is mediated by mannose receptors in addition to complement receptors. J. Immunol. 150: 2920 2930.
192. Schlesinger, L. S.,, C. G. Bellinger-Kawahara,, N. R. Payne,, and M. A. Horwitz. 1990. Phagocytosis of Mycobacterium tuberculosis is mediated by human monocyte complement receptors and complement component C3. J. Immunol. 144: 2771 2780.
193. Schoendon, G.,, J. Troppmair,, A. Fontana,, C. Huber,, H.-C. Curtis,, and A. Neiderwieser. 1987. Biosynthesis and metabolism of pterins in peripheral blood mononuclear cells and leukemia lines of man and mouse. Eur. J. Biochem. 166: 303 310.
194. Schoenhaut, D. S.,, A. O. Chua,, A. G. Wolitzky,, P. M. Quinn,, C. M. Dwyer,, W. McMomas,, P. C. Familletti,, M. K. Gately,, and U. Gubler. 1992. Cloning and expression of murine IL-12. J. Immunol. 148: 3433 3440.
195. Schurr, E.,, E. Skemene,, K. Morgan,, M.-L. Chu,, and P. Gros. 1990. Mapping of Co13a1 and Col6a3 to proximal murine chromosome 1 identifies conserved linkage of structural protein genes between murine chromosome 1 and human chromosome 2q. Genomics 8: 477 486.
196. Shank, J. L.,, J. H. Silliker,, and R. H. Harper. 1962. The effect of nitric oxide on bacteria. Appl. Microbiol. 10: 185.
197. Sheppard, C. C. 1958. A comparison of the growth of selected mycobacteria in HeLa, monkey kidney, and human amnion cells in tissue culture. J. Exp. Med. 107: 237 245.
198. Sher, N. A.,, S. D. Chaparas,, L. F. Greenberg,, E. M. Merchant,, and J. H. Vickers. 1975. Response of congenially athymic (nude) mice to infection with Mycobacterium bovis (strain BCG). J. Natl. Cancer Inst. 54: 1419 1426.
199. Sibley, L. D.,, S. W. Hunter,, P. J. Brennan,, and J. L. Krehenbuhl. 1988. Mycobacterial lipoarabinomannan inhibits gamma interferon-mediated activation of macrophages. Infect. Immun. 56: 1232 1236.
200. Sibley, L. D.,, and J. L. Krahenbuhl. 1988. Induction of unresponsiveness to gamma interferon in macrophages infected with Mycobacterium leprae. Infect. Immun. 56: 1912 1919.
201. Skamene, E. 1985. Genetic control of host resistance to infection and malignancy. Prog. Leukocyte Biol. 3: 111 159.
202. Skamene, E. 1986. Genetic control of resistance to mycobacterial infection. Curr. Top. Microbiol. Immunol. 124: 49 66.
203. Skamene, E.,, P. Gros,, A. Forget,, P. A. L. Kongshavn,, C. St. Charles, and B. A. Taylor. 1982. Genetic regulation of resistance to intracellular pathogens. Nature (London) 297: 506 509.
204. Snow, G. A. 1970. Mycobactins: iron-chelating growth factors from mycobacteria. Bacteriol. Rev. 34: 99125.
205. Squires, K. E.,, R. D. Schreiber,, M. J. McElrath,, B. Y. Rubin,, S. L. Anderson,, and H. W. Murray. 1989. Experimental visceral leishmaniasis: role of endogenous IFN-γin host defense and tissue granulomatous response. J. Immunol. 143: 4244 4249.
206. Stamler, J. S.,, D. J. Singel,, and J. Loscalzo. 1992. Biochemistry of nitric oxide and its redox-activated forms. Science 258: 1898 1902.
207. Suter, E. 1952. The multiplication of tubercle bacilli within normal phagocytes in tissue cultures. J. Exp. Med. 96: 137.
208. Suter, E. 1953. Multiplication of tubercle bacilli within mononuclear phagocytes in tissue cultures derived from normal animals and animals vaccinated with BCG. J. Exp. Med. 97: 235.
209. Talamas-Rohana, P.,, S. D. Wright,, M. R. Lennartz,, and D. G. Russell. 1990. Lipophosphoglycan (LPG) from Leishmania mexicana promastigotes binds to members of the CR3, pl50,95 and LFA-1 family of leukocyte integrins. J. Immunol. 144: 4817 4824.
210. Tayeh, M. A.,, and M. A. Marietta. 1989. Macrophage oxidation of L-arginine to nitric oxide, nitrite and nitrate. Tetrahydrobiopterin is required as a cofactor. J. Biol. Chem. 264: 19654 19658.
211. Tazi, A.,, I. Fajac,, P. Soler,, D. Valeyre,, J. P. Battesti,, and A. J. Hance. 1991. Gamma/delta T lymphocytes are not increased in number in granulomatous lesions of patients with tuberculosis or sarcoidosis. Am. Rev. Respir. Dis. 144: 1373 1375.
212. Tripp, C. S.,, S. F. Wolf,, and E. R. Unanue. 1993. Interleukin 12 and tumor necrosis factor a are costimulators of interferon γ production by natural killer cells in severe combined immunodeficiency mice with listeriosis, and IL-10 is a physiologic antagonist. Proc. Natl. Acad. Sci. USA 90: 3725 3729.
213. Turcotte, R.,, Y. Des Ormeaus,, and A. F. Borduas. 1976. Partial characterization of a factor extracted from sensitized lymphocytes that inhibits the growth of Mycobacterium tuberculosis within macrophages in vitro. Infect. Immun. 14: 337 344.
214. Vachula, M.,, T. J. Holzer,, and B. R. Anderson. 1989. Suppression of monocyte oxidative response by phenolic glycolipid I of Mycobacterium leprae. J. Immunol. 142: 1696 1701.
215. Vassalli, P. 1992. The pathophysiology of tumor necrosis factors. Annu. Rev. Immunol. 10: 411 452.
216. Vidal, S. M.,, D. Malo,, K. Vogan,, E. Skamene,, and P. Gros. 1993. Natural resistance to infection with intracellular parasites: isolation of a candidate for Beg. Cell 73: 469 485.
217. Walker, L.,, and D. B. Lowrie. 1981. Killing of Mycobacterium microti by immunologically activated macrophages. Nature (London) 293: 69 70.
218. Weinberg, E. D. 1974. Iron and susceptibility to infectious disease. Science 184: 952 956.
219. Weinberg, E. D. 1978. Iron and infection. Microbiol. Rev. 42: 45 66.
220. Weinberg, E. D. 1992. Iron depletion: a defense against intracellular infection and neoplasia. Life Sci. 50: 1289 1297.
221. Weiss, G.,, B. Goossen,, W. Doppler,, D. Fuchs,, K. Pantopoulos,, G. Werner-Felmayer,, H. Wachter,, and M. W. Hentze. 1993. Translational regulation via iron-responsive elements by the nitric oxide/NOsynthase pathway. EMBOJ. 12: 3651 3657.
222. Weiss, S. J. 1989. Tissue destruction by neutrophils. N. Engl. J. Med. 320: 365 376.
223. Werner, E. R.,, G. Verner-Felmayer,, D. Fuchs,, A. Hausen,, G. Reibnegger,, and H. Wachter. 1989. Parallel induction of tetrahydrobiopterin biosynthesis and indoleamine 2,3-dioxygenase activity in human cells and cell lines by interferon-γ. Biochem. J. 262: 861 866.
224. Wilson, E.,, M. C. Olcott,, R. M. Bell,, A. H. Merrill, Jr.,, and J. D. Lambeth. 1986. Inhibition of the oxidative burst in human neutrophils by sphingoid long-chain bases. J. Biol. Chem. 261: 12616 12623.
225. Winkler, H. H. 1990. Rickettsia species (as organisms). Annu. Rev. Microbiol. 44: 131 153.
226. Wolf, S. F.,, P. A. Temple,, M. Kobayashi,, D. Young,, M. Dicig,, L. Lowe,, R. Dzialo,, L. Fitz,, C. Ferenz,, R. M. Hewick,, K. Kelleher,, S. H. Herrmann,, S. C. Clark,, L. Azzoni,, S. H. Chan,, G. Trinchieri,, and B. Perussia. 1991. Cloning of cDNA for natural killer cell stimulatory factor, a heterodimeric cytokine with multiple biologic effects on T and natural killer cells. J. Immunol. 146: 3074 3081.
227. Wright, S. D.,, and S. C. Silverstein. 1983. Receptors for C3b and C3bi promote phagocytosis but not the release of toxic oxygen from human phagocytes. J. Exp. Med. 158: 2016 2023.
228. Xie, Q. W.,, R. Whisnant,, and C. Nathan. 1993. Promoter of the mouse gene encoding calcium-independent nitric oxide synthase confers inducibility by interferon gamma and bacterial lipopolysaccharide. J. Exp. Med. 177: 1779 1784.
229. Zhu, L.,, C. Gunn,, and J. S. Beckman. 1992. Bactericidal activity of peroxynitrite. Arch. Biochem. Biophys. 298: 452 457.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error