Chapter 11 : Carbohydrate Catabolism: Pathways, Enzymes, Genetic Regulation, and Evolution

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Carbohydrate Catabolism: Pathways, Enzymes, Genetic Regulation, and Evolution, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap11-1.gif /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap11-2.gif


Regulation of enzyme (levanase) and of an extra cellular fructosyltransferase (levansucrase [Lvs]) are reviewed in this chapter. Carbohydrate catabolism in other gram-positive bacteria is in most cases less well documented than that in . Catabolism of L-arabinose, D-xylose, sucrose, glycerol, and gluconate and the corresponding regulons are described in this chapter. Several gram-positive bacteria are able to catabolize lactose by means of diverse pathways. It has been known for decades that catabolic pathways are conserved elements in prokaryotes and more generally throughout all groups of living organisms. Three unique carbohydrate pathways in gram-positive bacteria have been highlighted here: pathways for glucitol and fructose utilization in and the tagatose-phosphate pathway for lactose-galactose degradation in and some lactic acid bacteria. The tagatose-phosphate pathway is a radical alternative to the otherwise ubiquitous Leloir galactose pathway. It is not known which of these pathways is t h e more recent innovation. species and have functional Leloir pathways , and other grampositive bacteria, including and , appear t o possess elements of this pathway. The diversity is such that it is impossible to define a typically gram-positive pattern of carbohydrate catabolism.

Citation: Steinmetz M. 1993. Carbohydrate Catabolism: Pathways, Enzymes, Genetic Regulation, and Evolution, p 157-170. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch11
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Catabolism of hexoses, linear hexitols, and sucrose in Transport and enzymatic steps are symbolized by arrows. The names of the structural genes (in some cases putative) of the relevant proteins are indicated in italics and ). All these genes are both mapped (except for phosphoglucoisomerase) and inducible (except and ). Various controls prevent (or reduce) simultaneous expression of alternative pathways for sucrose and fructose (see text). Transfructosylation from sucrose by Lvs results mainly in a mixture of glucose, fructose, and levan. encodes levanase. Fra, Glu, Gut, Md, and Suc: fructose, glucose, glucitol, mannitol, and sucrose, respectively; Suc-P, sucrose-phosphate (phosphorylated on position 6 of glucose moiety). Other sugar-phosphates are designated according to standard conventions; for example, Glu-6-P and Fru-l,6-dP designate glucose 6-phosphate and fructose 1,6-diphosphate.

Citation: Steinmetz M. 1993. Carbohydrate Catabolism: Pathways, Enzymes, Genetic Regulation, and Evolution, p 157-170. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Organization of the gluconate operon and the xyloside-xylose regulon in The repressor of the operon is encoded by the first gene of the operon; and -Z very likely encode gluconate kinase, gluconate permease, and 6-phosphogluconate dehydrogenase, respectively; is transcribed from both the GntR-repressed promoter and a constitutive promoter within The repressor of the xylose-xyloside regulon (XylR) controls transcription of the and opérons; XynB is a xylosidase; XynC appears to be a membrane protein that might be a permease of xyloside and/or xylose; and and encode xylose isomerase and xylulose kinase, respectively. t, terminator.

Citation: Steinmetz M. 1993. Carbohydrate Catabolism: Pathways, Enzymes, Genetic Regulation, and Evolution, p 157-170. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Regulons dependent on antiterminators and/or PTS control: comparison of regulation and genetic organization. The first three systems (a, b, and c) involve elements both structurally and functionally homologous: antiterminators, conditional terminators (ct), and enzymes II. (a) β-glucoside operon model. In the absence of β-glucoside inducer, transcription of the operon from the promoter is prevented by two conditional terminators bracketing the antiterminator gene. In these conditions, BglG function is inhibited by phosphorylation by the gene product (enzyme II). The presence of β-glucoside in the medium results in its transport and phosphorylation by enzyme II. This results in phosphate group rerouting. Dephosphorylated antiterminator then allows full transcription of the operon. BglB is the phospho-β-glucosidase ( ). (b) (Lvs) regulon. This regulon comprises the gene and the unlinked regulator operon. Both appear to be controlled by means of a regulatory cascade similar to that of the operon, i.e., positively by both sucrose and SacY antiterminator and negatively by SacX, a putative enzyme II. Several regulatory cross-talks with the regulon (see below) are not shown. The genes (DEG; see chapter 50) activate transcription from both and promoters ( ). (c) operon. Transcription of this operon is positively controlled by sucrose and the antiterminator encoded by the linked gene; appears not to play a role in this regulation ( ). The mechanism of SacT activation by the presence of sucrose is unknown (see text), (d) levanase operon. The first four genes encode an enzyme II (very poorly related to those mentioned above) controlling the LevR positive regulator. The fructose-dependent induction cascade appears similar to that of the operon but appears not to involve antitermination. LevR is a transcriptional activator binding upstream from the operon promoter and requiring σ as a cofactor ( ). (e) glycerol regulon. This regulon comprises at least two unlinked gene clusters and three promoters likely controlled by the gene product. This regulator (unrelated to BglG) appears to function as an antiterminator at conditional terminators just upstream from and ( ).

Citation: Steinmetz M. 1993. Carbohydrate Catabolism: Pathways, Enzymes, Genetic Regulation, and Evolution, p 157-170. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Sucrose gene clusters in four bacteria. The comparison includes two gram-positive systems, from and and two gram-negative systems (sucrose operon in a close relative of enteric bacteria, and sucrose genes present on the pUR400 plasmid; the pUR400 sucrose regulon appears to be closely related to the chromosomal sucrose system). The four enzymes nsucrose, encoded by (in ) or genes, are structurally homologous. The ScrA protein contains a C-terminal extension containing a second phosphorylation site (enzyme III domain). The gene designated in or in and encodes related phosphosucrases (the pUR400 gene sequence is unknown). Expression of the sucrose genes is stimulated by the presence of different sugars in the medium (see text). The three other systems are specifically induced by sucrose via activation of the SacT antiterminator in or inactivation of ScrR repressors in the case of the pUR400 or systems. The two ScrR repressors are not strongly similar, but both belong to the LacI-GalR superfamily; the pUR400-encoded ScrR repressor binds fructose; the two gram-negative regulons are dependent on the cyclic-AMP receptor protein-cyclic-AMP complex. The and genes encode fructokinase and a sucrose porin (related to the LamB maltoporin), respectively, encodes unknown functions (probably not involved in sucrose metabolism) (see references , and and references therein). The sucrose genes were recendy cloned and sequenced; the gene products are homologous to those mentioned above. (encoding a short enzyme II) and are unlinked. Both are sucrose inducible via a negative control. Similar operatorlike sequences are found in both leader regions ( ).

Citation: Steinmetz M. 1993. Carbohydrate Catabolism: Pathways, Enzymes, Genetic Regulation, and Evolution, p 157-170. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

FTS-dependent lactose systems of and some lactic acid-producing bacteria: pathways and gene organization. (A) Transport and catabolism of lactose via the tagatose 6-phosphate pathway. Lactose is transported and phosphorylated by enzyme II (II) and then hydrolyzed into glucose (catabolized by the classical glycolysis pathway) and Gal-6-P, which is isomerized to tagatose 6-phosphate (Tag-6-P). Tag-6-P is converted, by means of a pathway similar to that of its isomer, fructose 6-phosphate (Fru-6-P), into two molecules of triose-phosphate (dihydroxyacetone-phosphate [DHA-P] and glyceraldehyde 3-phosphate [GA-3-P]) and then into phosphoenolpyru-vate (PEP). Dephosphorylation of PEP to pyruvate results partly in ATP production (not shown) and partly in phosphorylation of proteins of the cytoplasmic PTS cascade. This cascade ends with phosphorylation of the membrane enzyme II protein by the cytoplasmic enzyme III (III) protein. In lactic acid bacteria, lactate produced from pyruvate is excreted with protons; this-coexcretion contributes to energizing the proton motive force. A, H, I, and K, aldolases, hydrolases, isomerases, and kinases, respectively. The genes encoding the enzymes of the pathway are indicated in parentheses. (B) Organization of the opérons in and Arrows indicate the transcripts; t, t1, and t2 are transcriptional terminators. Three major features distinguish the operon from that of the orientation of the gene, the presence of a weak terminator (tl) downstream from and the presence of an eighth gene, of unknown function, at the 3′ end of the operon. The 5′ end of the operon has not yet been sequenced, but its transcript is similar in size to that of (Adapted from references , and )

Citation: Steinmetz M. 1993. Carbohydrate Catabolism: Pathways, Enzymes, Genetic Regulation, and Evolution, p 157-170. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Adams, C. V.,, J. A. Fornwald,, F. J. Schmidt,, M. Rosenberg,, and M. E. Brawner. 1988. Gene organization and structure of the Streptomyces lividans gal operon. J. Bacteriol. 170: 203 212.
2. Alpert, C. A.,, and B. M. Chassy. 1990. Molecular cloning and DNA sequence of lacE, the gene encoding the lactose-specific enzyme II of the phosphotransferase system of Lactobacillus casei. J. Biol. Chem. 265: 22561 22568.
3. Amster-Choder, O.,, F. Houman,, and A. Wright 1989. Protein phosphorylation regulates transcription of the β-glucoside utilization operon in E. coli. Cell 58: 847 855.
4. Asladinis, C.,, K. Schmid,, and K. Schmitt. 1989. Nucleotide sequences and operon structure of plasmid-borne genes mediating uptake and utilization of raffinose in Escherichia coli. J. Bacteriol. 171: 6753 6763.
5. Aymerich, S.,, and M. Stelnmetz. 1992. Specificity determinants and structural features in the RNA target of the bacterial antiterminator proteins of the BglG/SacY family. Proc. Natl. Acad. Sci. USA 89: 10410 10414.
6. Bezzate, S.,, M. Steinmetz,, and S. Aymerlch. Unpublished data.
7. Blatch, G. L.,, and D. R. Woods. 1991. Nucleotide sequence and analysis of the Vibrio alginolyticus scrR repressor-encoding gene (scrR). Gene 101: 17 23.
8. Burchhardt, G.,, and H. Bahl. 1991. Cloning and analysis of the β-galactosidase-encoding gene from Clostridium thermosulfurogenes EMI. Gene 10. 6: 13 19.
9. Cal, Y. 1991. Characterization of insertion sequences IS892 and related elements from the cyanobacterium Anabaena sp. strain PCC 7120. J. Bacteriol. 173: 5771 5786.
10. Chamberí, R.,, and G. Gonzy-Tréboul. 1976. Levansucrase of B. subtilis: kinetic and thermodynamic aspects of the transfructosylation process. Eur. J. Biochem. 62: 55 64.
11. Charles, T. C.,, and T. M. Finan. 1991. Analysis of a 1600-kilobase Rhizobium meliloti megaplasmid using defined deletions generated in vivo. Genetics 127: 5 20.
12. Chassy, B., 1983. S ucrose metabolism and glycosyltrans-ferase activity in oral streptococci, p. 3 10. In R. J. Doyle, and J. E. Ciardi (ed), Glucosyltransferases, Glucans, Sucrose, and Dental Caries. IRL Press, Washington, D.C..
13. Crutz, A. M.,, and M. Steinmetz. 1992. Transcription of the Bacillus subtilis sacX and sacY genes, encoding regulators of sucrose metabolism, is both inducible by sucrose and controlled by the DegS-DegU signalling system. J. Bacteriol. 174: 6087 6095.
14. Crutz, A. M.,, M. Steinmetz,, S. Aymerlch,, R. Richter,, and D. Le Coq. 1990. Induction of levansucrase in Bacillus subtilis: an antitermination mechanism negatively controlled by the phosphotransferase system. J. Bacteriol. 172: 1043 1050.
15. Débarbouillé, M.,, A. Fouet,, M. Arnaud,, A. Klier,, and G. Rapoport. 1990. The sacT gene regulating the sacPA operon in Bacillus subtilis shares strong homology with transcriptional antiteraiinators. J. Bacteriol. 172: 3966 3973.
16. Débarbouillé, M.,, I. Martin-Verstraete,, A. Klier,, and G. Rapoport. 1991. The transcriptional regulator LevR of Bacillus subtilis has domains homologous to both σ54-and phosphotransferase system-dependent regulators. Proc. Natl. Acad. Sci. USA 88: 2212 2216.
17. Débarbouillé, M.,, I. Martin-Verstraete,, A. Klier,, and G. Rapoport. 1991. The Bacillus subtilis sigL gene encodes an equivalent of o54 from gram-negative bacteria. Proc. Natl. Acad. Sci. USA 88: 9092 9096.
18. Dekker, K.,, H. Yamagata,, K. Sakaguchl,, and S. Ukada. 1991. Xylose (glucose) isomerase gene from the thermo-phile Thermus thermophilus: cloning, sequencing, and comparison with other thermostable xylose isomerases. J. Bacteriol. 173: 3078 3083.
19. De Vos, W. M., 1991. Disaccharide utilization in lactic acid bacteria, p. 447 457. In H. Heslot,, J. Davies,, J. Florent,, L. Bobichon,, G. Durand,, and L. Penasse (ed.). Proceedings of the 6th International Symposium on the Genetics of Industrial Microorganisms. Société Française de Microbiologie, Paris.
20. Errington, J.,, and C. Vogt. 1990. Isolation and characterization of mutations in the gene encoding an endogenous Bacillus subtilis β-galactosidase and its regulator. J. Bacteriol. 172: 488 490.
21. Fischer, R.,, R. Eisermann,, B. Reiche,, and W. Hengstenberg. 1989. Cloning, sequencing, and overexpression of the mannitol-specific enzyme-III-encoding gene of Staphylococcus camosus. Gene 82: 249 257.
22. Fornwald, J. A.,, F. J. Schmidt,, C. W. Adams,, M. Rosenberg,, and M. E. Brawner. 1987. Two promoters, one inducible and one constitutive, control transcription of the Streptomyces lividans galactose operon. Proc. Natl. Acad. Sci. USA 84: 2130 2134.
23. Fouet, A.,, M. Arnaud,, A. Klier,, and G. Rapoport. 1987. Bacillus subtilis sucrose specific enzyme II of the phosphotransferase system. Expression in Escherichia coli and homology to enzymes II from enteric bacteria. Proc. Natl. Acad. Sci. USA 84: 8773 8777.
24. Fouet, A.,, A. Klier,, and G. Rapoport. 1986. Nucleotide sequence of the sucrase gene of Bacillus subtilis. Gene 43: 221 225.
25. Freeze, E.,, W. Klofat,, and E. Galliërs. 1970. Commitment to sporulation and induction of glucose-phos-phoenolpyruvate-transferase. Biochim. Biophys. Acta 22: 265 289.
26. Fujita, Y.,, and T. Fujita. 1983. Genetic analysis of a pleiotropic deletion mutation (Δ igf) in Bacillus subtilis. J. Bacteriol. 154: 864 869.
27. Fujita, Y.,, and T. Fujita. 1986. Identification and nucleotide sequence of the promoter region of the Bacillus subtilis gluconate operon. Nucleic Acids Res. 14: 1237 1252.
28. Fujita, Y.,, and T. Fujita. 1987. The gluconate operon gnt of Bacillus subtilis encodes its own transcriptional negative regulator. Proc. Natl. Acad. Sci. USA 84: 4524 4528.
29. Fujita, Y.,, and T. Fujita. 1989. Effect of mutations causing gluconate kinase or gluconate permease deficiency on expression of the Bacillus subtilis gnt operon. J. Bacteriol. 171: 1751 1754.
30. Fujita, Y.,, T. Fujita,, and Y. Miwa. 1990. Evidence for posttranscriptional regulation of synthesis of the Bacillus subtilis Gnt repressor. FEBS Lett. 267: 71 74.
31. Fujita, Y.,, T. Fujita,, Y. Miwa,, J. Nihashi,, and Y. Aratani. 1986. Organization and transcription of the gluconate operon, gnt, of Bacillus subtilis. J. Biol. Chem. 261: 13744 13753.
32. Fujita, Y.,, A. Ramaley,, and E. Freeze. 1977. Location and properties of glucose dehydrogenase in sporulating cells and spores of Bacillus subtilis. J. Bacteriol. 132: 282 293.
32a.. Fujita, Y.,, K. Shlndo,, Y. Miwa,, and K. Yoshida. 1991. Bacillus subtilis inositol dehydrogenase-encoding gene (idh): sequence and expression in Escherichia coli. Gene 108: 121 125.
33. Gartner, D.,, M. Geissendörfer,, and W. Hillen. 1988. Expression of the Bacillus subtilis xyl operon is repressed at the level of transcription and is induced by xylose. 7. Bacteriol. 170: 3102 3109.
34. Gay, P. 1979. Ph.D. thesis. Université Paris VI, Paris.
35. Gay, P.,, H. Chalumeau,, and M. Steinmetz. 1983. Chromosomal localization of gut, fruC, and pfk mutations affecting glucitol catabolism in Bacillus subtilis. J. Bacteriol. 153: 1133 1137.
36. Gay, P.,, P. Cordier,, M. Marquet,, and A. Delobbe. 1973. Carbohydrate metabolism and transport in Bacillus subtilis. A study of ctr mutations. Mol. Gen. Genet. 121: 355 368.
37. Gay, P.,, and A. Delobbe. 1973. Fructose transport in Bacillus subtilis. Eur. J. Biochem. 79: 363 373.
38. Gay, P.,, D. Le Coq,, M. Steinmetz,, T. Berkelman,, and C. I. Kado. 1985. Positive selection procedure for entrapment of insertion sequence elements in gram-negative bacteria. J. Bacteriol. 164: 918 921.
39. Giffard, P. M.,, C. L. Simpson,, C. P. Mihvard,, and N. A. Jacques. 1991. Molecular characterization of a cluster of at least two glucosyltransferase genes in Streptococcus salivar-ius ATCC 25975./ Gen. Microbiol. 137: 2577 2593.
40. Glaser, P. (Institut Pasteur, Paris). 1991. Personal communication.
41. Goldman, M.,, and H. J. Blumenthal. 1963. Pathways of glucose in Bacillus subtilis. J. Bacteriol. 86: 303 311.
42. Gonzales-Candelas, L.,, D. Ramon,, and J. Polaina. 1990. Sequences and homology analysis of two genes encoding β-glucosidases from Bacillus polymyxa. Gene 95: 31 38.
43. Gonzy-Tréboul, G.,, J. H. De Vaard,, M. Zagorec,, and P. W. Postma. 1991. The glucose permease of the phosphotransferase system of Bacillus subtilis: evidence for II Glc and III Glc domains. Mol. Microbiol. 5: 1241 1249.
44. Hall, B. G.,, P. W. Betts,, and J. C. Wootton. 1989. DNA sequence analysis of artificially evolved ebg enzyme and ebg repressor genes. Genetics 123: 635 648.
45. Hancock, K. R.,, E. Rockman,, C. A. Young,, L. Pearce,, I. S. Maddox,, and D. B. Scott. 1991. Expression and nucleotide sequence of the Clostridium acetobutylicum β-galactosidase gene cloned in Escherichia coli. J. Bacteriol. 173: 3084 3095.
46. Hastrup, S., 1988. Analysis of the Bacillus subtilis xylose regulon, p. 79 83. In A. T. Ganesan, and J. A. Hoch (ed.), Genetics and Biotechnology of Bacilli, vol. 2 Academic Press, Inc., New York.
47. Hodgson, D., Primary metabolism-carbon catabolism. In E. M. Wellington (ed.), Streptomyces, in press. Plenum Biotechnology Handbooks, New York.
48. Holmberg, C.,, L. Beijer,, B. Rutberg,, and L. Rutberg. 1990. Glycerol catabolism in Bacillus subtilis: nucleotide sequence of the genes encoding glycerol kinase (glpK) and glycerol-3-phosphate dehydrogenase ( glpD) J. Gen. Microbiol. 136: 2367 2375.
49. Holmberg, C.,, and B. Rutberg. 1991. Expression of the gene encoding glycerol-3-phosphate dehydrogenase (glpD) in Bacillus subtilis is controlled by antitermina-tion. Mol. Microbiol. 5: 2891 2900.
50. Holmberg, C.,, L. Rutberg,, and B. Rutberg (University of Lund). 1991. Personal communication.
51. Houman, F.,, M. R. Diaz-Torres,, and A. Wright. 1990. Transcriptional antitermination in the bgl operon of E. coli is modulated by a specific RNA binding protein. Cell 62: 1153 1163.
51a.. Jäger, W.,, A. Schäfer,, A. Pühler,, G. Labes,, and W. Wohlleben. 1992. Expression of the Bacillus subtilis sacB gene leads to sucrose sensitivity in the gram-positive bacterium Corynebacterium glutamicum but not in Streptomyces lividans. J. Bacteriol. 174: 5462 5465.
52. Kreuzer, P.,, D. Gartner,, R. Allmansberger,, and W. Hillen. 1989. Identification and sequence analysis of the Bacillus subtilis W23 xylR gene and xyl operator. J. Bacteriol. 171: 3840 3845.
53. Kunst, F.,, M. Steinmetz,, J. A. Lepesant,, and R. De-donder. 1977. Presence of a third sucrose hydrolysing enzyme in Bacillus subtilis: constitutive levanase synthesis by mutants of Bacillus subtilis Marburg 168. Biochimie 59: 287 292.
54. Lawlis, V. B.,, M. S. Dennis,, E. Y. Chen,, D. H. Smith,, and D. J. Henner. 1984. Cloning and sequencing of the xylose isomerase and xylulose kinase genes of Escherichia coli. Appl. Environ. Microbiol. 47: 15 21.
55. Le Coq, D.,, A. M. Crutz,, R. Richter,, and M. Steinmetz. Unpublished data.
56. Leong-Morgenthaler, P.,, M. C. Zwahlen,, and H. Hot-tlnger. 1991. Lactose metabolism in Lactobacillus bulgaricus: analysis of the primary structure and expression of the genes involved. J. Bacteriol. 173: 1951 1957.
57. Lepesant, J. A.,, F. Kunst,, M. Pascal,, J. Lepesant-Kej-zlarova,, M. Steinmetz,, and R. Dedonder,. 1976. Specific and pleiotropic regulatory mechanisms in the sucrose system of Bacillus subtilis 168, p. 58 69. In D. Schles-singer (ed.), Microbiology—1976. American Society for Microbiology, Washington, D.C..
58. Lin, E. C. C., 1987. Dissimilatory pathways for sugars, polyols, and carboxylates, p. 244 284. In F. C. Neidhart,, J. L. Ingraham,, K. B. Low,, B. Magasanik,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 1. American Society for Microbiology, Washington, D.C..
59. Lin, E. C. C.,, A. J. Hacking,, and J. Aguilar. 1976. Experimental models of acquisitive evolution. BioScience 26: 548 555.
60. Lindgren, V. 1978. Mapping of a genetic locus that affects glycerol 3-phosphate in Bacillus subtilis. J. Bacteriol. 133: 667 670.
61. Lindgren, V.,, and L. Rutberg. 1976. Genetic control of the glp system in Bacillus subtilis. J. Bacteriol. 127: 1047 1057.
62. Loesche, W. L. 1986. Role of Streptococcus mutans in human dental decay. Microbiol. Rev. 50: 353 380.
62a.. Losick, R. (Harvard University). 1992. Personal communication.
63. Macrina, F. L.,, K. R. Jones,, C. A. Alpert,, B. M. Chassy,, and S. M. Michalek. 1991. Repeated DNA sequence involved in mutations affecting transport of sucrose in Streptococcus mutans V403 via the phosphoenolpyru-vate phosphotransferase system. Infect. Immun. 59: 1535 1543.
64. Mahadevan, S.,, and A. Wright. 1987. A bacterial gene involved in transcription antitermination: regulation at a Rho-independent terminator in the bgl operon of E. coli. Cell 50: 485 494.
65. Martin, I.,, M. Debarbouillé,, E. Ferrari,, A. Klier,, and G. Rapoport. 1987. Characterization of the levanase gene of Bacillus subtilis which shows homology to yeast invertase. Mol. Gen. Genet. 208: 177 184.
66. Martin, I.,, M. Debarbouillé,, A. Klier,, and G. Rapoport. 1989. Induction and metabolite regulation of levanase synthesis in Bacillus subtilis. J. Bacteriol. 171: 1885 1892.
67. Martin-Verstraete, I.,, M. Debarbouillé,, A. Klier,, and G. Rapoport. 1990. Levanase operon of Bacillus subtilis includes a fructose-specific phosphotransferase system regulating the expression of the operon. J. Mol. Biol. 214: 657 671.
68. Minton, N. P.,, S. P. Chambers,, W. J. Mitchell,, and J. K. Brehm. 1991. Program Abstr. 6th Int. Conf. Bacilli, abstr. Ml..
69. Mollet, B.,, and N. Pllloud. 1991. Galactose utilization in Lactobacillus helveticus: isolation and characterization of the galactokinase (galK) and galactose-1-phosphate uridyl transferase igalT) genes. J. Bacteriol. 173: 4464 4473.
70. Morse, M. L.,, K. L. Hill,, J. B. Egan,, and W. Hengstenberg. 1968. Metabolism of lactose by Staphylococcus aureus and its genetic basis. J. Bacteriol. 95: 2270 2274.
71. Nègre, D.,, J.-C. Cortay,, I. G. Old,, A. Galinier,, C. Rich-aud,, I. Saint-Girons,, and A. J. Cozzone. 1991. Overproduction and characterization of the iclR gene product of Escherichia coli Kl 2 and comparison with that of Salmonella typhimurium LT2. Gene 97: 29 37.
72. Oskouian, B.,, and G. C. Stewart. 1990. Repression and catabolite repression of the lactose operon of Staphylococcus aureus. J. Bacteriol. 172: 3804 3812.
73. Parker, L. L.,, and B. G. Hall. 1990. Characterization and nucleotide sequence of the cryptic eel operon of Escherichia coli K12. Genetics 124: 455 471.
74. Poolman, B.,, T. J. Royer,, S. E. Mainzer,, and B. F. Schmidt. 1989. Lactose transport system of Streptococcus thermophilus: a hybrid protein with homology to the melibiose carrier and enzyme III of phosphoenol-pyruvate-dependent phosphotransferase systems. J. Bacteriol. 171: 244 253.
75. Poolman, B.,, T. J. Royer,, S. E. Mainzer,, and B. F. Schmidt. 1990. Carbohydrate utilization in Streptococcus thermophilus: characterization of the genes for aldose 1-epimerase (mutarotase) and UDPglucose 4-epi-merase. J. Bacteriol. 172: 4037 4047.
76. Rather, P. N.,, and C. P. Moran, Jr. 1988. Compartment-specific transcription in Bacillus subtilis: identification of the promoter for gdh. J. Bacteriol. 170: 5086 5092.
77. Reizer, A.,, J. Deutscher,, M. H. Saier, Jr.,, and J. Reizer. 1991. Analysis of the gluconate (gnt) operon Bacillus subtilis. Mol. Microbiol. 5: 1081 1089.
78. Reizer, J.,, A. Reizer,, and M. H. Saier, Jr. 1990. The cellobiose permease of Escherichia coli consists of three proteins and is homologous to the lactose permease of Staphylococcus aureus. Res. Microbiol. 141: 1061 1067.
79. Reynolds, A. E.,, J. Felton,, and A. Wright. 1981. Insertion of DNA activates the cryptic bgl operon in Escherichia coli K12. Nature (London) 293: 625 629.
80. Romantschuk, M.,, G. Y. Richter,, P. Mukhopadhyay,, and D. Mills. 1991. IS801, an insertion sequence element isolated from Pseudomonas syringae pathovar. Mol. Microbiol. 5: 617 622.
81. Roncero, M. I. G. 1983. Genes controlling xylan utilization by Bacillus subtilis. J. Bacteriol. 156: 257 263.
82. Rosey, E. L.,, B. Oskouian,, and G. C. Stewart. 1991. Lactose metabolism by Staphylococcus aureus: characterization of lacABCD, the structural genes of the tagatose 6-phosphate pathway. J. Bacteriol. 173: 5992 5998.
83. Saheb, S. A. 1972. Etude de deux mutants du métabolisme du glycerol chez Bacillus subtilis. Can. J. Microbiol. 18: 1315 1325.
84. Sa-Nogueira, I.,, and H. de Lancastre. 1991. Program Abstr. 6th Int. Conf. Bacilli., abstr. T9.
85. Sa-Nogueira, I.,, H. Paveia,, and H. de Lancastre. 1988. Isolation of constitutive mutants for L-arabinose utilization in Bacillus subtilis. J. Bacteriol. 170: 2855 2857.
86. Sato, Y.,, F. Poy,, G. R. Jacobson,, and H. K. Kuramitsu. 1989. Characterization and sequence analysis of the scrA gene encoding enzyme IIScr of the Streptococcus mutans phosphoenolpyruvate-dependent sucrose phosphotransferase system. J. Bacteriol. 171: 263 271.
87. Sato, Y.,, Y. Yamamoto,, R. Suzuki,, H. Klzaki,, and H. K. Kuramitsu. 1991. Construction of scrA: :lacZ gene fusion to investigate regulation of the sucrose PTS of Streptococcus mutans. FEMS Microbiol. Lett. 79: 339 346.
88. Scheler, A.,, T. Rygus,, R. Allmansberger,, and W. Hillen. 1991. Molecular cloning, structure, promoters and regulatory elements for transcription of the Bacillus licheniformis encoded regulon for xylose utilization. Arch. Microbiol. 155: 526 534.
89. Schmid, K.,, R. Ebner,, K. Jahreis,, J. W. Lengeler,, and F. Tigemeyer. 1991. The sugar-specific porin, ScrY, is involved in sucrose uptake in enteric bacteria. Mol. Microbiol. 5: 941 950.
90. Schmidt, B. F.,, R. M. Adams,, C. Requadt,, S. Power,, and S. E. Malnzer. 1989. Expression and nucleotide sequence of the Lactobacillus bulgaricus β-galactosidase gene cloned in Escherichia coli. J. Bacteriol. 171: 625 635.
91. Schnetz, K.,, and B. Rak. 1988. Regulation of the bgl operon of Escherichia coli by transcriptional antitermi-nation. EMBO J. 7: 3271 3278.
92. Scholzen, T.,, and E. Arndt. 1991. Organization and nucleotide sequence of ten ribosomal protein genes from the region equivalent to the spectinomycin operon in the archaebacterium Halobacterium marismortui. Mol. Gen. Genet. 228: 70 80.
93. Schörgendorfer, K.,, H. Scharb,, and R. M. Laflerty. 1988. Molecular characterization of Bacillus subtilis levanase and a C-terminal deleted derivative. J. Biotechnol. 7: 247 258.
94. Schroeder, C. J.,, C. Robert,, G. Lenzen,, L. L. McKay,, and A. Mercenier. 1991. Analysis of the lacZ sequence from two Streptococcus thermophilus strains: comparison with the Escherichia colt and Lactococcus bulgaricus β-galactosidase sequences. J. Gen. Microbiol. 137: 369 380.
95. Schroeder, V.,, S. M. Michalek,, and F. L. Macrina. 1989. Biochemical characterization and evaluation of virulence of a fructosyltransferase-deficient mutant of Streptococcus mutans V403. Infect. Immun. 57: 3560 3569.
96. Shamanna, D. K.,, and K. E. Sanderson. 1979. Genetics and regulation of the D-xylose utilization in Salmonella typhimurium LT2. J. Bacteriol. 139: 71 79.
97. Shazand, K.,, P. Hwang,, J. Tucker,, J. C. Rabinowltz,, T. Leighton,, and M. Grunberg-Manago. 1990. Program. Abstr. Conf. Bacillus subtilis Genome, Paris, abstr. P.66.
98. Shimotsu, H.,, and D. Henner. 1986. Modulation of Bacillus subtilis levansucrase gene expression by suerose and regulation of the steady-state mRNA level by sacU and sacQ genes. J. Bacteriol. 168: 380 388.
99. Shiroza, T.,, and H. K. Kuramitsu. 1988. Sequence analysis of the Streptococcus mutans fructosyltransferase gene and flanking regions. J. Bacteriol. 170: 810 816.
100. Slzemore, C.,, E. Buchner,, T. Rygus,, C. Witke,, F. Görz,, and W. Hillen. 1991. Organization, promoter analysis and transcriptional regulation of the Staphylococcus xylosus xylose utilization operon. Mol. Gen. Genet. 227: 377 384.
101. Smith, C. P. (University of Manchester). 1991. Personal communication.
102. Smith, C. P.,, and K. F. Chater. 1988. Structure and regulation of controlling sequences for the Streptomyces coelicolor glycerol operon. J. Mol. Biol. 204: 569 580.
103. Steinmetz, M. Unpublished data.
104. Steinmetz, M.,, and S. Aymerich,. 1990. The Bacillus subtilis sac-deg system: how and why?, p. 303 311. In M. Zukowski,, A. T. Ganesan,, and J. A. Hoch (ed.), Genetics and Biotechnology of Bacilli, vol. 3. Academic Press, Inc., New York.
105. Steinmetz, M.,, D. Le Coq,, and S. Aymerich. 1989. Induction by sucrose of saccharolytic enzymes in Bacillus subtilis: evidence for two partially interchangeable regulatory pathways. J. Bacteriol. 171: 1519 1523.
106. Steinmetz, M.,, D. Le Coq,, S. Aymerich,, G. Gonzy-Tréboul,, and P. Gay. 1985. The DNA sequence of the gene for the secreted Bacillus subtilis enzyme Ievansu-crase. Mol. Gen. Genet. 200: 220 228.
107. Steinmetz, M.,, D. Le Coq,, H. Ben Djemia,, and P. Gay. 1983. Analyse génétique de sacB, gène de structure d'une enzyme sécrétée, la lévane-saccharase de Bacillus subtilis. Mol. Gen. Genet. 191: 138 144.
108. Strauss, N. 1983. Role of glucose dehydrogenase in germination of Bacillus subtilis spores. FEMS Microbiol. Lett. 20: 379 384.
109. Sutrina, S. L.,, P. Reddy,, M. H. Saier, Jr.,, and J. Reizer. 1990. The glucose permease of Bacillus subtilis is a single polypeptide chain that functions to energize the sucrose permease. J. Biol. Chem. 265: 18581 18589.
110. Thomas, T. D.,, and V. L. Crow. 1984. Selection of galactose-fermenting Streptococcus thermophilus in lactose-limited chemostat cultures. Appl. Environ. Microbiol. 48: 186 191.
111. Thompson, J. 1987. Regulation of sugar transport and metabolism in lactic acid bacteria. FEMS Microbiol. Rev. 46: 221 232.
112. Ueda, S.,, T. Shiroza,, and H. K. Kuramitsu. 1988. Sequence analysis of the gtfC gene from Streptococcus mutans GC5. Gene 69: 101 109.
113. Van Rooijen, R. J.,, and W. M. De Vos. 1990. Molecular cloning, transcription analysis, and nucleotide sequence of lacR, a gene encoding the repressor of the lactose phosphotransferase system of Lactococcus lactis. J. Biol. Chem. 265: 18499 18503.
114. Van Rooijen, R. J.,, S. Vanschalkwijk,, and W. M. De Vos. 1991. Molecular cloning, characterization, and nucleotide sequence of the tagatose 6-phosphate pathway gene cluster of the lactose operon of Lactococcus lactis. J. Biol. Chem. 266: 7176 7182.
114a.. Wagner, E.,, and R. Bruckner (University of Tubingen). 1992. Personal communication.
115. Westphellng, J.,, and M. Brawner. 1989. Two transcribing activities are involved in expression of the Streptomyces galactose operon. J. Bacteriol. 171: 1355 1361.
116. Wong, H. C.,, Y. Ting,, H.-C. Lin,, F. Reichert,, K. Myambo,, K. W. K. Watt,, P. T. Toy,, and R. J. Drummond. 1991. Genetic organization and regulation of the xylose degradation genes in Streptomyces rubiginosus. J. Bacteriol. 173: 6849 6858.
117. Zagorec, M.,, and M. Steinmetz. 1991. Construction of a derivative of Tn917 containing an outward directed promoter and its use in Bacillus subtilis. J. Gen. Microbiol. 137: 107 112.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error