Chapter 15 : Carbon Source-Mediated Catabolite Repression

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Carbon Source-Mediated Catabolite Repression, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap15-1.gif /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap15-2.gif


Catabolite repression is a regulatory mechanism by which the cell (i) coordinates metabolism of carbon a n d energy sources to maximize efficiency and (ii) regulates other metabolic processes as well. The objective of this review is to examine what is known about the molecular mechanisms by which catabolite repression operates in gram-positive bacteria, especially . In this chapter, the author uses the term catabolite repression to refer specifically to carbon source-mediated regulation and not to regulation by nitrogen or other nutrient sources. The phenomenon of catabolite repression has been best characterized in . The chapter briefly reviews the basic mechanism by which accomplishes the type of global regulation. Catabolite repression in is interference with a positive regulatory mechanism in which the catabolite repressor protein (CRP or CAP) in complex with the cyclic nucleotide cyclic AMP (cAMP) binds to a specific site in the promoter region of catabolite repression-sensitive genes or operons. In the three genera of gram-positive bacteria (), the molecular mechanism by which catabolite repression functions appears to be fundamentally different from that in . To date, few studies have been directed at elucidating the molecular mechanism by which carbon source-mediated catabolite repression operates. The mechanism by which monitors its environment for the presence of readily metabolized carbohydrates and translates that information into regulatory signals is unknown.

Citation: Chambliss G. 1993. Carbon Source-Mediated Catabolite Repression, p 213-219. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch15
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Adler, K.,, K. Beyreuther,, E. Fanning,, N. Geisler,, B. Gronenborn,, A. Klemm,, B. Muller-Hlll,, M. Pfahl,, and A. Schmitz. 1972. How lac repressor binds to DNA. Nature (London) 237: 322 327.
2. Bjorklind, A.,, and S. Arvidson. 1980. Mutants of Staphylococcus aureus affected in the regulation of exoprotein synthesis. FEMS Microbiol. Lett. 7: 203 206.
3. Buttner, M. J.,, A. M. Smith,, and M. J. Bibb. 1988. At least three different RNA polymerase holoenzymes direct transcription of the agarase gene (dagA) of Streptomyces coelicolor A3(2). Cell 52: 599 609.
4. Champness, W. 1988. New loci required for Streptomyces coelicolor morphological and physiological differentiation. J. Bacteriol. 170: 1168 1174.
5. Chater, K. F., 1984. Morphological and physiological differentiation in Streptomyces, p. 89 115. In R. Losick, and L. Shapiro (éd.), Microbial Development. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y..
6. Chatterjee, S.,, and L. C. Vining. 1982. Catabolite repression in Streptomyces venezuelae. Induction of β-galactosidase, chloramphenicol production, and intracellular cyclic adenosine 3',5' monophosphate concentrations. Can. J. Microbiol. 28: 311 317.
7. Delic, I.,, P. Robbins,, and J. Westphellng. 1992. Direct repeat sequences are implicated in the regulation of two chitinase promoters that are subject to carbon catabolite control in Streptomyces. Proc. Natl. Acad. Sci. USA 89: 1885 1889.
8. Doi, R. H.,, M. Gitt,, L.-F. Wang,, C. W. Price,, and F. Kawamura,. 1985. Major sigma factor, sigma-43, of Bacillus subtilis RNA polymerase and interacting spoO products are implicated in catabolite control of sporulation, p. 157 161. In J. Hoch, and P. Setlow (éd.), Molecular Biology of Microbial Differentiation. American Society for Microbiology, Washington, D.C..
9. Duncan, J. L.,, and G. J. Cho. 1972. Production of staphylococcal alpha toxin. II. Glucose repression of toxin formation. Infect. Immun. 6: 689 694.
10. Ebright, R. H., 1986. Proposed amino acid-base pair contacts for 13 sequence-specific DNA binding proteins, p. 207 219. In D. L. Oxender (éd.), Protein Structure, Folding, and Design. Alan R. Liss, Inc., New York.
11. Epps, H. M. R.,, and E. F. Gale. 1942. The influence of the presence of glucose during growth on the enzymic activities of Escherichia coli: comparison of the effect with that produced by fermentation acids. Biochem. J. 36: 619 623.
11a.. Fisher, S. Personal communication.
12. Fisher, S. H.,, and A. L. Sonenshein. 1991. Control of carbon and nitrogen metabolism in Bacillus subtilis. Annu. Rev. Microbiol. 43: 107 135.
13. Fornwald, J. A.,, F. J. Schmidt,, C. W. Adams,, M. Rosenberg,, and M. E. Brawner. 1987. Two promoters, one inducible and one constitutive, control transcription of the Streptomyces lividans galactose operon. Proc. Natl. Acad. Sci. USA 84: 2130 2134.
14. Fouet, A.,, and A. L. Sonenshein. 1990. A target for carbon source-dependent negative regulation of the citB promoter of Bacillus subtilis. J. Bacteriol. 172: 835 844.
15. Gaskill, M. E.,, and S. A. Khan. 1988. Regulation of the enterotoxin B gene in Staphylococcus aureus. J. Biol. Chem. 263: 6276 6280.
16. Gilman, M. Z.,, R. N. Wilson,, and R. A. Weinberg. 1986. Multiple protein binding sites in the 5'-flanking region regulate c-fos expression. Mol. Cell. Biol. 6: 4305 4316.
17. Gordon, A. J. E.,, P. A. Burns,, D. F. Fy,, F. Yatagi,, F. L. Allen,, M. J. Horsfall,, J. A. Halliday,, J. Gray,, C. Bernelot-Moens,, and B. W. Glickman. 1988. Missense mutation in the lad gene of Escherichia coli. Inferences on the structure of the repressor protein. J. Mol. Biol. 200: 239 251.
18. Hanson, R. S.,, J. A. Peterson,, and A. A. Yousten. 1970. Unique biochemical events in bacterial sporulation. Annu. Rev. Microbiol. 24: 53 90.
19. Henkln, T. M.,, F. J. Grundy,, W. L. Nicholson,, and G. H. Chambliss. 1991. Catabolite repression of an amylase gene expression in Bacillus subtilis involves a transacting gene product homologous to and galR repressors. Mol. Microbiol. 5: 575 584.
20. Hodgson, D. A. 1980. Carbohydrate utilization in Streptomyces coelicolor A3(2). Ph.D. thesis, University of East Anglia, Norwich, United Kingdom.
21. Hodgson, D. A. 1982. Glucose repression of carbon source uptake in Streptomyces coelicolor A3(2) and its perturbation in mutants resistant to 2-deoxyglucose. J. Gen. Microbiol. 128: 2417 2430.
22. landolo, J. J.,, and W. J. Shafer. 1977. Regulation of staphylococcal enterotoxin B. Infect. Immun. 16: 610 616.
23. Ide, M. 1971. Adenylcyclase of bacteria. Arch. Biochem. Biophys. 144: 262 268.
24. Ikeda, H.,, E. T. Seno,, C. J. Bruton,, and K. F. Chater. 1984. Genetic mapping, cloning and physiological aspects of the glucose kinase gene of Streptomyces coelicolor. Mol. Gen. Genet. 196: 501 507.
25. Ingram, C.,, M. Brawner,, P. Youngman,, and J. Westpheling. 1989. xylE functions as an efficient reporter gene in Streptomyces spp.: use for the study of galPl, a catabolite-controlled promoter. J. Bacteriol. 171: 6617 6624.
26. Irani, M.,, L. Orosz,, S. Busby,, T. Tanlguchl,, and S. Adhya. 1983. Cyclic AMP-dependent constitutive expression of gal operon: use of repressor titration to isolate operator mutations. Proc. Natl. Acad. Sci. USA 80: 4775 4779.
27. Jacob, S.,, R. Allmansberger,, D. Gartner,, and W. Hillen. 1991. Catabolite repression of the operon for xylose utilization from Bacillus subtilis W23 is mediated at the level of transcription and depends on a cis site in thexylA reading frame. Mol. Gen. Genet. 229: 189 196.
28. Jarvls, A. W.,, R. C. Lawrence,, and G. G. Pritchard. 1975. Glucose repression of enterotoxins A, B and C and other extracellular proteins in staphylococci in batch and continuous culture. J. Gen. Microbiol. 86: 75 87.
29. Kleina, L. G.,, and J. H. Miller. 1990. Genetic studies of the lac repressor. XIII. Extensive amino acid replacements generated by the use of natural and synthetic suppressors. J. Mol. Biol. 212: 295 318.
30. Magasanlk, B. 1961. Catabolite repression. Cold Spring Harbor Symp. Quant. Biol. 26: 249 256.
31. Magasanlk, B., 1970. Glucose effects: inducer exclusion and repression, p. 189 219. In J. R. Beckwith, and D. Zipser (éd.). The Lactose Operon. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y..
32. Magasanlk, B.,, and F. C. Neidhardt,. 1987. Regulation of carbon and nitrogen utilization, p. 1318 1325. In F. C. Neidhardt,, J. L. Ingraham,, K. B. Low,, B. Magasanik,, M. Schaechter,, and H. E. Umbarger (éd.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 2. American Society for Microbiology, Washington, D.C..
33. Maquat, L. E.,, K. Thornton,, and W. S. Reznikoff. 1980. lac promoter mutations located downstream from the transcription start site. J. Mol. Biol. 139: 537 549.
34. Martin, I.,, M. Débarbouille,, A. Klier,, and G. Rapoport. 1989. Induction and metabolite regulation of levanase synthesis in Bacillus subtilis. J. Bacteriol. 171: 1885 1892.
35. Martin, J. F.,, and A. L. Demain. 1980. Control of antibiotic biosynthesis. Microbiol. Rev. 44: 230 251.
36. Miwa, Y.,, and Y. Fujlta. 1990. Determination of the cis sequence involved in catabolite repression of the Bacillus subtilis gnt operon; implication of a consensus sequence in catabolite repression in the genus Bacillus. Nucleic Acids Res. 18: 7049 7053.
37. Miyashita, K.,, T. Fujii,, and Y. Sawada. 1991. Molecular cloning and characterization of chitinase genes from Streptomyces lividans 66. J. Gen. Microbiol. 137: 2065 2072.
38. Monod, J. 1947. The phenomenon of enzymatic adaptation. Growth 11: 223 289.
39. Nicholson, W. L. 1987. Regulation of α-amylase synthesis in Bacillus subtilis. Ph.D. thesis, University of Wisconsin, Madison.
40. Nicholson, W. L.,, and G. H. Chambliss. 1985. Isolation and characterization of a cis-acting mutation conferring catabolite resistance to α-amylase synthesis in Bacillus subtilis. J. Bacteriol. 161: 875 881.
41. Nicholson, W. L.,, Y.-K. Park,, T. M. Henkln,, M. Won,, M. J. Welckert,, J. A. Gaskell,, and G. H. Chambliss. 1987. Catabolite repression-resistant mutations of the Bacillus subtilis alpha-amylase promoter affect transcription levels and are in an operator-like sequence. J. Mol. Biol. 198: 609 618.
42. Oskouian, B.,,and G. C. Stewart. 1990. Repression and catabolite repression of the lactose operon of Staphylococcus aureus. J. Bacteriol. 172: 3804 3812.
43. Postma, P. W., 1987. Phosphotransferase system for glucose and other sugars, p. 127 141. In F. C. Neidhardt,, J. L. Ingraham,, K. B. Low,, B. Magasanik,, M. Schaechter,, and H. E. Umbarger (éd.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 2. American Society for Microbiology, Washington, D.C..
44. Regassa, L. B.,, J. L. Couch,, and M. J. Betley. 1991. Steady-state staphylococcal enterotoxin type C mRNA is affected by a product of the accessory gene regulator (agr) and by glucose. Infect. Immun. 59: 955 962.
45. Sadler, J. R.,, H. Sasmor,, and J. L. Betz. 1983. A perfectly symmetric lac operator binds the lac repressor very tightly. Proc. Natl. Acad. Sci. USA 80: 6785 6789.
46. Sauer, R. T.,, R. R. Yocum,, R. F. Doolittle,, M. Lewis,, and C. O. Pabo. 1982. Homology among DNA-binding proteins suggests use of a conserved super-secondary structure. Nature (London) 298: 447 451.
47. Schaefler, P.,, J. Millet,, and J. D. Aubert. 1965. Catabolite repression of bacterial sporulation. Proc. Natl. Acad. Sci. USA 54: 704 711.
48. Setlow, P. 1973. Inability to detect cyclic AMP in vegetative or sporulating cells or dormant spores of Bacillus megaterium. Biochem. Biophys. Res. Commun. 52: 365 372.
49. Simons, A.,, D. Tib,, B. von Wilcken-Bergmann,, and B. Muller-Hlll. 1984. Possible ideal lac operator: Escherichia coli lac operator-like sequences from eukaryotic genomes lack the central G-C pair. Proc. Natl. Acad. Sci. USA 81: 1624 1628.
50. Smith, C. P.,, and K. F. Chater. 1988. Cloning and transcriptional analysis of the entire glycerol utilization (glyABX) operon of Streptomyces coelicolor A3(2) and identification of a closely associated transcriptional unit. Mol. Gen. Genet. 211: 129 137.
51. Smith, J. L.,, M. M. Bencivengo,, R. L. Buchanan,, and C. A. Kunsch. 1987. Effect of glucose analogs on the synthesis of staphylococcal enterotoxin A. J. Food Safety 8: 139 146.
52. Smith, J. L.,, M. M. Bencivengo,, and C. A. Kunsch. 1986. Enterotoxin A synthesis in Staphylococcus aureus: inhibition by glycerol and maltose. J. Gen. Microbiol. 132: 3375 3380.
53. Smith, T. F.,, and J. R. Sadler. 1971. The nature of lactose operator constitutive mutations. J. Mol. Biol. 59: 273 305.
53a.. Stuhlkes, J. Personal communication.
54. Sun, D.,, and I. Takahashi. 1982. Genetic mapping of catabolite-resistant mutants of Bacillus subtilis. Can. J. Microbiol. 28: 1242 1251.
55. Sun, D.,, and I. Takahashi. 1984. A catabolite-resistance mutation is localized in the rpo operon of Bacillus subtilis. Can. J. Microbiol. 30: 423 429.
56. Takahashi, I. 1979. Catabolite repression-resistant mutants of Bacillus subtilis. Can. J. Microbiol. 25: 1283 1287.
57. Ullmann, A.,, and A. Danchin. 1983. Role of cyclic AMP in bacteria. Adv. Cyclic Nucleotide Res. 15: 1 53.
58. Vlrolle, M. J.,, and M. J. Bibb. 1988. Cloning, characterization and regulation of an alpha-amylase gene from Streptomyces limosus. Mol. Microbiol. 2: 197 208.
59. von Wilcken-Bergmann, B.,, and B. Muller-Hill. 1982. Sequence of the galR gene indicates a common evolutionary origin of lac and gal repressor in Escherichia coli. Proc. Natl. Acad. Sci. USA 79: 2427 2431.
60. Welckert, M.,, and S. Adhya. 1992. A family of bacterial regulators homologous to Gal and Lac repressors. J. Biol. Chem. 267: 15869 15874.
61. Welckert, M.,, and G. Chambliss. 1990. Site-directed mutagenesis of a catabolite repression operator sequence in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 87: 6238 6242.
62. Yamaguchl, K.,, H. Matsuzaki,, and B. Maruo. 1969. Participation of a regulator gene in the α-amylase production of Bacillus subtilis. J. Gen. Appl. Microbiol. 15: 97 107.
63. Yamaguchl, K.,, Y. Nagata,, and B. Maruo. 1974. Genetic control of the rate of α-amylase synthesis in Bacillus subtilis. J. Bacteriol. 119: 410 415.
64. Yuki, S. 1968. On the gene controlling the rate of α-amylase production in Bacillus subtilis. Biochem. Biophys. Res. Commun. 31: 182 187.
65. Zahler, S. A.,, L. G. Benjamin,, B. S. Glatz,, P. F. Winter,, and B. J. Goldstein,. 1976. Genetic mapping of the alsA, alsR, thyA, kauA, and citD markers in Bacillus subtilis, p. 35 43. In D. Schlessinger (éd.), Microbiology—1976. American Society for Microbiology, Washington, D.C..
66. Zahler, S. A.,, N. Najimudin,, D. S. Kessler,, and M. A. Vandeyar,. 1990. α-Acetolactate synthesis in Bacillus subtilis, p. 25 42. In Z. Barak,, D. M. Chipman,, and J. V. Schloss (éd.), Biosynthesis of Branched Chain Amino Acids. VCH Verlagsgesellschaft, Berlin.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error