Chapter 49 : Protein Secretion

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Protein Secretion, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap49-1.gif /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap49-2.gif


The basic mechanism by which proteins are transported across membranes appears to be universal, with important features conserved between bacteria and eukaryotes. Protein secretion across the cell envelope is a complex process. Protein transport involves an interaction between the exported protein and the cellular secretion factors. Some of the characteristics of protein secretion in and are similar. The first part of this chapter discusses some of the structural features of the exoproteins and their role in protein secretion. This discussion is followed by an outline of the approaches taken to define the components of secretion machinery and of one's current knowledge of protein secretion in . In this discussion, the term “translocation” refers to the transfer of protein across the membrane. The signal sequence mutants described were constructed to improve the secretion efficiency of the wheat α-amylase signal sequence in . The wheat α--amylase signal peptide can transport LVS and alkaline phosphatase from , but the kinetics of transport were slower than those observed with signal peptides. This observation underlines an important role played by the mature sequence in protein secretion. The difference in phenotype between and was useful in cloning the leader peptidase gene. These two complementary approaches have identified mutations within the same structural genes, underlining the importance of these genes in protein export.

Citation: Nagarajan V. 1993. Protein Secretion, p 713-726. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch49
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Banerjee, S.,, and J. N. Hansen. 1988. Structure and expression of a gene encoding the precursor of subtilin, a small protein antibiotic. J. Biol. Chem. 263: 9508 9514.
2. Behnke, D.,, and D. Gerlach. 1987. Cloning and expression in Escherichia coli, Bacillus subtilis, and Streptococcus sanguis of a gene for staphylokinase—a bacterial plasminogen activator. Mol. Gen. Genet. 210: 528 534.
3. Benyahia, F.,, R. Chambert,, and M. F. Petlt-Glatron. 1988. Levansucrase of Bacillus subtilis: effects on the secretion process of single amino acid substitutions in the mature part of the protein. J. Gen. Microbiol. 134: 3259 3268.
4. Borchert, T. V. 1991. A genetic approach in the study of protein secretion in B. subtilis. Ph.D. thesis. The Technical University of Denmark, Copenhagen.
5. Borchert, T. V.,, and V. Nagarajan,. 1990. Structure-function studies on the Bacillus amyloliquefaciens levansucrase signal peptide, p. 171 177. In M. Zukowski,, A. T. Ganesan,, and J. Hoch (ed.), Genetics and Biotechnology of Bacilli, Academic Press, Inc., New York.
6. Borchert, T. V.,, and V. Nagarajan. 1991. Effect of signal sequence alteration on export of levansucrase in Bacillus subtilis. J. Bacteriol. 173: 276 282.
7. Briggs, M. S. and L. M. Gierasch. 1986. Molecular mechanisms of protein secretion: the role of the signal sequence. Adv. Prot. Chem. 38: 110 180.
8. 7a.Buchanan, C. E., and M. Ling. 1992. Isolation and sequence analysis of dacB, which encodes a sporulation-specific penicillin-binding protein in Bacillus subtilis. J. Bacteriol. 174: 17171725.
8.Buchanan, C. E., and S. L. Neyman. 1986. Correlation of penicillin-binding protein composition with different functions of two membranes in Bacillus subtilis fore-spores. J. Bacteriol. 165: 498503.
9. Caulfield, M. P.,, R. C. W. Berkeley,, E. A. Pepper,, and J. Melllng. 1979. Export of extracellular levansucrase by Bacillus subtilis: inhibition by cerulenin and quinacrine. J. Bacteriol. 138: 345 351.
10. Chambert, R.,, F. Benyahia,, and M. F. Petit-Glatron. 1990. Secretion of Bacillus subtilis levansucrase Fe(III) could act as a cofactor in efficient coupling of folding and translocation processes. Biochem. J. 265: 375 382.
11. Chambert, R., andM. F. Petit-Glatron. 1990. Reversible thermal unfolding of Bacillus subtilis levansucrase is modulated by Fe 3+ and Ca 2+. FEBS Lett. 275: 61 64.
11a. Chen, M.,, and V. Nagarajan. The role of signal peptide and mature protein in RNase (Barnase) export from Bacillus subtilis. Mol. Gen. Genet., in press.
12. Cheung, H. Y.,, and E. Freese. 1985. Monovalent cations enable cell wall turnover of the turnover-deficient mutant of Bacillus subtilis. J. Bacteriol. 161: 1222 1225.
13. Chung, Y. J.,, M. T. Steen,, and J. N. Hansen. The subtilin gene of Bacillus subtilis ATCC 6633 is encoded in an operon that contains a homolog of the hemolysin B transport mechanism. Submitted for publication.
14. Doyle, R., 1989. How cell walls of gram-positive bacteria interact with metal ions, p. 275 293. In T. J. Beverage, and R. J. Doyle (ed.), Metal Ions in the Bacteria. John Wiley & Sons, Inc., New York.
15. Egnell, P.,, and J.-I. Flock. 1991. The subtilisin Carlsberg pro-region is a membrane anchorage for two fusion proteins produced in Bacillus subtilis. Gene 97: 49 54.
16. Emr, S. D.,, S. Hanley-Way,, and T. J. Silhavy. 1981. Suppressor mutations that restore export of a protein with a defective signal sequence. Cell 23: 79 88.
17. Fandl, J.,, and P. C. Tal. 1990. Biochemical characterization of genetically defined translocation components. J. Bioenerg. Biomembr. 22: 369 388.
18. Flshman, Y.,, S. Rottem,, and N. Citri. 1980. Preferential suppression of normal exoenzyme formation by membrane-modifying agents. J. Bacteriol. 141: 1435 1438.
19. Fukusaki, E.,, W. Panbangred,, A. Shinmyo,, and H. Okada. 1984. The complete nucleotide sequence of the xylanase gene (xynA) of Bacillus pumilus. FEBS Lett. 171: 197 201.
20. Gennity, J.,, J. Goldstein,, and M. Inouye. 1990. Signal peptide mutants of Escherichia coli. J. Bioenerg. Biomembr. 22: 233 270.
21. Gierasch, L. M. 1989. Signal sequences. Biochemistry 28: 923 930.
22. Gould, A. R.,, B. K. May,, and W. H. Elliott. 1975. Release of extracellular enzymes from Bacillus amyloliquefaciens. J. Bacteriol. 122: 34 40.
23. Hansen, J. N., 1992. The molecular biology of nisin and its structural analogs. In D. Hoover, and L. Steenson (ed.), Bacteriocins of Lactic Acid Bacteria, in press. Academic Press, Inc., New York.
24. Hartley, R. W. 1988. Barnase and barstar. Expression of its cloned inhibitor permits expression of a cloned ribonuclease. J. Mol. Biol. 202: 913 915.
25. Hastrup, S.,, and M. F. Jacobs,. 1990. Lethal phenotype conferred by xylose-induced overproduction of an Apr-lacZ fusion protein, p. 33 41. In M. Zukowski,, A. T. Ganesan,, and J. Hoch (ed.), Genetics and Biotechnology of Bacilli, vol. 3. Academic Press, Inc., New York.
26. Hayashi, S.,, S. Y. Chang,, S. Chang, C. Z. Giam, and H. C. Wu. 1985. Modification and processing of internalized signal sequences of prolipoprotein in Escherichia coli and in Bacillus subtilis. J. Biol. Chem. 260: 5753 5759.
27. Hayashi, S.,, and H. C. Wu. 1990. Lipoproteins in bacteria. J. Bioenerg. Biomembr. 22: 451 472.
28. Hemila, H. 1991. Sequence of a PAL related lipoprotein from Bacillus subtilis. FEMS Microbiol. Lett. 82: 37 42.
29. Hofemeister, J.,, A. Kurtz,, R. Borriss,, and J. Knowles. 1986. The β-glucanase gene from Bacillus amylolique-faciens shows extensive homology with that of Bacillus subtilis. Gene 49: 177 187.
30. Horiuchi, S.,, D. Marty-Mazars,, P. C. Tal,, and B. D. Davis. 1983. Localization and quantitation of proteins characteristic of the complexed membrane of Bacillus subtilis. J. Bacteriol. 154: 1215 1221.
31. Horiuchi, S.,, P. C. Tai,, and B. D. Davis. 1983. A 64-kilodalton membrane protein of Bacillus subtilis covered by secreting ribosomes. Proc. Natl. Acad. Sci. USA 80: 3287 3291.
32. Hulett, F. M.,, E. E. Kim, C. Bookstein, N. V. Kapp, C. W. Edwards, and H. W. Wyckoff. 1991. Bacillus subtilis alkaline phosphatases III and IV. J. Biol. Chem. 172: 1077 1084.
33. Hulett, F. M.,, K. Stuckmann,, D. Spencer,, and T. San-opoulou. 1986. Purification and characterization of the secreted alkaline phosphatase of Bacillus licheniformis MCI4: identification of a possible precursor. J. Gen. Microbiol. 132: 2387 2395.
34. Hussaln, M.,, F. I. J. Pastor,, and J. O. Lampen. 1987. Cloning and sequencing of the blaZ gene encoding β-lactamase III. A lipoprotein of Bacillus cereus 569/H. J. Bacteriol. 169: 579 586.
35. Iino, T.,, M. Takahashi,, and T. Sako. 1987. Role of amino-terminal positive charge on signal peptide in staphylokinase export across the cytoplasmic membrane of Escherichia coli. J. Biol. Chem. 262: 7412 7417.
36. Ikemura, H.,, and M. Inouye. 1988. In vitro processing of pro-subtilisin produced in Escherichia coli. J. Biol. Chem. 263: 12959 12963.
37. Ikemura, H.,, H. Takagis,, and M. Inouye. 1987. Requirement of pro-sequence for the production of active subtilisin E in Escherichia coli. J. Biol. Chem. 262: 7859 7864.
38.Ito, K. 1990. Structure, function and biogenesis of SecY, an integral membrane protein involved in protein export. J. Bioenerg. Biomembr. 22: 353368.
39. Jacobs, M.,, M. Ellasson,, M. Uhlen,, and J.-I. Flock. 1985. Cloning, sequencing and expression of subtilisin Carlsberg from Bacillus licheniformis. Nucleic Acids Res. 13: 8913 8926.
40. Jones, J. D., C. J. Macknlght, and L. Gierasch. 1990. Biophysical studies of signal peptides: implications for signal sequence functions and involvement of lipid in protein export. J. Bioenerg. Biomembr. 22: 213 232.
41. Kennedy, M. B., and W. J. Lennarz. 1979. Characterization of the extracellular lipase of Bacillus subtilis and its relationship to a membrane-bound lipase found in a mutant strain. J. Biol. Chem. 254: 1080 1089.
41a. Klose, M.,, K. Schimz,, J. van der Wolk,, A. Driessen,, and R. Freudl. Lysine 106 of the putative catalytic ATP-binding site of the B. subtilis SecA protein is required for functional complementation of Escherichia coli secA mutants in vivo. Submitted for publication.
42. Kontinen, V.,, P. Saris,, and M. Sarvas. 1991. A gene (prsA) of Bacillus subtilis involved in a novel, late stage of protein export. Mol. Microbiol. 5: 1273 1283.
43. Kontinen, V.,, and M. Sarvas. 1988. Mutants of B. subtilis defective in protein export. J. Gen. Microbiol. 134: 2333 2344.
44. Kovacevic, S.,, L. E. Veal,, H. M. Hsiung,, and J. R. Miller. 1985. Secretion of staphylococcal nuclease by Bacillus subtilis. J. Bacteriol. 162: 521 528.
45. Kubo, M.,, and T. Imanaka. 1988. Cloning and nucleotide sequence of the highly thermostable neutral protease gene from Bacillus stearothermophilus. J. Gen. Microbiol. 134: 1883 1892.
46. Lampen, J. O.,, W. Wang,, P. S. F. Mezes,, and Y. Yang,. 1984. β-Lactamases of bacilli: nature and processing, p. 129 140. In A. T. Ganesan, and J. Hoch (ed.), Genetics and Biotechnology of Bacilli. Academic Press, Inc., New York.
47. Li, M.,, and S. L. Wong. 1992. Cloning and characterization of groESL operon from Bacillus subtilis. J. Bacteriol. 174: 3981 3992.
48. Liu, G.,, T. B. Topping,, and L. L. Randall. 1989. Physiological role during export for the retardation of folding by the leader peptide of maltose-binding protein. Proc. Natl. Acad. Sci. USA 86: 9213 9217.
49. Liu, W.,, and J. N. Hansen. 1991. Conversion of Bacillus subtilis 168 to a subtilin producer by competence transformation. I. Bacteriol. 173: 7387 7390.
50. Lofdahl, S.,, B. Guss,, M. Uhlen,, L. Philpson,, and M. Lindenberg. 1983. Gene for staphylococcal protein A. Proc. Natl. Acad. Sci. USA 80: 697 701.
51. MacKay, R. M.,, A. Lo,, G. Willick,, M. Zuker,, S. Baird,, M. Dove,, F. Moranelli, and Verner Seligy. 1986. Structure of a Bacillus subtilis endo- β-l,4-glucanase gene. Nucleic Acids Res. 14: 9159 9170.
52.Manoil, C, and J. Beckwith. 1985. TnphoA: a transposon probe for protein export signals. Proc. Natl. Acad. Sci. USA 82: 81298133.
53. Martin, I.,, M. Débarbouille,, E. Ferrari,, A. Klier,, and G. Rapoport. 1987. Characterization of the levanase gene of Bacillus subtilis which shows homology to yeast invertase. Mol. Gen. Genet. 208: 177 184.
54. Marty-Mazars, D.,, S. Horiuchi,, P. C. Tai,, and B. D. Davis. 1983. Proteins of ribosome-bearing and free-membrane domains in Bacillus subtilis. J. Bacteriol. 154: 1381 1388.
55. Matsuyama, S.,, E. Kimura,, and S. Mizushlma. 1990. Complementation of two overlapping fragments of SecA, a protein translocation ATPase of Escherichia coli, allow ATP binding to its amino-terminal region. J. Biol. Chem. 265: 8760 8765.
56. McLaughlin, J. R., C. L. Murray, and J. C. Rabinowitz. 1981. Unique features in the ribosome binding site sequence of the gram-positive Staphylococcus aureus β-lactamase gene. J. Biol. Chem. 256: 11283 11291.
57. Mezes, P. S. F.,, R. H. Blacher,, and J. O. Lampen. 1985. Processing of Bacillus cereus 569/H β-lactamaseI in Escherichia coli and Bacillus subtilis. J . Biol. Chem. 260: 1218 1223.
58. Mezes, P. S. F.,, W. Wang,, E. C. H. Yeh,, and J. O. Lampen. 1983. Construction of penP-1, Bacillus licheniformis 749/C β-lactamaselacking site for lipoprotein modification. J. Biol. Chem. 258: 11211 11218.
59. Michealls, S.,, H. Inouye,, D. Oliver,, and J. Beckwith. 1983. Mutations that alter the signal sequence of alkaline phosphatase in E scherichia coli. J. Bacteriol. 154: 366 374.
60. Muren, E. M.,, and L. Randall. 1985. Export of α-amylase by Bacillus amyloliquefaciens requires proton motive force. J. Bacteriol. 164: 712 716.
61. Murphy, N.,, D. J. McConnell,, and B. A. Cantwell. 1984. The DNA sequence of the gene and genetic control sites for the excreted B. subtilis enzyme b-glucanase. Nucleic Acids Res. 12: 5355 5367.
61a. Nagarajan, V. Unpublished data.
62. Nagarajan, V.,, H. Albertson,, M. Chen,, and J. Ribbe. 1992. Modular vectors for protein expression in Bacillus subtilis. Gene 114: 121 126.
63. Nagarajan, V.,, and T. V. Borchert. 1991. Levansucrase—a tool to study protein secretion in Bacillus subtilis. Res. Microbiol. 142: 787 792.
64. Nagarajan, V.,, and M. Chen. Unpublished data.
65. Nakajima, R.,, T. Imanaka,, and S. Alba. 1985. Nucleotide sequence of the Bacillus stearothermophilus α-amylase Gene. J. Bacteriol. 163: 401 406.
66. Nakamura, A.,, T. Uozumi,, and T. Beppu. 1987. Nucle-otide sequence of a cellulase gene of Bacillus subtilis. Eur.J. Biochem. 164: 317 320.
67. Nakamura, K.,, Y. Fujita,, Y. Itoh,, and K. Yamane. 1989. Modification of length, hydrophobic properties and electric charge of Bacillus subtilis a amylase signal peptide and their effects on the production of secretory proteins in B. subtilis and Escherichia coli cells. Mol. Gen. Genet. 216: 1 9.
68. Nakamura, K.,, A. Nakamura,, H. Takamatsu,, H. Yoshi-kawa,, and K. Yamane. 1990. Cloning and characterization of a Bacillus subtilis gene homologous to E. coli secY. J. Biochem. 107: 603 607.
69. Nakamura, K.,, H. Takamatsu,, Y. Akiyama,, K. Ito,, and K. Yamane. 1990. Complementation of the protein transport defect of an Escherichia coli secY mutant (secY24) by Bacillus subtilis secY homologue. FEBS Lett. 273: 75 78.
70. Neugebauer, K.,, R. Sprengel,, and H. Schaller. 1981. Penicillinase from Bacillus licheniformis: nucleotide sequence of the gene and implications for the biosynthesis of a secretory protein in a Gram-positive bacterium. Nucleic Acids Res. 9: 2577 2588.
71. Nielsen, J. B. K.,, M. P. Caufield,, and J. O. Lampen. 1981. Lipoprotein nature of Bacillus licheniformis membrane penicillinase. Proc. Natl. Acad. Set. USA 78: 3511 3515.
72. Nielsen, J. B. K.,, and J. O. Lampen. 1982. Membrane-bound penicillinase in gram-positive bacteria. J. Biol. Chem. 257: 4490 4495.
73. Nielsen, J. B. K.,, and J. O. Lampen. 1982. Glyceride-cysteine lipoproteins and secretion by gram-positive bacteria. J. Bacteriol. 152: 315 322.
74. Nishiya, Y.,, and T. Imanaka. 1990. Cloning and nucleotide sequences of the Bacillus stearothermophilus neutral protease gene and its transcriptional activator gene. J. Bacteriol. 172: 4861 4869.
75. Ohmura, K.,, K. Nakamura,, H. Yamazaki,, T. Shiroza,, K. Yamane,, Y. Jigami,, H. Tanaka,, K. Yoda,, M. Ya-masaki,, and G. Tamura. 1984. Length and structural effect of signal peptides derived from Bacillus subtilis α-amylase on secretion of Escherichia coli β-lactamase in B. subtilis cells. Nucleic Acids Res. 12: 5307 5319.
76. Oliver, D. B., R. J. Cabelll, and G. P. Jarosik. 1990. SecA protein: autoregulated initiator of secretory precursor protein translocation across the E. coli plasma membrane. J. Bioenerg. Biomembr. 22: 311 336.
77.Overhoff, B., M. Klein, M. Spies, and R. Freudl. 1991. Identification of a gene fragment which codes for the 364 amino terminal amino acid residues of a SecA homologue from Bacillus subtilis: further evidence for the conservation of the protein export apparatus in gram-positive and gram-negative bacteria. Mol. Gen. Genet. 228: 417423.
78.Paddon, C. J., and R. W. Hartley. 1987. Expression of ' Bacillus amyloliquefaciens extracellular ribonuclease (barnase) in Escherichia coli following an inactivating mutation. Gene 53: 1119.
79.Paddon, C. J., N. Vasantha, and R. W. Hartley. 1989. Translation and processing of Bacillus amyloliquefaciens extracellular RNase. J. Bacteriol. 171: 11851187.
80. Paice, M. G.,, R. Bourbonnais,, M. Deschrochers,, L. Jurasek,, and M. Yaguchi. 1986. A xylanase gene from Bacillus subtilis: nucleotide sequence and comparison with B. pumilus gene. Arch. Microbiol. 144: 201 206.
81. Park, S.,, G. Liu,, T. B. Topping,, W. H. Cover,, and L. Randall. 1988. Modulation of folding pathways of exported proteins by leader sequences. Science 239: 1033 1035.
82. Paton, J. C, B. K. May, and W. H. Elliot. 1980. Cerulenin inhibits production of extracellular proteins but not membrane proteins in Bacillus amyloliquefaciens. J. Gen. Microbiol. 118: 179 187.
83. Payne, M. S.,, A. Griveson,, and E. N. Jackson. Unpublished data.
84. Payne, M. S.,, and E. N. Jackson. 1991. The use of alkaline phosphatase fusions to study protein secretion in Bacillus subtilis. J. Bacteriol. 173: 2278 2282.
85. Perlman, D.,, and H. O. Halvorson. 1983. A putative signal peptidase recognition site and sequence in eu-karyotic and prokaryotic signal peptides. J. Mol. Biol. 167: 391 409.
86. Petit-Glatron, M. F.,, F. Benyahia,, and R. Chambert. 1987. Secretion of Bacillus subtilis levansucrase: a possible two-step mechanism. Eur. J. Biochem. 163: 379 387.
87. Petit-Glatron, M. F.,, and R. Chambert. 1981. Levansucrase of Bacillus subtilis. Conclusive evidence that its production and export are unrelated to fatty-acid synthesis but modulated by membrane-modifying agents. Eur. J. Biochem. 119: 603 611.
88. Petit-Glatron, M. F.,, I. Monteil,, F. Benyahia,, and R. Chambert. 1990. Bacillus subtilis levansucrase: amino acid substitutions at one site affect secretion efficiency and refolding kinetics mediated by metals. Mol. Microbiol. 4: 2063 2070.
89. Philips, G. J.,, and T. J. Silhavy. 1990. Heat-shock proteins dnaK and groEL facilitate export of LacZ hybrid proteins in E. coli. Nature (London) 344: 882 884.
90. Powers, S. D.,, R. M. Adams,, and J. A. Wells. 1986. Secretion and autoproteolytic maturation of subtilisin. Proc. Natl. Acad. Sci. USA 83: 3096 3100.
91. Pugsley, A. P., C. d'Enfert, I. Reyss, and M. G. Kor-nacker. 1990. Genetics of extracellular protein secretion by gram-negative bacteria. Annu. Rev. Genet. 24: 67 90.
92. Puziss, J. W.,, J. D. Fikes,, and P. J. Bassford, Jr. 1989. Analysis of mutational alterations in the hydrophilic segment of the maltose-binding protein signal peptide. J. Bacteriol. 171: 2303 2311.
93. Randall, L.,, and S. J. Hardy. 1986. Correlation of competence for export with lack of tertiary structure of the mature species: a study in vivo of maltose-binding protein in E. coli. Cell 46: 921 928.
94. Ribbe, J.,, and V. Nagarajan. 1992. Characterization of secretion efficiency of a plant signal peptide in Bacillus subtilis. Mol. Gen. Genet. 235: 333 339.
95. Robson, L. M.,, and G. H. Chambliss. 1987. Endo- β-l,4-glucanase gene of Bacillus subtilis DLG. J. Bacteriol. 169: 2017 2025.
96. Sadaie, Y.,, and T. Kada. 1985. Bacillus subtilis gene involved in cell division, sporulation, and exoenzyme secretion. J. Bacteriol. 163: 648 653.
97. Sadaie, Y.,, H. Takamatsu,, K. Nakamura,, and K. Yamane. 1991. Sequencing reveals similarity of the wild-type div + gene of Bacillus subtilis to the Escherichia coli secA gene. Gene 98: 101 105.
98. Sanders, R. L.,, and B. K. May. 1975. Evidence for extrusion of unfolded extracellular enzyme polypeptide chains through membranes of Bacillus amylolique-faciens. J. Bacterial. 123: 806 814.
99. Sarvas, M. 1988. Protein secretion in bacilli. Curr. Top. Microbiol. Immunol. 125: 103 126.
100. Sasamoto, H.,, K. Nakazawa,, K. Tsutsumi,, K. Takase,, and K. Yamane. 1989. Signal peptide of Bacillus subtilis a-amylase. J. Biochem. 106: 376 382.
101. Saunders, C. W.,, J. A. Pedroni,, and P. Monahan. 1991. Secretion from B. subtilis of a 34 amino acid residue fragment of human parathyroid hormone: effect of sequences adjacent to the signal sequence cleavage. Gene 102: 277 282.
102. Schatz, P. J.,, and J. Beckwith. 1990. Genetic analysis of protein export in Escherichia coli. Annu. Rev. Genet. 24: 215 249.
102a. Schmidt, A.,, M. Schiesswohl,, U. Volker,, M. Hecker,, and W. Schuman. 1992. Cloning, sequencing, mapping and transcriptional analysis of the groESL operon from Bacillus subtilis. J. Bacteriol. 174: 3993 3999.
103. Schulein, R.,, J. Kreft,, S. Gonski,, and W. Goebel. 1991. Preprosubtilisin Carlsberg processing and secretion is blocked after deletion of amino acids 97-101 in the mature part of the enzyme. Mol. Gen. Genet. 227: 137 143.
104. Shimada, H.,, M. Honjo,, I. Mita,, A. Nakayama,, A. Akaoka,, K. Manabe,, and Y. Furutani. 1985. The nucle-otide sequence and some properties of the neutral protease gene of Bacillus amyloliquefaciens. J. Bacteriol. 2: 75 85.
105. Silhavy, T.,, and J. R. Beckwith. 1985. Use of lac fusion for study of biological problems. Microbiol. Rev. 49: 398 418.
106. Sloma, A.,, A. Ally,, D. Ally,, and J. Pero. 1988. Gene encoding a minor extracellular protease in Bacillus subtilis. J. Bacteriol. 170: 5557 5563.
107. Sloma, A.,, C. F. Rudolph,, G. A. Rufo, Jr.,, B. J. Sullivan,, K. A. Theriault,, D. Ally,, and J. Pero. 1990. Gene encoding a novel extracellular metalloprotease in Bacillus subtilis. J. Bacteriol. 172: 1024 1029.
108. Sloma, A.,, G. A. Rufo, Jr.,, C. F. Rudolph,, B. J. Sullivan,, K. A. Theriault,, D. Ally,, and J. Pero. 1990. Bacillopep-tidase F of Bacillus subtilis: purification of the protein and cloning of the gene. J. Bacteriol. 172: 1470 1477.
109. Sloma, A.,, G. A. Rufo, Jr.,, K. A. Theriault,, M. Dwyer,, S. W. Wilson,, and J. Pero. 1991. Cloning and characterization of the gene for an additional extracellular serine protease of Bacillus subtilis. J. Bacteriol. 173: 6889 6895.
110. Smith, H.,, S. Bron,, J. Vanee,, and G. Venema. 1987. Construction and use of signal sequence selection vectors in Escherichia coli and Bacillus subtilis. J. Bacteriol. 169: 3321 3328.
111. Smith, H.,, A. D. Jong,, S. Bron,, and G. Venema. 1988. Characterization of signal-sequence-coding regions selected from the Bacillus subtilis chromosome. Gene 70: 351 361.
112. Smith, W. P.,, P.-C. Tai,, and B. D. Davis. 1978. Interaction of secreted nascent chains with surrounding membrane in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 75: 5922 5925.
113. Stader, J.,, S. A. Benson,, and T. J. Silhavy. 1986. Kinetic analysis of lamB mutants suggests that signal sequence plays multiple roles in protein export. J. Biol. Chem. 262: 15075 15080.
114. Stahl, M. L.,, and E. Ferrari. 1984. Replacement of the Bacillus subtilis subtilisin structural gene with an in vitro-derived deletion mutation. J. Bacteriol. 158: 411 418.
115. Steinmetz, M.,, D. L. Coq.,, S. Aymerich,, G. Gonzy-Treboul,, and P. Gay. 1985. The DNA sequence of the gene for the secreted Bacillus subtilis enzyme levansu-crase and its genetic control sites. Mol. Gen. Genet. 200: 220 228.
116. Stephens, M. A.,, S. A. Ortlepp,, J. F. Ollington,, and D. McConnell. 1984. Nucleotide sequence of the 5' region of the Bacillus licheniformis a-amylase gene: comparison with the B. amyloliquefaciens gene. J. Bacteriol. 158: 369 372.
117. Su, J.-W.,, A. Boylan,, S. M. Thomas,, K. M. Dolan,, D. B. Oliver, and C. W. Price. 1990. Isolation of secY homologue from Bacillus subtilis: evidence for a common protein export pathway in eubacteria. Mol. Microbiol. 4: 305 314.
118. Takagi, M.,, and T. Imanaka. 1989. Role of the pre-pro-region of neutral protease in secretion in Bacillus subtilis. J. Ferment. Bioeng. 67: 71 76.
119. Takagi, M.,, T. Imanaka,, and S. Aiba. 1985. Nucleotide sequence and promoter region for the neutral protease gene from Bacillus stearothermophilus. J. Bacteriol. 163: 824 831.
120. Takase, K.,, H. Mizuno,, and K. Yamane. 1988. NH 2-terminal processing of Bacillus subtilis α-amylase. J. Biol. Chem. 263: 11548 11553.
121. Takekawa, S.,, N. Uozumi,, N. Tsukagoshi,, and S. Udaka. 1991. Protease involved in generation of β and α amylases from large amylase precursor in Bacillus polymyxa. J. Bacteriol. 173: 6820 6825.
122. Takkinen, K.,, R. F. Pettersson,, N. Kalkkinen,, I. Palva,, H. Soderlund,, and L. Kaariainen. 1983. Amino acid sequence of a-amylase from Bacillus amyloliquefaciens deduced from the nucleotide sequence of the cloned gene. J. Biol. Chem. 298: 1007 1013.
123. Tang, L.,, R. Lenstra,, T. V. Borchert,, and V. Nagarajan. 1990. Isolation and characterization of levansucrase encoding gene from Bacillus amyloliquefaciens. Gene 96: 89 93.
124. Thirunavukkarasu, M.,, and F. G. Priest. 1983. Synthesis of a-amylase and a-glucosidase by membrane bound ribosomes from Bacillus licheniformis. Biochem. Biophys. Res. Commun. 114: 677 683.
125. Tran, L.,, X. Wu,, and S. Wong. 1991. Cloning and expression of a novel protease gene encoding an extracellular neutral protease from Bacillus subtilis. J. Bacteriol. 173: 6364 6372.
126. Tsuboi, A.,, R. Uchihi,, T. Adachi,, T. Sasaki,, S. Haya-kawa,, H. Yamagata,, N. Tsukagoshi,, and S. Udaka. 1988. Characterization of the genes for the hexagonally arranged surface layer proteins in protein-producing Bacillus brevis 47: complete nucleotide sequence of the middle wall protein gene. J. Bacteriol. 170: 935 945.
127. Tsukagoshi, N.,, R. Tabata,, T. Takemura,, H. Yamagata,, and S. Udaka. 1984. Molecular cloning of a major cell wall protein gene from protein-producing Bacillus brevis 47 and its expression in Escherichia coli and Bacillus subtilis. J. Bacteriol. 158: 1054 1060.
128. Uozumi, N.,, K. Sakurai,, T. Sasaki,, S. Takekawa,, H. Yamagata,, N. Tsukagoshi,, and S. Udaka. 1989. A single gene directs synthesis of a precursor protein with β-and a-amylase activities in Bacillus polymyxa. J. Bacteriol. 171: 375 382.
129. Van Den Burg, B.,, H. G. Enequist,, M. E. Van Der Haar,, V. G. H. Eljsink,, B. K. Stulp,, and G. Venema. 1991. A highly thermostable neutral protease from Bacillus caldolyticus: cloning and expression of the gene in Bacillus subtilis and characterization of the gene product. J. Bacteriol. 173: 4107 4115.
129a. van der Wolk, J.,, M. Klose,, E. Breukink,, R. A. Demel,, B. Kruijff,, R. Freudl,, and A. J. M. Driessen. Characterization of a Bacillus subtilis secA mutant protein deficient in translocation ATPase and release from the membrane. Submitted for publication.
130. van Dijl, J. M.,, A. de Jong,, G. Venema,, and S. Bron. 1992. Signal peptidase I of Bacillus subtilis: patterns of conserved amino acids in prokaryotic and eukaryotic type I signal peptidases. EMBO J. 11: 2819 2828.
131. Vasantha, N.,, and L. D. Thompson. 1986. Fusion of pro region of subtilisin to staphylococcal protein A and its secretion by Bacillus subtilis. Gene 49: 23 28.
132. Vasantha, N.,, L. D. Thompson,, C. Rhodes,, C. Banner,, J. Nagle,, and D. Filpula. 1984. Genes for alkaline protease and neutral protease from Bacillus amyloliquefaciens contain a large open reading frame between the regions coding for signal sequences and mature protein. J. Bacteriol. 159: 811 819.
133. vonHeljne, G. 1983. Patterns of amino acids near signal sequence cleavage sites. Eur. J. Biochem. 133: 17 21.
134. von Heijne, G. 1986. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 14: 4683 4690.
135. Wagner, B.,, M. Wagner,, L. Wollweber,, and D. Behnke. 1989. Immunoelectron microscopy of Bacillus subtilis cell secreting human interferon al or staphylokinase. FEMS Microbiol. Lett. 65: 327 332.
136. Wetzsteln, M.,, J. Dedio,, and W. Schumann. 1990. Complete nucleotide sequence of the Bacillus subtilis dnaK gene. Nucleic Acids Res. 18: 2172.
137. Wlckner, W.,, A. J. M. Driessen,, and F. Hard. 1991. The enzymology of protein translocation across the Escherichia coli plasma membrane. Artnu. Rev. Biochem. 60: 101 124.
138. Wu, J. J.,, and P. J. Piggot,. 1989. Regulation of late expression of the Bacillus subtilis spoil A locus: evidence that it is cotranscribed with the gene for a putative penicillin binding protein, p. 321 328. In M. Zukowski,, A. T. Ganesan,, and J. Hoch (ed.), Genetics and Biotechnology of Bacilli. Academic Press, Inc., New York.
139. Yang, M. Y.,, E. Ferrari,, and D. J. Henner. 1984. Cloning of the neutral protease gene of Bacillus subtilis and use of the cloned gene to create an in vitro-derived deletion mutation. J. Bacteriol. 160: 15 21.
140. Zagorec, M.,, and M. Steinmetz. 1990. Expression of levansucrase- β-galactosidase hybrids inhibits secretion and is lethal in Bacillus subtilis. J. Gen. Microbiol. 136: 1137 1143.
141. Zhu, X.,, Y. Ohta,, F. Jordan,, and M. Inouye. 1989. Pro-sequence of subtilisin can guide the refolding of denatured subtilisin in an intramolecular process. Nature (London) 339: 483 484.


Generic image for table
Table 1

Signal peptide sequences

Citation: Nagarajan V. 1993. Protein Secretion, p 713-726. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch49
Generic image for table
Table 2

Lipoprotein signal sequences

Citation: Nagarajan V. 1993. Protein Secretion, p 713-726. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch49

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error