1887

Chapter 50 : Two-Component Regulatory Systems

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Two-Component Regulatory Systems, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap50-1.gif /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap50-2.gif

Abstract:

Originally characterized for nitrogen regulation (NtrB-NtrC), chemotaxis (CheA-CheY-CheB), osmoregulation (EnvZ-OmpR), and regulation of phosphate uptake (PhoR-PhoB) in and , the family of two-component systems has rapidly expanded, and new examples continue to emerge. More than 30 of these regulatory pairs have been identified in both gram-negative and gram-positive bacteria; they control functions ranging from virulence gene expression in (VirA-VirG), (PhoQ-PhoP), and (BvgSBvgA) to complex developmental pathways such as sporulation (SpoIIJ-SpoOF-SpoOA) and competence for transformation by exogenous DNA (ComP-ComA and DegS-DegU) in . These pairs are the focus of this chapter. Sequence similarities to other two-component systems suggest the conserved His-189 residue of the DegS protein kinase and Asp-56 residue of the DegU response regulator as likely candidates for the respective phosphorylation sites of the two proteins. A large number of proteins belonging to the histidine protein kinase-response regulator family have been characterized in gram-positive bacteria. It appears that a considerable amount of overlap exists between the different systems controlling postexponential-phase responses in . Thus, DegS-DegU, ComP-ComA, and SpoOA are all involved in controlling competence gene expression, and the SpoOA phosphorelay and DegS-DegU both control protease gene expression.

Citation: Msadek T, Kunst F, Rapoport G. 1993. Two-Component Regulatory Systems, p 729-745. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch50
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Alignment of conserved regions within the carboxy-terminal domains of histidine protein kinases from gram-positive bacteria. Multiple protein sequence alignments were carried out by using the CLUSTAL V program ( ). Protein sequences are from the references in Table 1 . Homologous residues are indicated by black boxes, stars indicate invariant residues, and numbers indicate positions in the amino acid sequences of the respective proteins. Accepted conservative substitutions are as follows: I, L, V, and M; K and R; S and T; D and E; F and Y; N and Q; G and A.

Citation: Msadek T, Kunst F, Rapoport G. 1993. Two-Component Regulatory Systems, p 729-745. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch50
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Conserved carboxy-terminal domains of response regulators from gram-positive bacteria. Numbers correspond to positions in the respective amino acid sequences. References for the response regulators from gram-positive bacteria are listed in Table 1 . Comparisons were carried out as indicated in the legend to Fig. 1 . (A) Alignment of the OmpR-PhoP subfamily with OmpR of ( ) and ToxR of ( ). (B) Alignment of the UhpA-DegU subfamily with the regulatory proteins RcsA and MalT of . ( ); RmpA of ( ); LasR and AgmR of . ( ); LuxR of ( ); BrpA of S. ( ); and GerE ( ) and sigma factors σ(46), σ ( ), and σ ( ) of A potential DNA-binding helix-turn-helix motif within this region is underlined.

Citation: Msadek T, Kunst F, Rapoport G. 1993. Two-Component Regulatory Systems, p 729-745. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch50
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Regulation of competence gene expression in Arrows indicate positive regulation, and perpendicular bars indicate negative regulation. The ComP-ComA and DegS-DegU two-component systems form two parallel pathways controlling competence gene expression ( ).

Citation: Msadek T, Kunst F, Rapoport G. 1993. Two-Component Regulatory Systems, p 729-745. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch50
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Pleiotropic regulation by the DegS-DegU signal transduction pathway controlling degradative enzyme synthesis and competence gene expression in Arrows indicate positive regulation, and perpendicular bars indicate negative regulation. Regulation by DegS-DegU, DegQ, and DegR may be indirect.

Citation: Msadek T, Kunst F, Rapoport G. 1993. Two-Component Regulatory Systems, p 729-745. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch50
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Alignment of the conserved amino-terminal domains of response regulators from gram-positive bacteria. References for protein sequences are listed in Table 1 . Numbers correspond to positions in the respective amino acid sequences. Comparisons were carried out as indicated in the legend to Fig. 1 .

Citation: Msadek T, Kunst F, Rapoport G. 1993. Two-Component Regulatory Systems, p 729-745. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch50
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818388.chap50
1. Aiba, H.,, T. Mizuno,, and S. Mizushlma. 1989. Transfer of phosphoryl group between two regulatory proteins involved in osmoregulatory expression of the ompF and ompC genes in Escherichia coli. J. Biol. Chem. 264: 8563 8567.
2. Aiba, H.,, F. Nakasai,, S. Mizushima,, and T. Mizuno. 1989. Evidence for the physiological importance of the phosphotransfer between the two regulatory components, EnvZ and OmpR, in osmoregulation in Escherichia coli. J. Biol. Chem. 264: 14090 14094.
3. Albright, L. M.,, E. Huala,, and F. M. Ausubel. 1989. Prokaryotic signal transduction mediated by sensor and regulator pairs. Annu. Rev. Genet. 23: 311 336.
4. Allen, P.,, C. A. Hart,, and J. R. Saunders. 1987. Isolation from Klebsiella and characterization of two rcs genes that activate colanic acid capsular biosynthesis in Escherichia coli. J. Gen. Microbiol. 133: 331 340.
5. Altschul, S. F.,, W. Gish,, W. Miller,, E. W. Myers,, and D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403 410.
6. Amemura, M.,, K. Makino,, H. Shinagawa,, and A. Nakata. 1990. Cross talk to the phosphate regulon of Escherichia coli by PhoM protein: PhoM is a histidine protein kinase and catalyzes phosphorylation of PhoB and PhoM-open reading frame 2. J. Bacteriol. 172: 6300 6307.
7. Amory, A.,, F. Kunst,, E. Aubert,, A. Klier,, and G. Rapoport. 1987. Characterization of the sacQ genes from Bacillus licheniformis and Bacillus subtilis. J. Bacteriol. 169: 324 333.
8. Antonlewski, C.,, B. Savelli,, and P. Stragier. 1990. The spoIIJ gene, which regulates early development steps in Bacillus subtilis, belongs to a class of environmentally responsive genes. J. Bacteriol. 172: 86 93.
9. Arico, B.,, J. F. Miller,, C. Roy,, S. Stlbitz,, D. Monack,, S. Falkow,, R. Gross,, and R. Rappuoli. 1989. Sequences required for expression of Bordetella pertussis virulence factors share homology with prokaryotic signal transduction proteins. Proc. Natl. Acad. Sci. USA 86: 6671 6675.
10. Arthur, M.,, C. Molinas,, and P. Courvalln. 1992. The VanS-VanR two-component regulatory system controls synthesis of depsipeptide peptidoglycan precursors in Enterococcus faecium strain BM4147. J. Bacteriol. 173: 2582 2591.
11. Aymerich, S.,, G. Gonzy-Triboul,, and M. Steinmetz. 1986. 5'-noncoding region sacR is the target of all identified regulation affecting the levansucrase gene in Bacillus subtilis. J. Bacteriol. 166: 993 998.
12. Ayusawa, D.,, Y. Yoneda,, K. Yamane,, and B. Maruo. 1975. Pleiotropic phenomena in autolytic enzyme(s) content, flagellation, and simultaneous hyperproduction of extracellular a-amylase and protease in a Bacillus subtilis mutant. J. Bacteriol. 124: 459 469.
13. Bernhard, F.,, K. Poetter,, K. Geider,, and D. L. Coplin. 1990. The rcsA gene from Erwinia amylovora: identification, nucleotide sequence, and regulation of exopolysaccharide biosynthesis. Mol. Plant Microbe Interact. 3: 429 437.
14. Berry, A.,, J. D. DeVault,, and A. M. Chakrabarty. 1989. High osmolality is a signal for enhanced algD transcription in mucoid and nonmucoid Pseudomonas aeruginosa strains. J. Bacteriol. 171: 2312 2317.
15. Binnle, C.,, M. Lampe,, and R. Losick. 1986. Gene encoding the �� 37 species of RNA polymerase �� factor from Bacillus subtilis. Proc. Natl. Acad. Sci. USA 83: 5943 5947.
16. Bischoff, D. S.,, and G. W. Ordal. 1991. Sequence and characterization of Bacillus subtilis CheB, a homolog of Escherichia coli CheY, and its role in a different mechanism of chemotaxis. J. Biol. Chem. 266: 12301 12305.
17. Bischoff, D. S.,, and G. W. Ordal. 1992. Bacillus subtilis chemotaxis: a deviation from the Escherichia coli paradigm. Mol. Microbiol. 6: 23 28.
18. Bourret, R. B.,, K. A. Borkovich,, and M. I. Simon. 1991. Signal transduction pathways involving protein phosphorylation in prokaryotes. Annu. Rev. Biochem. 60: 401 441.
19. Bourret, R. B.,, J. F. Hess,, K. A. Borkovich,, A. A. Pakula,, and M. I. Simon. 1989. Protein phosphorylation in chemotaxis and two-component regulatory systems of bacteria. J. Biol. Chem. 264: 7085 7088.
20. Bourret, R. B.,, J. F. Hess,, and M. I. Simon. 1990. Conserved aspartate residues and phosphorylation in signal transduction by the chemotaxis protein CheY. Proc. Natl. Acad. Sci. USA 87: 41 45.
21. Bouvier, J.,, P. Stragier,, C. Bonamy,, and J. Szulmajster. 1984. Nucleotide sequence of the spo0B gene of Bacillus subtilis and regulation of its expression. Proc. Natl. Acad. Sci. USA 81: 7012 7016.
22. Buikema, W. J.,, W. W. Szeto,, P. V. Lemley,, W. H. Orme-Johnson,, and F. M. Ausubel. 1985. Nitrogen fixation specific regulatory genes of Klebsiella pneumoniae and Rhizobium meliloti share homology with the general nitrogen regulatory gene ntrC of K. pneumoniae. Nucleic Acids Res. 13: 4539 4555.
23. Burbulys, D.,, K. A. Trach,, and J. A. Hoch. 1991. Initiation of sporulation in B. subtilis is controlled by a multicomponent phosphorelay. Cell 64: 545 552.
23a. Chesnut, R. S.,, C. Bookstein,, and F. M. Hulett. 1991. Separate promoters direct expression of phoAIII, a member of the Bacillus subtilis alkaline phosphatase multigene family, during phosphate starvation and sporulation. Mol. Microbiol. 5: 2181 2190.
23b. Chesnut, R. S.,, and F. M. Hulett. 1993. Personal communication.
24. Choi, S. H.,, and E. P. Greenberg. 1991. The C-terminal region of the Vibrio fischeri LuxR protein contains an inducer-independent lux gene activating domain. Proc. Natl. Acad. Sci. USA 88: 11115 11119.
25. Cole, S. T.,, and O. Raibaud. 1986. The nucleotide sequence of the malT gene encoding the positive regulator of the Escherichia coli maltose regulon. Gene 42: 201 208.
26. Coleman, M.,, R. Pearce,, E. Hitchin,, F. Busfield,, J. W. Mansfield,, and I. S. Roberts. 1990. Molecular cloning, expression and nucleotide sequence of the rcsA gene of Erwinia amylovora, encoding a positive regulator of capsule expression: evidence for a family of related capsule activator proteins. J. Gen. Microbiol. 136: 1799 1806.
27. Comeau, D. E.,, K. Ikenaka,, K. Tsung,, and M. Inouye. 1985. Primary characterization of the protein products of the Escherichia coli ompB locus: structure and regulation of synthesis of the OmpR and EnvZ proteins. J. Bacteriol. 164: 578 584.
28. Cutting, S.,, and J. Mandelstam. 1986. The nucleotide sequence and the transcription during sporulation of the gerE gene of Bacillus subtilis. J. Gen. Microbiol. 132: 3013 3024.
29. Dahl, M. K.,, T. Msadek,, and F. Kunst. 1992. Unpublished results.
30. Dahl, M. K.,, T. Msadek,, F. Kunst,, and G. Rapoport. 1991. Mutational analysis of the Bacillus subtilis DegU regulator and its phosphorylation by the DegS protein kinase. J. Bacteriol. 173: 2539 2547.
31. Dahl, M. K.,, T. Msadek,, F. Kunst,, and G. Rapoport. 1992. The phosphorylation state of the DegU response regulator acts as a molecular switch allowing either degradative enzyme synthesis or expression of genetic competence in Bacillus subtilis. J. Biol. Chem. 267: 14509 14514.
32. Débarbouillé, M.,, I. Martin-Verstraete,, A. Klier,, and G. Rapoport. 1991. The levanase regulator LevR of Bacillus subtilis has domains homologous to both �� 54- and PTS-dependent regulators. Proc. Natl. Acad. Sci. USA 88: 2212 2216.
33. Débarbouillé, M.,, I. Martin-Verstraete,, F. Kunst,, and G. Rapoport. 1991. The Bacillus subtilis sigL gene encodes an equivalent of �� 54 from Gram-negative bacteria. Proc. Natl. Acad. Sci. USA 88: 9092 9096.
34. De Vault, J. D.,, A. Berry,, T. K. Misra,, A. Darzins,, and A. M. Chakrabarty. 1989. Environmental sensory signals and microbial pathogenesis: Pseudomonas aeruginosa infection in cystic fibrosis. Bio/Technology 7: 352 357.
35. Devine, J. H.,, C. Countryman,, and T. O. Baldwin. 1988. Nucleotide sequence of the luxR and luxI genes and structure of the primary regulatory region of the lux regulon of Vibrio fischeri ATCC 7744. Biochemistry 27: 837 842.
36. Drummond, M.,, P. Whitty,, and J. Wootton. 1986. Sequence and domain relationships of ntrC and nifA from Klebsiella pneumoniae: homologies to other regulatory proteins. EMBO J. 5: 441 447.
37. Dubnau, D. 1991. Genetic competence in Bacillus subtilis. Microbiol. Rev. 55: 395 424.
38. Dubnau, D.,, and M. Roggiani. 1990. Growth medium-independent genetic competence mutants of Bacillus subtilis. J. Bacteriol. 172: 4048 4055.
39. Engebrecht, J.,, and M. Silverman. 1987. Nucleotide sequence of the regulatory locus controlling expression of bacterial genes for bioluminescence. Nucleic Acids Res. 15: 10455 10467.
40. Ferrari, F. A.,, K. Trach,, D. LeCoq,, J. Spence,, E. Ferrari,, and J. A. Hoch. 1985. Characterization of the spoOA locus and its deduced product. Proc. Natl. Acad. Sci. USA 82: 2647 2651.
41. Forst, S.,, D. Comeau,, S. Norioka,, and M. Inouye. 1987. Localization and membrane topology of EnvZ, a protein involved in osmoregulation of OmpF and OmpC in Escherichia coli. J. Biol. Chem. 262: 16433 16438.
42. Forst, S.,, J. Delgado,, and M. Inouye. 1989. Phosphorylation of OmpR by the osmosensor EnvZ modulates expression of the ompF and ompC genes in Escherichia coli. Proc. Natl. Acad. Sci. USA 86: 6052 6056.
43. Friedrich, M. J.,, and R. J. Kadner. 1987. Nucleotide sequence of the uhp region of Escherichia coli. J. Bacteriol. 169: 3556 3563.
44. Fuhrer, D. K.,, and G. W. Ordal. 1991. Bacillus subtilis CheN, a homolog of CheA, the central regulator of chemotaxis in Escherichia coli. J. Bacteriol. 173: 7443 7448.
45. Gambello, M. J.,, and B. H. Iglewskl. 1991. Cloning and characterization of the Pseudomonas aeruginosa lasR gene, a transcriptional activator of elastase expression. J. Bacteriol. 173: 3000 3009.
46. Gitt, M. A.,, L.-F. Wang,, and R. H. Doi. 1985. A strong sequence homology exists between the major RNA polymerase a factors of Bacillus subtilis and Escherichia coli. J. Biol. Chem. 260: 7178 7185.
47. Gross, R.,, B. Arico,, and R. Rappuoli. 1989. Families of bacterial signal-transducing proteins. Mol. Microbiol. 3: 1661 1667.
48. Hahn, J.,, and D. Dubnau. 1991. Growth stage signal transduction and the requirements for srfA induction in development of competence. J. Bacteriol. 173: 7275 7282.
49. Hahn, J.,, and D. Dubnau. 1992. Personal communication.
50. Hanks, S. K.,, A. M. Quinn,, and T. Hunter. 1988. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241: 42 52.
51. Helmann, J. D. 1991. Alternative sigma factors and the regulation of flagellar gene expression. Mol. Microbiol. 5: 2875 2882.
52. Helmann, J. D.,, L. M. Marquez,, V. L. Singer,, and M. J. Chamberlin,. 1988. Cloning and characterization of the Bacillus subtilis sigma-28 gene, p. 189 193. In A. T. Ganesan,, and J. A. Hoch (ed.), Genetics and Biotechnology of Bacilli, vol. 2. Academic Press, Inc., San Diego.
53. HenikoCf, S.,, J. C. Wallace,, and J. P. Brown. 1990. Finding protein similarities with nucleotide sequence databases. Methods Enzymol. 183: 111 132.
54. Henner, D. J.,, E. Ferrari,, M. Perego,, and J. A. Hoch. 1988. Location of the targets of the hpr-97, sacU32(Hy), and sacQ36(Hy) mutations in upstream regions of the subtilisin promoter. J. Bacteriol. 170: 296 300.
55. Henner, D. J.,, E. Ferrari,, M. Perego,, and J. A. Hoch,. 1988. Upstream activating sequences in Bacillus subtilis, p. 3 9. In A. T. Ganesan, and J. A. Hoch (ed.), Genetics and Biotechnology of Bacilli, vol. 2. Academic Press, Inc., San Diego.
56. Henner, D. J.,, M. Yang,, L. Band,, H. Shimotsu,, M. Ruppen,, and E. Ferrari,. 1987. Genes of Bacillus subtilis that regulate the expression of degradative enzymes, p. 81 90. In M. Alacevic,, D. Hranueli,, and Z. Toman (ed.). Genetics of Industrial Microorganisms. Proceedings of the Fifth International Symposium on the Genetics of Industrial Microorganisms. Pliva, Zagreb, Yugoslavia.
57. Henner, D. J.,, M. Yang,, and E. Ferrari. 1988. Localization of Bacillus subtilis sacU(Hy) mutations to two linked genes with similarities to the conserved procar-yotic family of two-component signaling systems. J. Bacteriol. 170: 5102 5109.
58. Hess, J. F.,, R. B. Bourret,, and M. I. Simon. 1988. Histidine phosphorylation and phosphoryl group transfer in bacterial chemotaxis. Nature (London) 336: 139 143.
59. Higgins, D. G.,, and P. M. Sharp. 1988. CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene 73: 237 244.
60. Higgins, D. G.,, and P. M. Sharp. 1989. Fast and sensitive multiple sequence alignments on a microcomputer. Comput. Appl. Biosci. 5: 151 153.
61. Holland, S. K.,, S. Cutting,, and J. Mandelstam. 1987. The possible DNA-binding nature of the regulatory proteins, encoded by spoIID and gerE, involved in the sporulation of Bacillus subtilis. J. Gen. Microbiol. 133: 2381 2391.
62. Hulett, F. M.,, E. E. Kim,, C. Bookstein,, X. V. Kapp,, C. W. Edwards,, and H. W. Wyckoff. 1991. Bacillus subtilis alkaline phosphatases III and IV. Cloning, sequencing and comparisons of deduced amino acid sequence with Escherichia coli alkaline phosphatase three-dimensional structure. J. Biol. Chem. 266: 1077 1084.
63. Igo, M. M.,, A. J. Xinfa,, J. B. Stock,, and T. J. Silhavy. 1989. Phosphorylation and dephosphorylation of a bacterial transcriptional activator by a transmembrane receptor. Genes Dev. 3: 1725 1734.
64. Igo, M. M.,, J. M. Slauch,, and T. J. Silhavy. 1990. Signal transduction in bacteria:kinases that control gene expression. New Biol. 2: 5 9.
65. Jin, S.,, R. K. Prusti,, T. Roitsch,, R. G. Ankenbauer,, and E. W. Xester. 1990. Phosphorylation of the VirG protein of Agrobacterium tumefaciens by the autophosphory-lated VirA protein: essential role in biological activity of VirG. J. Bacteriol. 172: 4945 4950.
66. Jin, S.,, T. Roitsch,, R. G. Ankenbauer,, M. P. Gordon,, and E. W. Xester. 1990. The VirA protein of Agrobacterium tumefaciens is autophosphorylated and is essential for vir gene regulation. J. Bacteriol. 172: 525 530.
67. Kahn, D.,, and G. Ditta. 1991. Modular structure of FixJ: homology of the transcriptional activator domain with the -35 binding domain of sigma factors. Mol. Microbiol. 5: 987 997.
68. Keener, J.,, and S. Kustu. 1988. Protein kinase and phosphoprotein phosphatase activities of nitrogen regulatory proteins NTRB and NTRC of enteric bacteria: roles of the conserved amino-terminal domain of NTRC. Proc. Natl. Acad. Sci. USA 85: 4976 4980.
69. Kemp, B. E.,, and R. B. Pearson. 1990. Protein kinase recognition sequence motifs. Trends Biochem. Sci. 15: 342 346.
70. Klier, A.,, T. Msadek,, and G. Rapoport. 1992. Positive regulation in the Gram-positive bacterium: Bacillus subtilis. Annu. Rev. Microbiol. 46: 429 459.
71. Kofoid, E. C.,, and J. S. Parkinson. 1988. Transmitter and receiver modules in bacterial signaling proteins. Proc. Natl. Acad. Sci. USA 85: 4981 4985.
72. Kofoid, E. C.,, and J. S. Parkinson. 1991. Tandem translation starts in the cheA locus of Escherichia coli. J. Bacteriol. 173: 2116 2119.
73. Kornblum, J.,, B. N. Kreiswirth,, S. J. Projan,, H. Ross,, and R. P. Novlck,. 1990. Agr: a polycistronic locus regulating exoprotein synthesis in Staphylococcus aureus, p. 373 402. In R. P. Novick (ed.). Molecular Biology of the Staphylococci. VCH, New York.
74. Kroos, L. 1991. Gene regulation in the mother-cell compartment of sporulating Bacillus subtilis. Semin. Dev. Biol. 2: 63 71.
75. Kunst, F.,, A. Amory,, M. Debarbouillé,. I . Martin,, A. Klier,, and G. Rapoport,. 1988. Polypeptides activating the synthesis of secreted enzymes, p. 27 31. In A. T. Ganesan, and J. A. Hoch (ed.), Genetics and Biotechnology of Bacilli, vol. 2. Academic Press Inc., San Diego.
76. Kunst, F.,, M. Dgbarbouilll,, T. Msadek,, M. Young,, C. Mauel,, D. Karamata,, A. Klier,, G. Rapoport,, and R. Dedonder. 1988. Deduced polypeptides encoded by the Bacillus subtilis sacU locus share homology with two-component sensor-regulator systems. J. Bacteriol. 170: 5093 5101.
77. Kunst, F.,, and T. Msadek. 1991. Unpublished results.
78. Kunst, F.,, M. Pascal,, J. Lepesant-Kejzlarová,, J.-A. Le-pesant,, A. Billault,, and R. Dedonder. 1974. Pleiotropic mutations affecting sporulation conditions and the synthesis of extracellular enzymes in Bacillus subtilis 168. Biochimie 56: 1481 1489.
79. Lepesant, J.-A.,, F. Kunst,, J. Lepesant-Kejzlarova,, and R. Dedonder. 1972. Chromosomal location of mutations affecting sucrose metabolism in Bacillus subtilis Marburg. Mol. Gen. Genet. 118: 135 160.
80. Leroux, B.,, M. F. Yanofsky,, S. C. Winans,, J. E. Ward,, S. F. Ziegler,, and E. W. Nester. 1987. Characterization of the virA locus of Agrobacterium tumefaciens: a transcriptional regulator and host range determinant. EMBO J. 6: 849 856.
81. Lukat, G. S.,, B. H. Lee,, J. M. Mottonen,, A. M. Stock,, and J. B. Stock. 1991. Roles of the highly conserved aspartate and lysine residues in the response regulator of bacterial chemotaxis. J. Biol. Chem. 266: 8348 8354.
82. Lukat, G. S.,, W. R. McCleary,, A. M. Stock,, and J. B. Stock. 1992. Phosphorylation of bacterial response regulator proteins by low molecular weight phospho-do-nors. Proc. Natl. Acad. Sci. USA 89: 718 722.
83. Lukat, G. S.,, A. M. Stock,, and J. B. Stock. 1990. Divalent metal ion binding to the CheY protein and its significance to phosphotransfer in bacterial chemotaxis. Biochemistry 29: 5436 5442.
84. Lupas, A.,, and J. Stock. 1989. Phosphorylation of an N-terminal regulatory domain activates the CheB methylesterase in bacterial chemotaxis. J. Biol. Chem. 264: 17337 17342.
85. MacFarlane, S. A.,, and M. Merrick. 1985. The nucleotide sequence of the nitrogen regulation gene ntrB and the glnA-ntrBC intergenic region of Klebsiella pneumoniae. Nucleic Acids Res. 13: 7591 7606.
86. Magasanik, B. 1982. Genetic control of nitrogen assimilation in bacteria. Annu. Rev. Genet. 16: 135 168.
87. Magasanik, B. 1988. Reversible phosphorylation of an enhancer binding protein regulates the transcription of bacterial nitrogen utilization genes. Trends Biochem. Sci. 13: 475 479.
88. Maklno, K.,, H. Shinagawa,, M. Amemura,, T. Kawamoto,, M. Yamada,, and A. Nakata. 1989. Signal transduction in the phosphate regulon of Escherichia coli involves phosphotransfer between PhoR and PhoB proteins. J. Mol. Biol. 210: 551 559.
89. Maklno, K.,, H. Shinagawa,, M. Amemura,, and A. Nakata. 1986. Nucleotide sequence of the phoB gene, the positive regulatory gene for the phosphate regulon of Escherichia coli K-12. J. Mol. Biol. 190: 37 44.
90. Maklno, K.,, H. Shinagawa,, M. Amemura,, and A. Nakata. 1986. Nucleotide sequence of the phoR gene, a regulatory gene for the phosphate regulon of Escherichia coli. J. Mol. Biol. 192: 549 556.
91. Marquez, L. M.,, J. D. Helmann,, E. Ferrari,, H. M. Parker,, G. W. Ordal,, and M. J. Chamberlin. 1990. Studies of �� D-dependent functions in Bacillus subtilis. J. Bacteriol. 172: 3435 3443.
92. Melchers, L. S.,, T. J. G. Regensburg-Tuink,, R. B. Bourret,, N. J. A. Sedee,, R. A. Schllperoort,, and P. J. J. Hooykaas. 1989. Membrane topology and functional analysis of the sensory protein VirA of Agrobacterium tumefaciens. EMBO J. 8: 1919 1925.
93. Melchers, L. S.,, D. V. Thompson,, K. B. Idler,, R. A. Schllperoort,, and P. J. J. Hooykaas. 1986. Nucleotide sequence of the virulence gene virG of the Agrobacterium tumefaciens octopine Ti plasmid: significant homology between virG and the regulatory genes ompR, phoB and dye of E. coli. Nucleic Acids Res. 14: 9933 9942.
94. Miki, T.,, Z. Minami,, and Y. Ikeda. 1965. The genetics of alkaline phosphatase formation in Bacillus subtilis. Genetics 52: 1093 1100.
95. Miller, J. F.,, J. J. Mekalanos,, and S. Falkow. 1989. Coordinate regulation and sensory transduction in the control of bacterial virulence. Science 243: 916 922.
96. Miller, S. I.,, A. M. Kukral,, and J. J. Mekalanos. 1989. A two-component regulatory system (phoP phoQ) controls Salmonella typhimurium virulence. Proc. Natl. Acad. Sci. USA 86: 5054 5058.
97. Miller, V. L.,, R. K. Taylor,, and J. J. Mekalanos. 1987. Cholera toxin transcriptional activator ToxR is a transmembrane DNA binding protein. Cell 48: 271 279.
98. Miranda-Rios, J.,, R. Sánchez-Pescador,, M. Urdea,, and A. A. Covarrubias. 1987. The complete nucleotide sequence of the glnALG operon of Escherichia coli K12. Nucleic Acids Res. 15: 2757 2770.
99. Mitamura, T.,, R. V. Ebora,, T. Nakai,, Y. Maklno,, S. Negoro,, I. Urabe,, and H. Okada. 1990. Structure of isozyme genes of glucose dehydrogenase from Bacillus megaterium IAM1030. J. Ferment. Bioeng. 70: 363 369.
100. Mizuno, T.,, and S. Mizushima. 1990. Signal transduction and gene regulation through the phosphorylation of two regulatory components: the molecular basis for the osmotic regulation of the porin genes. Mol. Microbiol. 4: 1077 1082.
101. Mizuno, T.,, E. T. Wurtzel,, and M. Inouye. 1982. Osmoregulation of gene expression. II. DNA sequence of the envZ gene of the ompB operon of Escherichia coli and characterization of its gene products. J. Biol. Chem. 257: 13692 13698.
102. Moir, A.,, and E. H. Kemp. 1991. Personal communication.
103. Msadek, T.,, and F. Kunst. 1991. Unpublished results.
104. Msadek, T.,, F. Kunst,, D. Henner,, A. Klier,, G. Rapoport,, and R. Dedonder. 1990. Signal transduction pathway controlling synthesis of a class of degradative enzymes in Bacillus subtilis: expression of the regulatory genes and analysis of mutations in degS and degU. J. Bacteriol. 172: 824 834.
105. Msadek, T.,, F. Kunst,, A. Klier,, and G. Rapoport. 1991. DegS-DegU and ComP-ComA modulator-effector pairs control expression of the Bacillus subtilis pleiotropic regulatory gene degQ. J. Bacteriol. 173: 2366 2377.
106. Msadek, T.,, F. Kunst,, A. Klier,, G. Rapoport,, and R. Dedonder,. 1990. The Deg signal transduction pathway: mutations and regulation of expression of degS, degU and degQ, p. 245 255. In M. M. Zukowski,, A. T. Ganesan,, and J. A. Hoch (ed.). Genetics and Biotechnology of Bacilli, vol. 3. Academic Press, Inc., San Diego.
107. Mueller, J. P.,, G. Bukusoglu,, and A. L. Sonenshein. 1992. Transcriptional regulation of Bacillus subtilis glucose starvation inducible genes: control of gsiA by the ComP-ComA signal transduction system. J. Bacteriol. 174: 4361 4373.
108. Mukal, K.,, M. Kawata,, and T. Tanaka. 1990. Isolation and phosphorylation of the Bacillus subtilis degS and degU gene products. J. Biol. Chem. 265: 20000 20006.
109. Mutoh, N.,, and M. I. Simon. 1986. Nucleotide sequence corresponding to five chemotaxis genes in Escherichia coli. J. Bacteriol. 165: 161 166.
110. Nagami, Y.,, and T. Tanaka. 1986. Molecular cloning and nucleotide sequence of a DNA fragment from Bacillus natto that enhances production of extracellular proteases and levansucrase in Bacillus subtilis. J. Bacteriol. 166: 20 28.
111. Nakano, M. M.,, L. A. Xia,, and P. Zuber. 1991. Transcription initiation region of the srfA operon, which is controlled by the comP-comA signal transduction system in Bacillus subtilis. J. Bacteriol. 173: 5487 5493.
112. Nakano, M. M.,, and P. Zuber. 1991. The primary role of ComA in establishment of the competent state in Bacillus subtilis is to activate expression of srfA. J. Bacteriol. 173: 7269 7274.
113. Nassif, X.,, N. Honore,, T. Vasselon,, S. T. Cole,, and P. J. Sansonetti. 1989. Positive control of colanic acid synthesis in Escherichia coli by rmpA and rmpB, two virulence-plasmid genes of Klebsiella pneumoniae. Mol. Microbiol. 3: 1349 1359.
114. Ninfa, A. J.,, and R. L. Bennett. 1991. Identification of the site of autophosphorylation of the bacterial protein kinase/phosphatase NRII. J. Biol. Chem. 266: 6888 6893.
115. Ninfa, A. J.,, and B. Magasanik. 1986. Covalent modification of the glnG product, NRI, by the glnL product, NRII, regulates the transcription of the glnALG operon in Escherichia coli. Proc. Natl. Acad. Sci. USA 83: 5909 5913.
116. Ninfa, A. J.,, E. G. Ninfa,, A. N. Lupas,, A. Stock,, B. Magasanik,, and J. Stock. 1988. Crosstalk between bacterial chemotaxis signal transduction proteins and regulators of transcription of the Ntr regulon: evidence that nitrogen assimilation and chemotaxis are controlled by a common phosphotransfer mechanism. Proc. Natl. Acad. Sci. USA 85: 5492 5496.
117. Nixon, B. T.,, C. W. Ronson,, and F. M. Ausubel. 1986. Two-component regulatory systems responsive to environmental stimuli share strongly conserved domains with the nitrogen assimilation regulatory genes ntrB and ntrC. Proc. Natl. Acad. Sci. USA 83: 7850 7854.
118. Olmedo, G.,, E. Gottlin Ninfa,, J. Stock,, and P. Young-man. 1990. Novel mutations that alter the regulation of sporulation in Bacillus subtilis: evidence that phosphorylation of regulatory protein Spo0A controls the initiation of sporulation. J. Mol. Biol. 215: 359 372.
119. Parkinson, J. S. 1988. Protein phosphorylation in bacterial chemotaxis. Cell 53: 1 2.
120. Peng, H.-L.,, R. P. Novick,, B. Kreiswirth,, J. Kornblum,, and P. Schlievert. 1988. Cloning, characterization, and sequencing of an accessory gene regulator (agr) in Staphylococcus aureus. J. Bacteriol. 170: 4365 4372.
121. Perego, M.,, S. P. Cole,, D. Burbulys,, K. Trach,, and J. A. Hoch. 1989. Characterization of the gene for a protein kinase which phosphorylates the sporulation-regula-tory proteins Spo0A and Spo0F of Bacillus subtilis. J. Bacteriol. 171: 6187 6196.
122. Poetter, K.,, and D. L. Coplin. 1991. Structural and functional analysis of the rcsA gene from Erwinia stewartii. Mol. Gen. Genet. 229: 155 160.
123. Raibaud, A.,, M. Zalacain,, T. G. Holt,, R. Tizard,, and C. J. Thompson. 1991. Nucleotide sequence analysis reveals linked N-acetyl hydrolase, thioesterase, transport, and regulatory genes encoded by the bialaphos biosynthetic gene cluster of Streptomyces hygroscopicus. J. Bacteriol. 173: 4454 4463.
124. Richet, E.,, and O. Raibaud. 1989. MalT, the regulatory protein of the Escherichia coli maltose system, is an ATP-dependent transcriptional activator. EMBO J. 8: 981 987.
125. Roggiani, M.,, J. Hahn,, and D. Dubnau. 1990. Suppression of early competence mutations in Bacillus subtilis by mec mutations. J. Bacteriol. 172: 4056 4063.
126. Ronson, C. W.,, B. T. Nixon,, and F. M. Ausubel. 1987. Conserved domains in bacterial regulatory proteins that respond to environmental stimuli. Cell 49: 579 581.
127. Rossmann, M. G.,, D. Moras,, and K. W. Olsen. 1974. Chemical and biological evolution of a nucleotide-binding protein. Nature (London) 250: 194 199.
128. Ruppen, M. E.,, G. L. Van Alstine,, and L. Band. 1988. Control of intracellular serine protease expression in Bacillus subtilis. J. Bacteriol. 170: 136 140.
129. Sanders, D. A.,, B. L. Gillece-Castro,, A. M. Stock,, A. L. Burlingame,, and D. E. Koshland, Jr. 1989. Identification of the site of phosphorylation of the chemotaxis response regulator protein, CheY. J. Biol. Chem. 264: 21770 21778.
130. Scarlato, V.,, A. Prugnola,, B. Arico,, and R. Rappuoli. 1990. Positive transcriptional feedback at the bvg locus controls expression of virulence factors in Bordetella pertussis. Proc. Natl. Acad. Sci. USA 87: 6753 6757.
131. Schaeffer, P.,, J. Millet,, and J.-P. Aubert. 1965. Catabolic repression of bacterial sporulation. Proc. Natl. Acad. Sci. USA 54: 704 711.
132. Schweizer, H. P. 1991. The agmR gene, an environmentally responsive gene, complements defective glpR, which encodes the putative activator for glycerol metabolism in Pseudomonas aeruginosa. J. Bacteriol. 173: 6798 6806.
133. Seki, T.,, H. Yoshikawa,, H. Takahashi,, and H. Saito. 1987. Cloning and nucleotide sequence of phoP, the regulatory gene for alkaline phosphatase and phosphodiesterase in Bacillus subtilis. J. Bacteriol. 169: 2913 2916.
134. Seki, T.,, H. Yoshikawa,, H. Takahashi,, and H. Saito. 1988. Nucleotide sequence of the Bacillus subtilis phoR gene. J. Bacteriol. 170: 5935 5938.
135. Shimotsu, H.,, and D. J. Henner. 1986. Modulation of Bacillus subtilis levansucrase gene expression by sucrose and regulation of the steady-state mRNA level by sacU and sacQ genes. J. Bacteriol. 168: 380 388.
136. Simms, S. A.,, M. G. Keane,, and J. Stock. 1985. Multiple forms of the CheB methylesterase in bacterial chemosensing. J. Biol. Chem. 260: 10161 10168.
137. Smith, I.,, E. Dubnau,, M. Predich,, and R. Rudner. 1992. Early spo gene expression in Bacillus subtilis: the role of interrelated signal transduction systems. Biochimie 74: 669 678.
138. Smith, I.,, I. Mandic-Mulec,, and N. Gaur. 1991. The role of negative control in sporulation. Res. Microbiol. 142: 831 839.
139. Sonenshein, A. L., 1989. Metabolic regulation of sporulation and other stationary-phase phenomena, p. 109 130. In I. Smith,, R. A. Slepecky,, and P. Setlow (ed.), Regulation of Procaryotic Development: Structural and Functional Analysis of Bacterial Sporulation and Germination. American Society for Microbiology, Washington, D.C.
140. Sorokin, A.,, and S. D. Ehrlich. 1991. Personal communication.
141. Spiegelman, G.,, B. Van Hoy,, M. Perego,, J. Day,, K. Trach,, and J. A. Hoch. 1990. Structural alterations in the Bacillus subtilis Spo0A regulatory protein which suppress mutations at several spo0 loci. J. Bacteriol. 172: 5011 5019.
142. Stewart, R. C.,, and F. W. Dahlquist. 1988. N-terminal half of CheB is involved in methylesterase response to negative chemotactic stimuli in Escherichia coli. J. Bacteriol. 170: 5728 5738.
143. Stock, A.,, T. Chen,, D. Welsh,, and J. Stock. 1988. CheA protein, a central regulator of bacterial chemotaxis, belongs to a family of proteins that control gene expression in response to changing environmental conditions. Proc. Natl. Acad. Sci. USA 85: 1403 1407.
144. Stock, A. M.,, J. M. Mottonen,, J. B. Stock,, and C. E. Schutt. 1989. Three-dimensional structure of CheY, the response regulator of bacterial chemotaxis. Nature (London) 337: 745 749.
145. Stock, J. B.,, G. S. Lukat,, and A. M. Stock. 1991. Bacterial chemotaxis and the molecular logic of intracellular signal transduction networks. Annu. Rev. Biophys. Biophys. Chem. 20: 109 136.
146. Stock, J. B.,, A. J. Nfinfa,, and A. M. Stock. 1989. Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol. Rev. 53: 450 490.
147. Stock, J. B.,, A. M. Stock,, and J. M. Mottonen. 1990. Signal transduction in bacteria. Nature (London) 344: 395 400.
148. Stout, V.,, A. Torres-Cabassa,, M. R. Maurizi,, D. Gut-nick,, and S. Gottesman. 1991. RcsA, an unstable positive regulator of capsular polysaccharide synthesis. J. Bacteriol. 173: 1738 1747.
149. Stragier, P.,, J. Bouvier,, C. Bonamy,, and J. Szulmajster. 1984. A developmental gene product of Bacillus subtilis homologous to the sigma factor of Escherichia coli. Nature (London) 312: 376 378.
150. Tanaka, T.,, and M. Kawata. 1988. Cloning and characterization of Bacillus subtilis iep, which has positive and negative effects on production of extracellular proteases. J. Bacteriol. 170: 3593 3600.
151. Tanaka, T.,, M. Kawata,, and K. Mukai. 1991. Altered phosphorylation of Bacillus subtilis DegU caused by single amino acid changes in DegS. J. Bacteriol. 173: 5507 5515.
152. Tanaka, T.,, M. Kawata,, Y. Nagami,, and H. Uchiyama. 1987. prtR enhances the mRNA level of the Bacillus subtilis extracellular proteases. J. Bacteriol. 169: 3044 3050.
153. Taylor, S. S. 1989. cAMP-dependent protein kinase. J. Biol. Chem. 264: 8443 8446.
154. Tokishita, S.,, A. Kojima,, H. Alba,, and T. Mizuno. 1991. Transmembrane signal transduction and osmoregulation in Escherichia coli—functional importance of the periplasmic domain of the membrane-located protein kinase, EnvZ. J. Biol. Chem. 266: 6780 6785.
155. Trach, K.,, D. Burbulys,, G. Spiegelman,, M. Perego,, B. Van Hoy,, M. Strauch,, J. Day,, and J. A. Hoch,. 1990. Phosphorylation of the Spo0A protein: a cumulative environsensory activation mechanism, p. 357 365. In M. M. Zukowski,, A. T. Ganesan,, and J. A. Hoch (ed.), Genetics and Biotechnology of Bacilli, vol. 3. Academic Press, Inc., San Diego.
156. Trach, K. A.,, J. W. Chapman,, P. J. Piggot,, and J. A. Hoch. 1985. Deduced product of the stage 0 sporulation gene spoOF shares homology with Spo0A, OmpR, and SfrA proteins. Proc. Natl. Acad. Sci. USA 82: 7260 7264.
157. Tseng, H.-C.,, and C. W. Chen. 1991. A cloned ompR-like gene of Streptomyces lividans 66 suppresses defective melCl, a putative copper-transfer gene. Mol. Microbiol. 5: 1187 1196.
158. van Sinderen, D. 1991. Personal communication.
159. van Sinderen, D.,, S. Withoff,, H. Boels,, and G. Venema. 1990. Isolation and characterization of comL, a transcription unit involved in competence development of Bacillus subtilis. Mol. Gen. Genet. 224: 396 404.
160. Vasselon, T.,, P. J. Sansonetti,, and X. Nassif. 1991. Nucleotide sequence of rmpB, a Klebsiella pneumoniae gene that positively controls colanic biosynthesis in Escherichia coli. Res. Microbiol. 142: 47 54.
161. Volz, K.,, and P. Matsumura. 1991. Crystal structure of Escherichia coli CheY refined at 1.7 resolution. J. Biol. Chem. 266: 15511 15519.
162. Wanner, B. L.,, and P. Latterell. 1980. Mutants affected in alkaline phosphatase expression: evidence for multiple positive regulators of the phosphate regulon in Escherichia coli. Genetics 96: 353 366.
163. Weinrauch, Y.,, N. Guillen,, and D. A. Dubnau. 1989. Sequence and transcription mapping of Bacillus subtilis competence genes comB and comA, one of which is related to a family of bacterial regulatory determinants. J. Bacteriol. 171: 5362 5375.
164. Weinrauch, Y.,, T. Msadek,, F. Kunst,, and D. Dubnau. 1991. Sequence and properties of comQ, a new competence regulatory gene of Bacillus subtilis. J. Bacteriol. 173: 5685 5693.
165. Weinrauch, Y.,, R. Penchev,, E. Dubnau,, I. Smith,, and D. Dubnau. 1990. A Bacillus subtilis regulatory gene product for genetic competence and sporulation resembles sensor protein members of the bacterial two-component signal-transduction systems. Genes Dev. 4: 860 872.
166. Winans, S. C.,, P. R. Ebert,, S. E. Stachel,, M. P. Gordon,, and E. W. Nester. 1986. A gene essential for Agrobacterium virulence is homologous to a family of positive regulatory loci. Proc. Natl. Acad. Sci. USA 83: 8278 8282.
167. Wurtzel, E. T.,, M. Y. Chou,, and M. Inouye. 1982. Osmoregulation of gene expression. I. DNA sequence of the ompR gene of the ompB operon of Escherichia coli and characterization of its gene product. J. Biol. Chem. 257: 13685 13691.
168. Wylie, D.,, A. Stock,, C.-Y. Wong,, and J. Stock. 1988. Sensory transduction in bacterial chemotaxis involves phosphotransfer between Che proteins. Biochem. Biophys. Res. Commun. 151: 891 896.
169. Yamada, M.,, K. Makino,, M. Amemura,, H. Shinegawa,, and A. Nakata. 1989. Regulation of the phosphate regulon of Escherichia coli: analysis of mutant phoB and phoR genes causing different phenotypes. J. Bacteriol. 171: 5601 5606.
170. Yamane, K.,, and B. Maruo. 1987. Alkaline phosphatase possessing alkaline phosphodiesterase activity and other phosphodiesterases in Bacillus subtilis. J. Bacteriol. 134: 108 114.
171. Yang, M.,, E. Ferrari,, E. Chen,, and D. J. Henner. 1986. Identification of the pleiotropic sacQ gene of Bacillus subtilis. J. Bacteriol. 166: 113 119.
172. Yang, M.,, H. Shimotsu,, E. Ferrari,, and D. J. Henner. 1987. Characterization and mapping of the Bacillus subtilis prtR gene. J. Bacteriol. 169: 434 437.
173. Yoshikawa, H.,, J. Kazami,, S. Yamashita,, T. Chibazakura,, H. Sone,, F. Kawamura,, M. Oda,, M. Isaka,, Y. Kobayashi,, and H. Saito. 1986. Revised assignment for the Bacillus subtilis spo0F gene and its homology with spo0A and with two Escherichia coli genes. Nucleic Acids Res. 14: 1063 1072.

Tables

Generic image for table
Table 1

Two-component regulatory pairs of gram-positive bacteria

Citation: Msadek T, Kunst F, Rapoport G. 1993. Two-Component Regulatory Systems, p 729-745. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch50
Generic image for table
Table 2

Mutations in and genes and associated phenotypes

Citation: Msadek T, Kunst F, Rapoport G. 1993. Two-Component Regulatory Systems, p 729-745. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch50

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error