1887

Chapter 62 : Commercial Production of Extracellular Enzymes

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Commercial Production of Extracellular Enzymes, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap62-1.gif /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap62-2.gif

Abstract:

This chapter discusses production strains and the regulation of extracellular-enzyme expression. The chapter also analyzes the properties of amylases and cellulases produced by spp., with comparisons to similar enzymes made by other microorganisms. Almost all of the extracellular enzymes in spp. are under temporal control (possibly because of their scavenging nature). Starch-degrading enzymes included such as cellulases, proteases and glucose isomerase are discussed in the chapter. Starch-degrading enzymes have different action patterns on starch and have been characterized by a number of different criteria. Cellulolytic enzymes include cellulases, cellulases and alkalophilic cellulases are discussed in the chapter. Cellulases of other gram-positive bacteria are also discussed. Through biochemical analyses of the microbial cellulases and comparisons of gene sequence homologies, predicted amino acid sequence homologies, and predicted structural similarities, several investigators have identified common functional domains and classified the cellulases into nine families. Current studies of the molecular genetics of will generate a better knowledge of the regulation of gene expression and of the mechanisms involved in translation and secretion. This knowledge will allow use of to express and secrete high volumes of homologous modified enzymes and heterologous gene products.

Citation: Ferrari E, Jarnagin A, Schmidt B. 1993. Commercial Production of Extracellular Enzymes, p 917-937. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch62
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Locations of binding sites of regulators on the subtilisin promoter. The regions protected from DNAse digestion by Hpr and Sin are boxed; the dashed line indicates the area of protection due to AbrB. This figure is courtesy of J. A. Hoch.

Citation: Ferrari E, Jarnagin A, Schmidt B. 1993. Commercial Production of Extracellular Enzymes, p 917-937. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch62
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Schematic representation of an amylopectin-type molecule, with an (1→6) branch point shown in more detail below. Potential cleavage sites for -amylases (A), -amylases (B), debranching enzymes (D; pullulanases or isoamylases), and glucoamylases (G) are indicated by arrows. The reducing end is indicated by a filled symbol.

Citation: Ferrari E, Jarnagin A, Schmidt B. 1993. Commercial Production of Extracellular Enzymes, p 917-937. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch62
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Seven regions of homology in amino acid sequence alignment of nine endoamylases chosen from different cluster groups ( Fig. 4 ). Computer alignments (Genetics Computer Group, Inc.) of the 34 amino acid sequences shown in Fig. 4 were determined by pairwise alignments of the most related sequences or sequence clusters ( ). Amino acids conserved in at least five of the nine sequences shown (O) and those conserved in all 34 sequences shown in Fig. 4 (♦) are indicated. Dashed lines indicate gaps in the sequences of various lengths, and a period represents a gap of one amino acid. Sequences are named by whether they were classified as an -amylase (A:), an -amylase-pullulanase (AP:), a CGTase (C:), or a pullulanase (P:) and by the organism from which they were isolated: (Bst), (Bme), (Cth), S. (Shy), (Bsu), sp. strain 17-1 (B17-1), (Bpo), or a gram-positive bacterium (G+). As in the text, numbering is given for the mature -amylase from and regions with putative catalytic and/or binding residues are denoted by uppercase roman numerals.

Citation: Ferrari E, Jarnagin A, Schmidt B. 1993. Commercial Production of Extracellular Enzymes, p 917-937. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch62
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Dendrogram illustrating the relationships among 34 endoamylases aligned as described in the legend to Fig. 3 . The nomenclature used is the same as in Fig. 3 . Additional classifications are isoamylase (I:), oligo-l,6-glucosidase (G:), dextran glucosidase (D:), neopullulanase (N:), maltogenic -amylase (Am:), and exoamylase (X:)· The sequences in order from top to bottom are: pullulanase (P:Kae; 77), pullulanase (P:Bst; 89), isoamylase (I:Pam; 1), oligo-1,6-glucosidase (G:Bce; 189), oligo-1,6-glucosidase (G:Bth; 188), S. dextran glucosidase (D:Smu; 139), -amylase (A:Bme; 102), -amylase-pullulanase (AP:Cth; 101), neopullulanase (N:Bst; 88), amylase (A:Dth; 63), -amylase (A:Bli; 198), -amylase (A:Bam; 166), sp. strain 707 -amylase (A:B707; 174), -amylase (A:Bst; 67), -amylase (A:Bsu; 195), -amylase (A:Bfi; 138), -amylase (A:Sli; 93), S. -amylase (A:Shy; 64), -amylase (A:Aha; 27), -amylase (A:Ahy; 47), sp. strain 1011 CGTase (C:B1011; 80), sp. strain 38-2 CGTase (C:B38-2; 75), sp. strain B1018 -amylase (A:B1018; 68), sp. strain 17-1 CGTase (C:B17-1; 76), -amylase (A:Bci; 115), -amylase (A:Cts; 3), CGTase (C:Bma; 163), CGTase (C:Boh; 147), maltogenic -amylase (Am:Bst; 22), CGTase (C:Kpn; 8), -amylase (A: Bpo; 175), -amylase (A:Aor; 190), exoamylase (X:Pst; 37), and gram-positive bacterium -amylase (A:G+; 13). Sequences from organisms that are not gram-positive bacteria were included for comparisons. For simplicity, some available sequences of endoamylases were not included, since most are similar to ones already used in the alignments ( ). The distance to the branch point connecting two sequences is proportional to the identity between the two sequences, as shown by the scale on this figure (for example, the amino acid sequences of A:Sli and A:Shy are 56% identical). In general, the inclusion of a sequence in a given group should be considered approximate when the sequence is less than 20% identical to the other members of the cluster group.

Citation: Ferrari E, Jarnagin A, Schmidt B. 1993. Commercial Production of Extracellular Enzymes, p 917-937. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch62
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Comparison of protein sequences of cellulases from four different strains of Positions marked in boldface indicate differences between the strains. Designations are as follows: Bsu PAP115, PAP115 ( ); Bsu BSE616, BSE616 ( ); Bsu DLG, DLG ( ); BsulFO3034, IFO3034 ( ).

Citation: Ferrari E, Jarnagin A, Schmidt B. 1993. Commercial Production of Extracellular Enzymes, p 917-937. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch62
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Comparison of protein sequences of alkaline cellulases from bacilli. Consensus denotes a consensus sequence determined by position similarities in two or more sequences; uppercase amino acid symbols indicate similar or identical residues that generated the consensus sequence. Lowercase symbols designate differences from consensus sequence. Sequence designations are as follows: Bac N-4 CelA, strain N-4 endoglucanase A ( ); Bac N-4 CelB, ( ); Bac KSM-635, strain KSM-635 ( ); Bac str.1139, strain 1139 ( ); Bac N-4 CelC, strain N-4 endoglucanase C ( ).

Citation: Ferrari E, Jarnagin A, Schmidt B. 1993. Commercial Production of Extracellular Enzymes, p 917-937. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch62
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818388.chap62
1. Amemura, A.,, R. Chakraborty,, M. Fujita,, T. Noumi,, and M. Futai. 1988. Cloning and nucleotide sequence of the isoamylase gene from Pseudomonas amylodermamosa SB-15. J. Biol. Chem. 263: 9271 9275.
2. Baecker, P. A., E. Greenburg, and J. Preiss. 1986. Biosynthesis of bacterial glycogen: primary structure of Escherichia coli l,4-α-D-glucan:l,4-α-D-glucan 6-α-D-(l,4-α-D-glucano)-transferase as deduced from the nucleotide sequence of the g/gB gene. J. Biol. Chem. 261: 8738 8743.
3. Bahl, H.,, G. Burchhardt,, A. Spreinat,, K. Haeckel,, A. Wienecke,, B. Schmidt,, and G. Antranikian. 1991. α-Amylase of Clostridium thermosulfurogenes EMI: nucleotide sequence of the gene, processing of the enzyme, and comparison to other α-amylases. Appl. Environ. Microbiol. 57: 1554 1559.
4. Bahri, S. M.,, and J. M. Ward. 1990. Nucleotide sequence of an α-amylase gene isolated from Streptomyces thermolliolaceus CUB74. GenBank Genetic Sequence Data Bank, Release 68.0, Locus:Stmamy, Accession: M34957. Unpublished sequence.
5. Baird, S. K.,, D. A. Johnson,, and V. L. Seligy. 1990. Molecular cloning, expression, and characterization of endo- β-l,4-glucanase genes from Bacillus polymyxa and Bacillus circulans. J. Bacteriol. 172: 1576 1586.
6. Bealin-Kelly, F.,, C. T. Kelly,, and W. M. Fogarty. 1991. Studies on the thermostability of the α-amylase of Bacillus caldovelox. Appl. Microbiol. Biotechnol. 36: 332 336.
7. Beguin, P. 1990. Molecular biology of cellulose degradation. Annu. Rev. Microbiol. 44: 219 248.
8. Binder, F.,, O. Huber,, and A. Bock. 1986. Cyclodextringlycosyltransferase from Klebsiella pneumoniae M5al: cloning, nucleotide sequence and expression. Gene 47: 269 277.
9. Boel, E.,, L. Brady,, A. M. Brzozowski,, Z. Derewenda,, G. G. Dodson,, V. J. Jensen,, S. B. Petersen,, H. Swift,, L. Thim,, and H. F. Woldike. 1990. Calcium binding in α-amylases: an X-ray diffraction study at 2.1-Å resolution of two enzymes from Aspergillus. Biochemistry 29: 6244 6249.
10. Boyer, E. W.,, and M. B. Ingle. 1972. Extracellular alkaline amylase from a Bacillus species. J. Bacteriol. 110: 992 1000.
11. Brosnan, M. P.,, C. T. Kelly,, and W. M. Fogarty. 1992. Investigation of the mechanisms of irreversible thermoinactivation of Bacillus stearothermophilus α-amylase. Eur. J. Biochem. 203: 225 231.
12. Buisson, G.,, E. Duee,, R. Haser,, and F. Payan. 1987. Three dimensional structure of porcine pancreatic α-amylase at 2.9-Å resolution. Role of calcium in structure and activity. EMBO J. 6: 3909 3916.
13. Candussio, A.,, G. Schmid,, and A. Bock. 1990. Biochemical and genetic analysis of a maltopentaose-producing amylase from an alkaliphilic Gram-positive bacterium. Eur. J. Biochem. 191: 177 185.
14. Cheetam, P. S. J. 1985. The applications of enzymes to industry, p. 274 379. In A. Wiseman (ed.), Handbook of Enzyme Biotechnology, 2nd ed. Ellis Horwood Ltd., Chichester, United Kingdom.
15. Chojecki, A.,, and H. P. Blaschek. 1986. Effect of carbohydrate source on alpha-amylase and glucoamylase formation by Clostridium acetobutylicum SA-1. J. Ind. Microbiol. 1: 63 67.
16. Chu, K. (Genencor International). 1992. Personal communication.
17. Coughlan, M. P., 1990. Cellulose degradation by fungi, p. 1 36. In W. M. Fogarty, and C. T. Kelly (ed.), Microbial Enzymes and Biotechnology, 2nd ed. Elsevier Applied Science, New York.
18. Dahl, M. K.,, T. Msadek,, F. Kunst,, and G. Rapoport. 1991. Mutational analysis of the Bacillus subtilis DegU regulator and its phosphorylation by the DegS protein kinase. J. Bacteriol. 173: 2539 2547.
19. Debabov, V. G., 1982. The industrial use of bacilli, p. 331 370. In D. A. Dubnau (ed.). The Molecular Biology of the Bacilli. Academic Press, Inc., New York.
20. Declerck, N.,, P. Joyet,, C. Gaillardin,, and J.-M. Masson. 1990. Use of amber suppressors to investigate the thermostability of Bacillus licheniformis α-amylase. J. Biol. Chem. 265: 15481 15488.
21. Demain, A. L., 1990. Regulation and exploitation of enzyme biosynthesis, p. 331 368. In W. M. Fogarty, and K. T. Kelly (ed.), Microbial Enzymes and Biotechnology, 2nd ed. Elsevier Applied Science, London.
22. Dlderichsen, B.,, and L. Christiansen. 1988. Cloning of a maltogenic alpha-amylase from Bacillus stearothermophilus. FEMS Microbiol. Lett. 56: 53 60.
23. Dod, B.,, and G. Balassa. 1978. Spore control (sco) mutations in Bacillus subtilis. III. Regulation of extracellular protease synthesis in the spore control mutations scoC. Mol. Gen. Genet. 163: 57 63.
24. Doi, R. H. 1991. Proteolytic activities in Bacillus. Curr. Opin. Biotechnol. 2: 682 684.
25. Dordlck, J. S. 1991. An introduction to industrial bio-catalysis, p. 3 19. In J. S. Dordick (ed.), Biocatalysts for Industry. Plenum Press, New York.
26. Emori, M.,, and B. Maruo. 1988. Complete nucleotide sequence of an α-amylase from Bacillus subtilis 2633, an amylase extrahyperproducing strain. Nucleic Acids Res. 16: 7178,
27. Feller, G.,, T. Lonhienne,, C. Deroanne,, C. Libioulle,, J. Von Beeumen,, and C. Gerday. 1992. Purification, characterization, and nucleotide sequence of the thermolabile α-amylase from the Antarctic psychotroph Alteromonas haloplanctis A23. J. Biol. Chem. 267: 5217 5221.
28. Feng, D.-F.,, and R. F. Doolittle. 1987. Progressive sequence alignments as a prerequisite to correct phylogenetic trees. J. Mol. Evol. 35: 351 360.
29. Ferrari, E.,, D. J. Henner,, M. Perego,, and J. A. Hoch. 1988. Transcription of Bacillus subtilis subtilisin and expression of subtilisin in sporulation mutation. J. Bacteriol. 170: 289 295.
30. Ferrari, E.,, S. M>,. H. Howard,, and J. A. Hoch. 1986. Effect of stage 0 sporulation mutations on subtilisin expression. J. Bacteriol. 166: 173 179.
31. Ferrari, E.,, and M. Ruppen. Unpublished data.
32. Fogarty, W. M.,, and E. J. Bourke. 1983. Production and purification of a maltose-producing amylase from Bacillus subtilis IMD 198. J. Chem. Technol. Biotechnol. 33B: 145 151.
33. Folkman, J.,, P. B. Weisz,, M. M. Joullié, W. W. Li,, and W. R. Ewing. 1989. Control of angiogenesis with synthetic heparin substitutes. Science 243: 1490 1493.
34. French, D., 1975. Chemistry and biochemistry of starch, vol. 5, p. 267 335. In W. J. Whelan (ed.), MTP International Review of Science. University Park Press, Baltimore.
35. Friedberg, F.,, and C. Rhodes. 1986. Cloning and characterization of the beta-amylase gene from Bacillus polymyxa. J. Bacteriol. 165: 819 824.
36. Friedman, R. B., 1991. Linear and cyclic dextrins, p. 327 347. In I. Goldberg, and R. Williams (ed.), Biotechnology and Food Ingredients. Van Nostrand Reinhold, New York.
37. Fujita, M.,, K. Torigoe,, T. Nakada,, K. Tsusaki,, M. Kubota,, S. Sakai,, and Y. Tsujisaka. 1989. Cloning and nucleotide sequence of the gene (amyP) for maltotet-raose-forming amylase from Pseudomonas stutzeri MO-19. J. Bacteriol. 171: 1333 1339.
38. Fukumori, F.,, T. Kudo,, and K. Horikoshi. 1985. Purification and properties of a cellulase from alkalophilic Bacillus sp. no. 1139. J. Gen. Microbiol. 131: 3339 3345.
39. Fukumori, F.,, T. Kudo,, and K. Horikoshi. 1987. Truncation analysis of an alkaline cellulase from an alkalophilic Bacillus species. FEMS Microbiol. Lett. 40: 311 314.
40. Fukumori, F.,, T. Kudo,, Y. Narahashi,, and K. Horikoshi. 1986. Molecular cloning and nucleotide sequence of the alkaline cellulase gene from the alkalophilic Bacillus sp. strain 1139. J. Gen. Microbiol. 132: 2329 2335.
41. Fukumori, F.,, T. Kudo,, N. Sashihara,, Y. Nagata,, K. Ito,, and K. Horikoshi. 1989. The third cellulase of alkalophilic Bacillus sp. strain N-4: evolutionary relationships within the cel gene family. Gene 76: 289 298.
42. Fukumori, F.,, K. Ohishi,, T. Kudo,, and K. Horikoshi. 1987. Tandem location of the cellulase genes on the chromosome of Bacillus sp. strain N-4. FEMS Microbiol. Lett. 48: 65 68.
43. Fukumori, F.,, N. Sashihara,, T. Kudo,, and K. Horikoshi. 1986. Nucleotide sequences of two cellulase genes from alkalophilic Bacillus sp. strain N-4 and their strong homology. J. Bacteriol. 168: 479 485.
44. Gaur, G. K.,, J. Oppenheim,, and I. Smith. 1991. The Bacillus subtilis sin gene, a regulator of alternate developmental processes, codes for a DNA-binding protein. J. Bacteriol. 173: 678 686.
45. Gilkes, N. R.,, B. Henrissat,, D. G. Kilburn,, R. C. Miller,, Jr., and R. A. J. Warren. 1991. Domains in microbial β-1,4-gIycanases: sequence conservation, function, and enzyme families. Microbiol. Rev. 55: 303 315.
46. Gilkes, N. R.,, R. A. J. Warren,, R. C. Miller,, Jr., and D. G. Kilburn. 1988. Precise excision of the cellulose binding domains from two Cellulomonas fimi cellulases by a homologous protease and the effect on catalysis. J. Biol. Chem. 263: 10401 10407.
47. Gobius, K. S.,, and J. M. Pemberton. 1988. Molecular cloning, characterization, and nucleotide sequence of an extracellular amylase gene from Aeromonas hydrophila. J. Bacteriol. 170: 1325 1332.
48. Godtfredsen, S. E., 1990. Microbial lipases, p. 255 274. In W. M. Fogarty, and K. T. Kelly (ed.), Microbial Enzymes and Biotechnology, 2nd ed. Elsevier Applied Science, London.
49. Gray, G. L.,, S. E. Mainzer,, M. W. Rey,, M. H. Lamsa,, K. L. Kindle,, C. Carmona,, and C. Requadt. 1986. Structural genes encoding the thermophilic α-amylases of Bacillus stearothermophilus and Bacillus licheniformis. J. Bacteriol. 166: 635 643.
50. Graycar, T. P., 1991. Protein engineering of subtilisin, p. 257 284. In J. S. Dordick (ed.), Biocatalysts for Industry. Plenum Press, New York.
51. Hacking, J. A., 1991. Biocatalysis in the production of carbohydrates for food uses, p. 63 82. In J. S. Dordick (ed.), Biocatalysts for Industry. Plenum Press, New York.
52. Henner, D. J.,, E. Ferrari,, M. Perego,, and J. A. Hoch. 1988. Location of the target of the hpr-97, sacU32(Hy), and sacQ36(Hy) mutations in upstream region of the subtilisin promoter. J. Bacteriol. 170: 296 300.
53. Henner, D. J.,, M. Yang,, L. Band,, H. Shimotsu,, M. Ruppen,, and E. Ferrari,. 1986. Genes of Bacillus subtilis which regulate the expression of degradative enzymes, p. 81 90. In M. Alacevic,, D. Hranueli,, and Z. Toman (ed.), Genetics of Industrial Microorganisms. Proceedings of the Fifth International Symposium on the Genetics of Industrial Microorganisms. Ognjen Prica Printing Works, Karlovac, Yugoslavia.
54. Henner, D. J.,, M. Yang,, and E. Ferrari. 1988. Localization of the Bacillus subtilis sacU(Hy) mutations to two linked genes with similarities to the conserved procaryotic family of two-component signalling systems. J. Bacteriol. 170: 5102 5109.
55. Henrissat, B.,, M. Claeyssens,, P. Tonune,, L. Lemesle,, and J.-P. Mornon. 1989. Cellulase families revealed by hydrophobic cluster analysis. Gene 81: 83 95.
56. Higashihara, M.,, and H. Okada. 1974. Studies on beta-amylase of Bacillus megaterium no. 31. Agric. Biol. Chem. 38: 1023 1029.
57. Hill, D. E.,, R. Aldape,, and J. D. Rozzell. 1990. Nucleotide sequence of a cyclodextrin glucosyltransferase gene, cgtA, from Bacillus licheniformis. Nucleic Acids Res. 18: 199.
58. Hitosuyanagi, K.,, K. Yamane,, and B. Maruo. 1979. Stepwise introduction of regulatory genes stimulating production of α-amylase into Bacillus subtilis: construction of an α-amylase extrahyperproducing strain. Agric. Biol. Chem. 43: 2343 2349.
59. Hoch, J. A. 1976. Genetics of bacterial sporulation. Adv. Genet. 18: 69 98.
60. Holm, L.,, A. K. Koivula,, P. M. Lehtovaara,, A. Hemminki,, and J. K. C. Knowles. 1990. Random mutagenesis used to probe the structure and function of Bacillus stearothermophilus alpha-amylase. Protein Eng. 3: 181 191.
61. Honjo, M.,, A. Nakayama,, K. Fukazawa,, K. Kawamura,, K. Ando,, M. Hori,, and Y. Furutanl. 1990. A novel Bacillus subtilis gene involved in negative control of sporulation and degradative-enzyme production. J. Bacteriol. 172: 1783 1790.
62. Horikoshi, K.,, M. Nakao,, Y. Kurono,, and N. Sashlhara. 1984. Cellulases of an alkalophilic Bacillus strain isolated from soil. Can. J. Microbiol. 30: 774 779.
63. Horinouchi, S.,, S. Fukusumi,, T. Ohshima,, and T. Beppu. 1988. Cloning and expression in Escherichia coli of two additional amylase genes of a strictly anaerobic thermophile, Dictyoglomus thermophilum, and their nucleotide sequences with extremely low guanine-plus-cytosine contents. Eur J. Biochem. 176: 243 253.
64. Hoshiko, S.,, O. Makabe,, C. Nojiri,, K. Katsumata,, E. Satoh,, and K. Nagaoka. 1987. Molecular cloning and characterization of the Streptomyces hygroscopicus α-amylase gene. J. Bacteriol. 169: 1029 1036.
65. Howard, G. T.,, and B. A. White. 1988. Molecular cloning and expression of cellulase genes from Rumonococcus albus 8 in Escherichia coli bacteriophage A. Appl. Environ. Microbiol. 54: 1752 1755.
66. Hyun, H. H.,, and J. G. Zelkus. 1985. General biochemical characterization of thermostable pullulanase and glucoamylase from Clostridium thermohydrosulfuricum. Appl. Environ. Microbiol. 49: 1168 1173.
67. Ihara, H.,, T. Sasaki,, A. Tsuboi,, H. Yamagata,, N. Tsukagoshi,, and S. Udaka. 1985. Complete nucleotide sequence of a thermophilic α-amylase gene: homology between prokaryotic and eukaryotic α-amylases at the active sites. J. Biochem. 98: 95 103.
68. Itkor, P.,, N. Tsukagoshi,, and S. Udaka. 1990. Nucleotide sequence of the raw-starch-digesting amylase gene from Bacillus sp. B1018 and its strong homology to the cyclodextrin glucanotransferase genes. Biochem. Biophys. Res. Commun. 166: 630 636.
69. Ito, S.,, S. Shikata,, K. Ozaki,, S. Kawai,, K. Okamoto,, S. Inoue,, A. Takei,, Y. Ohta,, and T. Satoh. 1989. Alkaline cellulase for laundry detergents: production by Bacillus sp. KSM-635 and enzymatic properties. Agric. Biol. Chem. 53: 1275 1281.
70. Jarnagln, A. S.,, and E. Ferrari. 1992. Extracellular enzymes: gene regulation and structure function relationship studies, p. 191 219. In R. Doi and M. McGloughlin (ed.), Biology of Bacilli: Applications to Industry. Butterworth-Heinemann, Boston.
71. Jergensen, P. L.,, and C. K. Hansen. 1990. Multiple endo- β-l,4-glucanase-encoding genes from Bacillus lautus PL236 and characterization of the celB gene. Gene 93: 55 60.
72. Jergensen, P. L.,, G. B. Poulsen,, and B. Diderichsen. 1991. Cloning of a chromosomal α-amylase gene from Bacillus stearothermophilus. FEMS Microbiol. Lett. 77: 271 276.
73. Kainuma, K., 1984. Starch oligosaccharides: linear, branched, and cyclic, p. 125|– 152. In R. L. Whistler,, J. N. Bemiller, and E. F. Paschall (ed.), Starch: Chemistry and Technology, 2nd ed. Academic Press, Inc., Orlando, Fla.
74. Kallio, P. T.,, J. E. Fagelson,, J. A. Hoch,, and M. A. Strauch. 1991. The transition state regulator Hpr of Bacillus subtilis is a DNA-binding protein. J. Biol. Chem. 266: 13411 13417.
75. Kaneko, P.,, T. Hamamoto,, and K. Horikoshi. 1988. Molecular cloning and nucleotide sequence of the cyclomaltodextrin glucanotransferase gene from the alkalophilic Bacillus sp. strain no. 38-2. J. Gen. Microbiol. 134: 97 105.
76.Kaneko, T., K. Song, T. Hamamoto, T. Kudo, and K. Horikoshi. 1989. Construction of a chimeric series of Bacillus cyclomaltodextrin glucanotransferases and analysis of the thermal stabilities and pH optima of the enzymes. J. Gen. Microbiol. 135: 34473457.
77.Katsuragi, N., N. Takizawa, and Y. Murooka. 1987. Entire nucleotide sequence of the pullulanase gene of Klebsiella aerogenes W70. J. Bacteriol. 169: 23012306.
78. Kawai, S.,, K. Oshino,, H. Okoshi,, H. Mori,, K. Ara,, S. Ito,, and K. Okamoto. 1988. Alkali resistant cellulases and microorganisms capable of producing same. European patent application EP 270974 A2.
79.Kawazu, T., Y. Nakanishl, N. Uozumi, T. Sasaki, H. Yamagata, N. Tsukagoshi, and S. Udaka. 1987. Cloning and nucleotide sequence of the gene coding for enzymatically active fragments of the Bacillus polymyxa β-amylase. J. Bacteriol. 169: 15641570.
80. Kimura, K.,, S. Kataoka,, Y. Ishil,, T. Takano,, and K. Yamane. 1987. Nucleotide sequence of the β-cyclo-dextrin glucanotransferase gene of alkalophilic Bacillus sp. strain 1011 and similarity of its amino acid sequence to those of α-amylases. J. Bacteriol. 169: 4399 4402.
81. Kindle, K. L. 1983. Characteristics and production of thermostable α-amylase. Biochem. Biotechnol. 8: 153 170.
82.Kitamoto, N., H. Yamagata, T. Kato, N. Tsukagoshi, and S. Udaka. 1988. Cloning and sequencing of the gene encoding thermophilic β-amylase of Clostridium thermosulfurogenes. J. Bacteriol. 170: 58485854.
83.Klein, C, and G. E. Schulz. 1991. Structure of cyclodextrin glycosyltransferase refined at 2.0Å resolution. J. Mol. Biol. 217: 737750.
84. Koide, Y.,, A. Nakamura,, T. Uozumi,, and T. Beppu. 1986Wrong number of periods to parse title/source. Molecular cloning of a cellulase gene from Bacillus subtilis and its expression in Escherichia coli. Agric. Biol. Chem. 56: 233 237.
85.Kondo, H., H. Nakatani, R. Matsuno, and K. Hiromi. 1980. Product distribution in amylase catalyzed hydrolysis of amylose: comparison of experimental results with theoretical predictions. J. Biochem. 87: 10531070.
86.Krels, M., M. Williamson, B. Buxton, J. Pywell, J. Hejgaard, and I. Svendsen. 1987. Primary structure and differential expression of β-amylase in normal and mutant barleys. Eur. I. Biochem. 169: 517525.
87. Kunst, F.,, M. DebarbouiUle,, T. Msadek,, M. Young,, C. Mauel,, D. Karamata,, A. Klier,, G. Rapoport,, and R. Dedonder. 1988. Deduced polypeptides encoded by the Bacillus subtilis sacU locus share homology with two-component sensor regulatory systems. J. Bacteriol. 170: 5093 5101.
88. Kuriki, T.,, and T. Imanaka. 1989. Nucleotide sequence of the neopullulanase gene from Bacillus stearothermophilus. J. Gen. Microbiol. 135: 1521 1528.
89. Kuriki, T.,, J.-H. Park,, and T. Imanaka. 1990. Characteristics of thermostable pullulanase from Bacillus stearothermophilus and the nucleotide sequence of the gene. J. Ferment. Bioeng. 69: 204 210.
90. Lao, G.,, G. S. Ghangas,, E. D. Jung,, and D. B. Wilson. 1991. DNA sequences of three β-1,4-endoglucanase genes from Thermomonospora fusca. J. Bacteriol. 173: 3397 3407.
91. Lepesant, J. A., F. Kunst, J. Lepesant-Kejzlarova, and R. Dedonder. 1972. Chromosomal location of the mutations affecting sucrose metabolism in Bacillus subtilis Marburg. Mol. Gen. Genet. 118: 135 160.
92. Lo, A. C, R. M. MacKay, V. L. Seligy, and G. E. Wlllick. 1988. Bacillus subtilis β-1,4-endoglucanase products from intact and truncated genes are secreted into the extracellular medium by Escherichia coli. Appl. Environ. Microbiol. 54: 2287 2292.
93. Long, C. M.,, M.-J. Vlrolle,, S.-Y. Chang,, S. Chang,, and M. J. Bibb. 1987. α-Amylase gene of Streptomyces limosus: nucleotide sequence, expression motifs, and amino acid sequence homology to mammalian and invertebrate α-amylases. J. Bacteriol. 169: 5745 5754.
94.MacGregor, E. A., and B. Svensson. 1989. A super-secondary structure predicted to be common to several a-l,4-D-glucan-cleaving enzymes. Biochem. J. 259: 145152.
95. MacKay, R. M.,, S. Baird,, M. J. Dove,, J. A. Erratt,, M. Glnes,, F. Moranelli,, A. Nasim,, G. E. Wlllick,, M. Yaguchi,, and V. L. Seligy. 1985. Glucanase gene diversity in prokaryotic and eukaryotic organisms. BioSystems 18: 279 292.
96. MacKay, R. M.,, A. Lo,, G. WiUick,, M. Zuker,, S. Baird,, M. Dove,, F. Moranelli,, and V. Seligy. 1986. Structure of a Bacillus subtilis endo- β-l,4-glucanase gene. Nucleic Acids Res. 14: 9159 9170.
97. MacQultty, J. J. 1988. Impact of biotechnology on the chemical industry, p. 11-29. In M. P. Phillips, S. P. Shoemaker, R. D. Middlekauff, and R. M. Ottenbrite (ed.), The Impact of Chemistry on Biotechnology: Multi-disciplinary Discussion. American Chemical Society, Washington, D.C.
98. Marshall, J. J. 1974. Characterization of Bacillus polymyxa amylase as an exo-acting(l-4)alpha-D-glucan maltohydrolase. FEBS Lett. 46: 1 4.
99.Matsuura, Y., M. Kusunoki, W. Harada, and M. Kakudo. 1984. Structure and possible catalytic residues of Taka-amylase A. J. Biochem. 95: 697702.
100.Meinke, A., N. R. Gilkes, D. G. Kilburn, R. C. Miller, Jr., and R. A. J. Warren. 1991. Multiple domains in endoglucanase B (cenB) from Cellulomonas fimi: functions and relatedness to domains in other polypeptides. J. Bacteriol. 173: 71267135.
101.Melasniemi, H., M. Palohelmo, and L. Hemid. 1990. Nucleotide sequence of the α-amylase-pullulanase gene from Clostridium thermohydrosulfuricum. J. Gen. Microbiol. 136: 447454.
102. Metz, R. J.,, L. N. Allen, T. M. Cao, and N. W. Zeman. 1988. Nucleotide sequence of an amylase gene from Bacillus megaterium. Nucleic Acids Res. 16:5203.
103.Mikami, B., Y. Morita, and C. Fukazawa. 1988. Primary structure and function of β-amylase. Seikagaku 60: 211216.
104.Msadek, T., M. K. Dahl, F. Kunst, and G. Rapoport. 1992. The DegS/DegU signal transduction pathway in Bacillus subtilis, abstr. 17. Program Abstr. 11th Int. Spore Conf.
105. Msadek, T.,, F. Kunst,, D. J. Henner,, A. Klier,, G. Rapoport,, and R. Dedonder. 1990. Signal transduction pathway controlling synthesis of class of degradative enzymes in Bacillus subtilis: expression of the regulatory genes and analysis of mutations in degS and degU. J. Bacteriol. 172: 824 834.
106. Mukai, K.,, M. Kawata,, and T. Tanaka. 1990. Isolation and phosphorylation of the Bacillus subtilis degS and degU gene products. J. Biol. Chem. 265: 20000 20006.
107. Nagashlma, T.,, S. Tada,, K. Kitamoto,, K. Gomi,, C. Kumagai,, and H. Toda. 1992. Site-directed mutagenesis of catalytic active-site residues of Taka-amylase A. Biosci. Biotechnol. Biochem. 56: 207 210.
108. Nakai, R.,, S. Horinouchi,, and T. Beppu. 1988. Cloning and nucleotide sequence of a cellulase gene, casA, from an alkalophilic Streptomyces strain. Gene 65: 229 238.
109. Nakai, R.,, S. Horinouchi,, T. Uozumi,, and T. Beppu. 1987. Purification and properties of cellulases from an alkalophilic Streptomyces strain. Agric. Biol. Chem. 51: 3061 3065.
110. Nakajima, R.,, T. Imanaka,, and S. Alba. 1985. Nucleotide sequence of the Bacillus stearothermophilus α-amylase gene. J. Bacteriol. 163: 401 406.
111. Nakajima, R.,, T. Imanaka,, and S. Alba. 1986. Comparison of amino acid sequences of eleven different α-amylases. Appl. Microbiol. Biotechnol. 23: 355 360.
112.Nakamura, A., F. Fukumori, S. Horinouchi, H. Masaki, T. Kudo, T. Uozumi, K. Horikoshi, andT. Beppu. 1991. Construction and characterization of the chimeric enzymes between the Bacillus subtilis cellulase and an alkalophilic Bacillus cellulase. J. Biol. Chem. 266: 15791583.
113.Nakamura, A., K. Haga, S. Ogawa, K. Kuwano, K. Klmura, K. Yamane. 1992. Functional relationships between cyclodextrin glucanotransferase from an alkalophilic Bacillus and α-amylases: site-directed mutagenesis of the conserved two Asp and one Glu residues. FEBS Lett. 296: 3740.
114.Nakamura, A., T. Uozumi, and T. Beppu. 1987. Nucleotide sequence of a cellulase gene of Bacillus subtilis. Eur. J. Biochem. 164: 317320.
115. Nlshizawa, M.,, F. Ozawa,, and F. Hishinuma. 1987. Molecular cloning of an amylase gene of Bacillus circulars. DNA 6: 255 265.
116. Nitschke, L.,, K. Heeger,, H. Bender,, and G. E. Schulz. 1990. Molecular cloning, nucleotide sequence and expression in Escherichia coli of the β-cyclodextrin glyco-syltransferase gene from Bacillus circulans strain no. 8. Appl. Microbiol. Biotechnol. 33: 542 546.
117.Ohmlya, K., T. Kajino, A. Kato, and S. Shimizu. 1989. Structure of a Ruminococcus albus endo-l,4- β-gluca-nase gene. J. Bacteriol. 171: 67716775.
118. O'Neill, G. P.,, S. H. Goh,, R. A. J. Warren,, D. G. Kilburn,, and R. C. Miller, Jr. 1986. Structure of the gene encoding the exoglucanase of Cellulomonas fimi. G ene 44: 325 330.
119. Outtrup, H., and B. E. Norman. 1984. Properties and application of a thermostable maltogenic amylase produced by a strain of Bacillus modified by recombinant-DNA techniques. Starch Starke 36: 405 411.
120. Ozaki, K.,, and S. Ito. 1991. Purification and properties of an acid endo-l,4-0-glucanase from Bacillus sp. KSM-330. 1. Gen. Microbiol. 137: 41 48.
121. Ozaki, K.,, S. Shikata,, S. Kawai,, S. Ito,, and K. Okamoto. 1990. Molecular cloning and nucleotide sequence of a gene for alkaline cellulase from Bacillus sp. KSM-635. J. Gen. Microbiol. 136: 1327 1334.
122. Park, S. H., H. K. Kim, and M. Y. Pack. 1991. Characterization and structure of the cellulase gene of Bacillus subtilis BSE616. Agric. Biol. Chem. 55: 441 448.
123. Park, S. H., and M. Y. Pack. 1986. Cloning and expression of a Bacillus cellulase gene in Escherichia coli. Enzyme Microb. Technol. 8: 725 728.
124. Perego, M.,, and J. A. Hoch. 1988. Sequence analysis and regulation of the hpr locus, a regulatory gene for protease production and sporulation in Bacillus subtilis. J. Bacteriol. 170: 2560 2567.
125. Perego, M.,, G. B. Spiegelman,, and J. A. Hoch. 1988. Structure of the gene for the transition state regulator AbrB: regulator synthesis is controlled by the Spo0A protein. Mol. Microbiol. 2: 689 699.
126. Petficek, M.,, P. Tichy,, and M. Kuncova. 1992. Characterization of the α-amylase-encoding gene from Ther momonospora curvata. Gene 112: 77 83.
127. Poole, D. M.,, G. P. Hazlewood,, J. I. Laurie,, P. J. Barker,, and H. J. Gilbert. 1990. Nucleotide sequence of the Ruminococcus albus SY3 endoglucanase genes celA and celB. Mol. Gen. Genet. 223: 217 223.
128. Priest, F. G. 1977. Extracellular enzyme synthesis in the genus Bacillus. Bacteriol. Rev. 41: 711 753.
129. Priest, F. G. 1984. Extracellular enzymes, p. 54 62. American Society for Microbiology, Washington, D.C.
130. Priest, F. G.,, M. Goodfellow,, and C. Todd. 1988. A numerical classification of the genus Bacillus. J. Gen. Microbiol. 134: 1847 1882.
131. Reilly, P. J., 1985. Enzymic degradation of starch, p. 101 142. In G. M. A. van Beynum, and J. A. Roels (ed.), Starch Conversion Technology. Marcel Dekker, Inc., New York.
132.Rhodes, C, J. Strasser, and F. Friedberg. 1987. Sequence of an active fragment of B. polymyxa beta amylase. Nucleic Acids Res. 15: 3934.
133. Robson, L. M.,, and G. H. Chambliss. 1986. Cloning of the Bacillus subtilis DLG β-l,4-glucanase gene and its expression in Escherichia coli and B. subtilis. J. Bacteriol. 165: 612 619.
134. Robson, L. M.,, and G. H. Chambliss. 1987. Endo- β-l,4-glucanase gene of Bacillus subtilis DLG. J. Bacteriol. 169: 2017 2025.
135. Robson, L. M.,, and G. H. Chambliss. 1989. Cellulases of bacterial origin. Enzyme Microb. Technol. 11: 626 644.
136. Robyt, J. F., 1984. Enzymes in the hydrolysis and synthesis of starch, p. 87 123. In R. L. Whistler,, J. N. Bemiller,, and E. F. Paschall (ed.), Starch: Chemistry and Technology, 2nd ed. Academic Press, Inc., Orlando, Fla.
137. Rogers, J. C. 1985. Conserved amino acid sequence domains in alpha-amylases from plants, mammals, and bacteria. Biochem. Biophys. Res. Commun. 128: 470 476.
138. Rumbak, E.,, D. E. Rawlings,, G. G. Lindsey,, and D. R. Woods. 1991. Cloning, nucleotide sequence, and enzymatic characterization of an α-amylase from the rumi-nal bacterium Butyrivibrio fibrisolvens H17c. J. Bacteriol. 173: 4203 4211.
139. Russell, R. R. B.,, and J. J. Ferretti. 1990. Nucleotide sequence of the dextran glucosidase (dexB) gene of Streptococcus mutans. J. Gen. Microbiol. 136: 803 810.
140. Saha, B. C, and J. G. Zeikus. 1989. Novel highly thermostable pullulanase from thermophiles. Trends Biotechnol. 7: 234 239.
141.Sashihara, N., T. Kudo, and K. Horikoshi. 1984. Molecular cloning and expression of cellulase genes to alkalophilic Bacillus sp. strain N-4 in Escherichia coli. J. Bacteriol. 158: 503506.
142. Schmid, G.,, A. Englbrecht,, and D. Schmid,. 1988. Cloning and nucleotide sequence of a cyclodextrin glycosyl-transferase gene from the alkalophilic Bacillus 1-1, p. 71 76. In O. Huber, and J. Szejdi (ed.). Proceedings of the Fourth International Symposium on Cyclodextrins. Kluwer Academic Publishers, New York.
143. Shen, G.-J.,, K. C. Srivastava,, Y. Wang,, and H. Y. Wang. March 1992. U.S. patent 5,093,256.
144. Shinke, R.,, H. Nishira,, and M. Mugibayashi. 1974. Isolation of β-amylase producing microorganisms. Agric. Biol. Chem. 38: 665 666.
145. Siggens, K. W. 1987. Molecular cloning and characterization of the beta-amylase gene from Bacillus circulans. Mol. Microbiol. 1: 86 91.
146. Siggens, K. W. 1987. Bacillus circulans gene for β-amylase. GenBank Genetic Sequence Data Bank, Release 68.0, Locus:Bacamyb, Accession: Y00523. Unpublished sequence.
147. Sin, K.,, A. Nakamura,, K. Kobayashi,, H. Masaki,, and T. Uozumi. 1991. Cloning and sequencing of a cyclodextrin glucanotransferase gene from Bacillus ohbensis and its expression in Escherichia coli. Appl. Microbiol. Biotechnol. 35: 600 605.
148. Slominska, L.,, and M. Maczynski. 1985. Studies on the application of pullulanase in starch saccharification process. Starch Starke 37: 386 390.
149. Smith, I., 1989. Initiation of sporulation, p. 185 209. In I. Smith,, R. Slepecky,, and P. Setlow (ed.), Regulation of Procaryotic Development. American Society for Microbiology, Washington, D.C.
150. Specka, U.,, F. Mayer,, and G. Antranikian. 1991. Purification and properties of a thermoactive glucoamylase from Clostridium thermosaccharolyticum. Appl. Environ. Microbiol. 57: 2317 2323.
151. Srivastava, R. A. K. 1984. Studies on extracellular and intracellular purified amylases from a thermophilic Bacillus stearothermophilus. Enzyme Microb. Technol. 6: 422 426.
152.Strauch, M. A., and J. A. Hoch. 1992. Control of postex-ponential gene expression by transition state regulators, p. 105121. In R. H. Doi, and M. McGloughlin (ed.), Biology of Bacilli: Applications to Industry. Butterworth-Heinemann, Boston.
153.Strauch, M. A., M. Perego, D. Burbulys, and J. A. Hoch. 1989. The transition state regulator AbrB of Bacillus subtilis is autoregulated during vegetative growth. Mol. Microbiol. 3: 12031209.
154.Strauch, M. A., G. B. Spiegelman, M. Perego, W. C. Johnson, D. Burbulys, and J. A. Hoch. 1989. The transition state transcription regulator abrB of Bacillus subtilis is a DNA binding protein. EMBO J. 8: 16151621.
155. Strauch, M. A.,, V. Webb,, G. Spiegelman,, and J. A. Hoch. 1990. The Spo0A protein of Bacillus subtilis is a repressor of the abrB gene. Proc. Natl. Acad. Set. USA 87: 1801 1805.
156. Stutzenberger, F., 1990. Bacterial cellulases, p. 37 70. In W. M. Fogarty,, and K. T. Kelly (ed.), Microbial Enzymes and Biotechnology, 2nd ed. Elsevier Applied Science, London.
157. Suominen, I.,, M. Karp,, J. Lautano,, J. Knowles,, and P. Mantsala,. 1987. Thermostable α-amylase of Bacillus stearothermophilus: cloning, expression and secretion by Escherichia coli, p. 129 137. In J. Chaloupka, and V. Krumphanzl (ed.), Extracellular Enzymes of Microorganisms. Plenum Press, New York.
158.Suzuki, Y., K. Hatagakl, and H. Oda. 1991. A hyper-thermostable pullulanase produced by an extreme ther-mophile. Bacillus flavocaldarius KP 1228, and evidence for the proline theory of increasing protein thermostability. Appl. Microbiol. Biotechnol. 34: 707714.
159. Suzuki, Y.,, N. Ito,, T. Yuuki,, H. Yamagata,, and S. Udaka. 1989. Amino acid residues stabilizing a Bacillus α-amylase against irreversible thermoinactivation. J. Biol. Chem. 264: 18933 18938.
160.Suzuki, Y., K. Oishi, H. Nakano, and T. Nagayama. 1987. A strong correlation between the increase in number of proline residues and the rise in thermostability of five Bacillus oligo-l,6-glucosidases. Appl. Microbiol. Biotechnol. 26: 546551.
161. Svensson, B. 1988. Regional distant sequence homology between amylases, α-glucosidases and transglucanosylases. FEBS Lett. 230: 72 76.
162.Svensson, B., H. Jespersen, M. R. Sierks, and E. A. MacGregor. 1989. Sequence homology between putative raw-starch binding domains from different starch-degrading enzymes. Biochem. J. 264: 309311.
163.Takano, T., M. Fukuda, M. Monma, S. Kobayashi, K. Kainuma, and K. Yamane. 1986. Molecular cloning, DNA nucleotide sequencing, and expression in Bacillus subtilis cells of the Bacillus macerans cyclodextrin glucanotransferase gene. J. Bacteriol. 166: 11181122.
164. Takasaki, Y. 1976. Production and utilization of β-amylase and pullulanase from Bacillus cereus Agric. Biol. Chem var. 40: 1515 1522.
165.Takase, K., T. Matsumoto, H. Mizuno, and K. Yamane. 1992. Site-directed mutagenesis of active site residues in Bacillus subtilis α- mycoides. Agric. Biol. Chem. amylase. Biochim. Biophys. Acta 1120: 281288.
166. Takkinen, K.,, R. F. Pettersson,, N. Kalkkinen,, I. Palva,, H. Soderiund,, and L. Kaarialnen. 1983. Amino acid sequence of α-amylase from Bacillus amyloliquefaciens deduced from the nucleotide sequence of the cloned gene. J. Biol. Chem. 258: 1007 1013.
167.Taniguchi, H., M. J. Chung, N. Yoshigi, and Y. Maruyama. 1983. Purification of Bacillus circulans F-2 amylase and its general properties. Agric. Biol. Chem. 47: 511520.
168.Tao, B. Y., P. J. Reilly, and J. F. Robyt. 1989. Dectection of a covalent intermediate in the mechanism of action of porcine pancreatic α-amylase by using l3C nuclear magnetic resonance. Biochim. Biophys. Acta 995: 214220.
169. Thomas, J. A., and J. D. Allen. 1976. Subsite mapping of enzymes, collecting and processing experimental data: a case study of an amylase malto oligosaccharide system. Carbohydr. Res. 48: 105 124.
170. Thomas, M.,, F. G. Priest,, and J. R. Stark. 1980. Characterization of an extracellular β-amylase from Bacillus megaterium sensu stricto. J. Gen. Microbiol. 118: 67 72.
171. Tomazic, S. J.,, and A. M. Klibanov. 1988. Mechanisms of irreversible thermal inactivation of Bacillus α-amylases. J. Biol. Chem. 263: 3086 3091.
172. Tomazlc, S. J.,, and A. M. Klibanov. 1988. Why is one Bacillus α-amylase more resistant against irreversible thermoinactivation than another? J. Biol. Chem. 263: 3092 3096.
173. Tomme, P.,, H. Van TUbeurgh,, G. Pettersson,, J. Van Damme,, J. Vandekerckhove,, J. Knowles,, T. Teeri,, and M. Claeyssens. 1988. Studies of the cellulolytic system of Trichoderma reesei QM 9414. Analysis of domain function in two cellobiohydrolases by limited proteolysis. Eur. J. Biochem. 170: 575 581.
174.Tsukamoto, A., K. Kimura, Y. Ishii, T. Takano, and K. Yamane. 1988. Nucleotide sequence of the maltohexaose producing amylase gene from an alkalophilic Bacillus sp. #707 and structural similarity to liquefying type α-amylases. Biochem. Biophys. Res. Commun. 151: 2531.
175.Uozumi, N., K. Sakurai, T. Sasaki, S. Takekawa, H. Yamagata, N. Tsukagoshi, and S. Udaka. 1989. A single gene directs synthesis of a precursor protein with β-and α-amylase activities in Bacillus polymyxa. J. Bacteriol. 171: 375382.
176.Valle, F, and E. Ferrari. 1989. Subtilisin: a redundantly temporally regulated gene?, p. 131146. In I. Smith,, R. Slepecky,, and P. Setiow (ed.). Regulation of Procaryotic Development. American Society for Microbiology, Washington, D.C.
177. Van TUbeurgh, H.,, P. Tomme,, M. Claeyssens,, R. Bhikhabhai,, and G. Pettersson. 1986. Limited proteolysis of the cellobiohydrolase I from Trichoderma reesei. Separation of functional domains. FEBS Lett. 204: 223 227.
178. Vigal, T.,, J. A. Gil,, A. Daza,, M. D. García-González,, and J. F. Martin. 1991. Cloning, characterization and expression of an α-amylase gene from Streptomyces griseus IMRU3570. Mol. Gen. Genet. 225: 278 288.
179. Vlhinen, M.,, and P. Mäntsälä. 1989. Microbial amylolytic enzymes. Crit. Rev. Biochem. Mol. Biol. 24: 329 418.
180. Vlhinen, M.,, P. Ollikka,, J. Niskamem,, P. Meyer,, I. Suominen,, M. Karp,, L. Holm,, J. Knowles,, and P. Mäntsälä. 1990. Site-directed mutagenesis of a thermostable α-amylase from Bacillus stearothermophilus: putative role of three conserved residues. J. Biochem. 107: 267 272.
181. Vlrolle, M.J.,, C. M. Long,, S. Chang,, and M. J. Bibb. Cloning, characterisation and regulation of an α-amylase gene from Streptomyces venezuelae. Gene 74: 321 334.
182. von Heijne, G.,, and L. Abrahmsen. 1989. Species-specific variation in signal peptide design. FEBS Lett. 244: 439 446.
183. Wachlnger, G.,, K. Bronnenmeier,, W. L. Staudenbauer,, and H. Schrempf. 1989. Identification of mycelium-associated cellulase from Streptomyces reticuli. Appl. Environ. Microbiol. 55: 2653 2657.
184. Wakim, J.,, M. Robinson,, and J. A. Thoma. 1969. The active site of porcine pancreatic alpha amylase factors contributing to catalysis. Carbohydr. Res. 10: 487 503.
185. Waldron, C. R., Jr., C. A. Becker-Vallone, and D. E. Eveleigh. 1986. Isolation and characterization of a cellulolytic actinomycete Microbispora bispora. Appl. Microbiol. Biotechnol. 24: 477 486.
186. Waldron, C. R., Jr., and D. E. Eveleigh. 1986. Sacchar-ification of cellulosics by Microbispora bispora. Appl. Microbiol. Biotechnol. 24: 487 492.
187. Wang, L.-F.,, and R. Doi. 1990. Complex character of senS, a novel gene regulating expression of extracellular protein genes of Bacillus subtilis. J. Bacteriol. 172: 1939 1947.
188.Watanabe, K., K. Chishiro, K. Kitamura, and Y. Suzuki. 1991. Proline residues responsible for thermostability occur with high frequency in the loop regions of an extremely thermostable oligo-l,6-glucosidase from Bacillus thermoglucosidasius KP1006. J. Biol. Chem. 266: 2428724294.
189.Watanabe, K., K. Kitamura, H. Iha, and Y. Suzuki. 1990. Primary structure of the oligo-l,6-glucosidase of Bacillus cereus ATCC7064 deduced from the nucleotide sequence of the cloned gene. Eur. J. Biochem. 192: 609620.
190. Wlrsel, S.,, A. Lachmund,, G. Wildhardt,, and E. Ruttkowski. 1989. Three α-amylase genes of Aspergillus oryzae exhibit identical intron-exon organization. Mol. Microbiol. 3: 3 14.
191. Wong, W. K. R.,, B. Gerhard, Z. M. Guo, D. G. Kilbum, R. A. J. Warren, and R. C. Miller, Jr. 1986. Characterization and structure of an endoglucanase gene cenA of Cellulomonas fimi. Gene 44: 315 324.
192. Yamane, K.,, Y. Hlrata,, T. Furusato,, H. Yamazaki,, and A. Nakayama. 1984. Changes in the properties and molecular weights of Bacillus subtilis M-type and N-type α-amylases resulting from a spontaneous deletion. J. Biochem. 96: 1849 1858.
193. Yamane, K.,, and B. Maruo,. 1980. Bacillus subtilis α-amylase genes, p. 117 123. In K. Sakaguchi, and M. Ouishi (ed.). Molecular Breeding and Genetics of Applied Microorganisms. Academic Press, Inc., New York.
194.Yamazakl, H., K. Ohmura, A. Nakayama, Y. Takeichi, K. Otozai, M. Yamasaki, G. Tamura, and K. Yamane. 1983. α-Amylase genes {amyR2 and amyE +) from an α-amylase-hyperproducing Bacillus subtilis strain: molecular cloning and nucleotide sequences. J. Bacteriol. 156: 327337.
195.Yang, M. Y., A. Galizzi, and D. Henner. 1983. Nucleotide sequence of the amylase gene from Bacillus subtilis. Nucleic Acids Res. 11: 237249.
196. Yoneda, Y. 1980. Increased production of extracellular enzymes by the synergistic effect of genes introduced into Bacillus subtilis by stepwise transformation. Appl. Environ. Microbiol. 39: 274 276.
197. Yoshimatsu, T.,, K. Ozaki,, S. Shikata,, Y. Ohta,, K. Koike,, S. Kawai,, and S. Ito. 1990. Purification and characterization of alkaline endo-I,4- β-gIucanases from alkalophilic Bacillus sp. KSM-635. J. Gen. Microbiol. 136: 1973 1979.
198.Yuuki, T., T. Nomura, H. Tezuka, A. Tsuboi, H. Yama-gata, N. Tsukagoshi, and S. Udaka. 1985. Complete nucleotide sequence of a gene coding for heat- and pH-stable α-amylase of Bacillus licheniformis: comparison of the amino acid sequences of three bacterial liquefying α-amylases deduced from the DNA sequences. J. Biochem. 98: 11471156.
199. Zhou, J.,, T. Baba,, T. Takano,, S. Kobayoshl,, and Y. Aral. 1989. Nucleotide sequence of the maltotetraohydralase gene from Pseudomonas saccharophilia. FEBS Lett. 255: 37 41.
200. Zukowski, M. M., 1992. Production of commercially valuable products, p. 311 337. In R. H. Doi, and M. McGIoughlin (ed.), Biology of Bacilli: Applications to Industry. Butterworth-Heinemann, Boston.

Tables

Generic image for table
Table 1

Subtilisins obtained from plasmid-bearing strains

Citation: Ferrari E, Jarnagin A, Schmidt B. 1993. Commercial Production of Extracellular Enzymes, p 917-937. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch62

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error