Chapter 63 : Proteases

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Proteases, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap63-1.gif /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap63-2.gif


This chapter reviews the molecular biology and genetics of gram-positive endoproteases, focusing on proteases. Microbial endoproteases are generally classified into four categories based on their mechanisms of action. The genes for seven different extracellular proteases have been cloned and characterized in . Two proteases have been isolated from sporulating or stationary-phase cells of . The first-characterized and most abundant intracellular protease was a serine protease originally called intracellular serine protease (ISP); now called ISP-1. The activity of this enzyme increases dramatically 2 to 3 h after the onset of sporulation. From the large number of proteases described in various gram-positive bacterial species, this chapter deals with only those extracellular proteases from other gram-positive bacteria that have been most extensively studied and whose genes have been cloned and characterized. In summary, gram-positive bacteria have evolved the capacities to produce and secrete a remarkably large number of endoproteases. Most of these proteases are members of either the subtilisin family of serine proteases or the thermolysin family of metalloproteases.

Citation: Pero J, Sloma A. 1993. Proteases, p 939-952. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch63
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Genetic map of protease genes ( ), ( ), ( ), ( ), ( ), ( ), ( ), and ( ).

Citation: Pero J, Sloma A. 1993. Proteases, p 939-952. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch63
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Comparison of the amino acid sequences of five serine proteases: Vpr ( ), bacillopeptidase F (Bpr) ( ), Epr ( ), subtilisin (Apr) ( ), and ISP-1 ( ). Identical residues for all five proteins are enclosed in boxes. Asp, His, and Ser residues in the active site of subtilisin are marked with asterisks. Numbering of the amino acid residues for each protein is in parentheses. Reprinted from reference with permission.

Citation: Pero J, Sloma A. 1993. Proteases, p 939-952. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch63
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Nucleotide sequence of the subtilisin gene () promoter ( ). Sites of binding of different transition state regulatory proteins are indicated with brackets: AbrB ( ), Hpr ( ), and Sin ( ). Sites required for activation by SacU and SacQ are indicated by dashed lines ( ).

Citation: Pero J, Sloma A. 1993. Proteases, p 939-952. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch63
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Abakov, A. S.,, A. P. Bolotin,, L. G. Kolibaba,, A.. V. Sorokin,, T. M. Shemyakina,, M. Paberit,, K. Raik,, and A. Aaviksaar. 1990. Cloning and expression of the neutral protease gene of Bacillus brevis in Bacillus subtilis. Mol. Biol. 24: 806 813.
2. Amory, A.,, F. Kunst,, E. Aubert,, A. Klier,, and G. Rapoport. 1987. Characterization of the sacQ genes from Bacillus licheniformis and Bacillus subtilis. J. Bacteriol. 169: 324 333.
3. Arnaud, M.,, P. Glaser,, A. Vertes,, A. Danchin,, G. Rapoport,, and F. Kunst. Personal communication.
4. Awad, W. M., Jr.,, A. R. Soto,, S. Siegel,, W. E. Skiba,, G. G. Bemstrom,, and M. S. Ochoa. 1972. The proteolytic enzymes of the K-1 strain of Streptomyces griseus obtained from a commercial preparation (pronase). J. Biol. Chem. 247: 4144 4154.
5. Ballassa, G. 1969. Biochemical genetics of bacterial sporulation. Mol. Gen. Genet. 104: 73 103.
6. Band, L,, D. J. Henner,, and M. Ruppen. 1987. Construction and properties of an intracellular serine protease mutant of Bacillus subtilis. J. Bacteriol. 169: 444 446.
7. Bode, W.,, E. Papamokos,, and D. Musil. 1987. The high-resolution x-ray crystal structure of the complex formed between subtilisin Carlsberg and Eglin C, an elastase inhibitor from the leech Hirudo-Medicinalis. Eur. J. Biochem. 166: 673 692.
8. Bott, R. A.,, K. M. Ultsch,, T. Graycar,, B. Katz,, and S. Power. 1988. The three-dimensional structure of Bacillus amyloliquefaciens subtilisin at 1.8A and an analysis of the structural consequences of peroxide inactivation. J. Biol. Chem. 263: 7895 7906.
9. Boyer, H. W,, and B. C. Carlton. 1968. Production of two proteolytic enzymes by a tranformable strain of Bacillus subtilis. Arch. Biochem. Biophys. 128: 442 455.
10. Bruckner, R.,, O. Shoseyov,, and R. H. Dot. 1990. Multiple active forms of a novel serine protease from Bacillus subtilis. Mol. Gen. Genet. 221: 486 490.
11. Burnett, T. J.,, G. W. Shankweiler,, and J. H. Hageman. 1986. Activation of intracellular serine proteinase in Bacillus subtilis cells during sporulation. J. Bacteriol. 165: 139 145.
12. Butler, M. J.,, C. C. Davey,, P. Krygsman,, E. Walczyk,, and L. T. Malek. Cloning of genetic loci involved in endoprotease activity in S. lividans 66: a novel neutral protease gene with an adjacent divergent putative regulatory gene. Can. J. Microbiol., in press.
13. Chang, P. C,, T.-C. Kuo,, A. Tsugita,, and Y.-H. W. Lee. 1990. Extracellular metalloprotease gene of Streptomyces cacaoi: structure, nucleotide sequence and characterization of the cloned gene product. Gene 88: 87 95.
14. Chen, C. C,, and P. P. Cleary. 1990. Complete nucleotide sequence of the streptococcal C5a peptidase gene of Streptococcus pyogenes. J. Biol. Chem. 265: 3161 3167.
15. Colman, P. M.,, J. N. Jansonius,, and B. W. Matthews. 1972. The structure of thermolysin: an electron density map at 2.3 A resolution. J. Mol. Biol. 70: 701 724.
15a.. Dammann, T.,, and W. Wohlleben. 1992. A metalloprotease gene from Streptomyces coelicolor Muller and its transcriptional activator, a member of the LysR family. Mol. Microbiol. 6: 2267 2278.
15b.. Davall, S.,, G. Feller,, E. Narinx,, and C. Gerdsy. 1992. Sequence of the subtilisin-encoding gene from an antarctic psychrotroph. Bacillus TA41. Gene 119: 143 144.
16. Daza, A.,, J. A. Gil,, T. Vigal,, and J. F. Martin. 1990. Cloning and characterization of a gene of Streptomyces griseus that increases production of extracellular enzymes in several species of Streptomyces. Mol. Gen. Genet. 222: 384 392.
17. Daza, A.,, J. F. Martin,, T. Vigal,, and J. A. Gil. 1991. Analysis of the promoter region of saf, a Streptomyces griseus gene that increases production of extracellular enzymes. Gene 108: 63 71.
18. Delbaere, L. T. J.,, W. L. B. Hutcheon,, M. N. G. James,, and W. E. Thiessen. 1975. Tertiary structural differences between microbial serine proteases and pancreatic serine enzymes. Nature (London) 257: 758 763.
19. Drenth, J.,, W. G. J. Hoi,, J. N. Jansoius,, and R. Koekoek. 1972. Subtilisin Novo: the three-dimensional structure and its comparison with subtilisin BPN'. Eur. J. Biochem. 26: 177 181.
20. Egnell, P.,, and J.-I. Flock. 1991. The subtilisin Carlsberg pro-region is a membrane anchorage for two fusion proteins produced in Bacillus subtilis. Gene 97: 49 54.
20a.. Egnell, P.,, and J.-I. Flock. 1992. The autocatalytic processing of the subtilisin Carlsberg pro-region is independent of the primary structure of the cleavage site. Mol. Microbiol. 6: 1115 1119.
21. Fahnestock, S. R.,, and K. E. Fisher. 1987. Protease-deficient Bacillus subtilis host strains for production of staphylococcal protein A. Appl. Environ. Microbiol. 53: 379 384.
22. Ferrari, E.,, D. J. Henner,, M. Perego,, and J. A. Hoch. 1988. Transcription of Bacillus subtilis subtilisin and expression of subtilisin in sporulation mutants. J. Bacteriol. 170: 289 295.
23. Ferrari, E.,, S. M.,. H. Howard,, and J. A. Hoch. 1986. Effect of stage 0 sporulation mutations on subtilisin expression. J. Bacteriol. 166: 173 179.
24. Fujii, M.,, M. Takagi,, T. Imanaka,, and S. Alba. 1983. Molecular cloning of a thermostable neutral protease gene from Bacillus stearothermophilus in a vector plasmid and its expression in Bacillus stearothermophilus and Bacillus subtilis. J. Bacteriol. 154: 831 837.
25. Fujinaga, M.,, L. T. J. Delbaere,, G. D. Brayer,, and M. N. G. James. 1985. Refined structure of α-lytic protease at 1.7A resolution; analysis of hydrogen bonding and solvent structure. J. Mol. Biol. 183: 479 502.
26. Fukumoto, J.,, and J. Negoro. 1951. Crystallization of bacterial proteinase. Proc. Jpn. Acad. 27: 441 444.
27. Gaur, N. K.,, J. Oppenheim,, and I. Smith. 1991. The Bacillus subtilis sin gene, a regulator of alternate development processes, codes for a DNA-binding protein. J. Bacteriol. 173: 678 686.
28. Gels, A.,, W. Bockelmann,, and M. Teuber. 1985. Simultaneous extracting and purification of a cell wall-associated peptidase and β-casein specific protease from Streptococcus cremoris AC 1. Appl. Microbiol. Biotechnol. 23: 79 84.
29. Guntelberg, A. V.,, and M. Ottesen. 1952. Preparation of crystals containing the plakalbumin-forming enzyme from Bacillus subtilis. Nature (London) 170: 802.
30. Haandrlkman, A. J.,, J. Kok,, H. Laan,, S. Soemitro,, A. M. Ledeboer,, W. N. Konings,, and G. Venema. 1989. Identification of a gene required for maturation of an extracellular lactococcal serine proteinase. J. Bacteriol. 171: 2789 2794.
31. Haandrlkman, A. J.,, J. Kok,, and G. Venema. 1991. Lactococcal proteinase maturation protein PrtM is a lipoprotein. J. Bacteriol. 173: 4517 4525.
32. Haandrlkman, A. J.,, R. Meesters,, H. Laan,, W. N. Konings,, J. Kok,, and G. Venema. 1991. Processing of the lactococcal extracellular serine proteinase. Appl. Environ. Microbiol. 57: 1899 1904.
33. Hageman, J. H,, and B. C. Carlton. 1970. An enzymatic and immunological comparison of two proteases from a transformable Bacillus subtilis with the “subtilisins.” Arch. Biochem. Biophys. 139: 67 79.
34. Hartley, B. S. 1960. Proteolytic enzymes. Annu. Rev. Biochem. 29: 45 72.
35. Hastrup, S.,, S. Branner,, F. Norrls,, S. B. Petersen,, L. Norskov-Lauridsen,, V. J. Jensen,, and D. Aaslyng. 13 July 1989. PCT patent application WO 8906279.
36. Henderson, G.,, P. Krygsman,, C. Liu,, C. C. Davey,, and L. T. Malek. 1987. Characterization and structure of genes for proteases A and B from Streptomyces griseus. J. Bacteriol. 169: 3778 3784.
37. Henner, D. J.,, E. Ferrari,, M. Perego,, and J. A. Hoch. 1988. Location of the targets of the hpr-97, sacU32(Hy), and sacQ36(Hy) mutations in upstream regions of the subtilisin promoter. J. Bacteriol. 170: 296 300.
38. Henner, D. J.,, M. Yang,, and E. Ferrari. 1988. Localization of Bacillus subtilis sacU(Hy) mutations to two linked genes with similarities to the conserved procaryotic family of two-component signalling systems. J. Bacteriol. 170: 5102 5109.
39. Higerd, T. B.,, J. A. Hoch,, and J. Spizizen. 1972. Hyper-protease-producing mutants of Bacillus subtilis. J. Bacteriol. 112: 1026 1028.
40. Hoch, J. A. 1976. Genetics of bacterial sporulation. Adv. Genet. 18: 69 99.
41. Honjo, M.,, K. Manabe,, H. Shimade,, I. Mita,, A. Nakayama,, and Y. Furutani. 1984. Cloning and expression of the gene for neutral protease of Bacillus amyloliquefaciens in Bacillus subtilis. J. Biotechnol. 1: 265 277.
42. Honjo, M.,, A. Nakayama,, K. Fukazawa,, K. Kawamura,, K. Ando,, M. Horl,, and Y. Furutani. 1990. A novel Bacillus subtilis gene involved in negative control of sporulation and degradative-enzyme production. J. Bacteriol. 172: 1783 1790.
43. Ikemura, H.,, and M. Inouye. 1988. In vitro processing of pro-subtilisin produced in Escherichia coli. J. Biol. Chem. 263: 12959 12963.
44. Ikemura, H.,, H. Takagi,, and M. Inouye. 1987. Requirement of pro-sequence for the production of active subtilisin E in Escherichia coli. J. Biol. Chem. 262: 7859 7864.
44a.. Ito, K.,, S. Udaka,, and H. Yamagata. 1992. Cloning, characterization, and inactivation of the Bacillus brevis Ion gene. J. Bacteriol. 174: 2281 2287.
45. Jacobs, M.,, M. Eliasson,, \ Uhlen,, and J.-I. Flock. 1985. Cloning, sequencing and expression of subtilisin Carlsberg from Bacillus licheniformis. Nucleic Acids Res. 13: 8913 8926.
46. James, M. B. G.,, A. R. Sielecki,, G. D. Brayer,, L. T. J. Delbaere,, and C. A. Bauer. 1980. Structures of product and inhibitor complexes of Streptomyces griseus protease A at 1.8 Å resolution. J. Mol. Biol. 144: 43 88.
47. Jurasek, L.,, P. Johnson,, R. W. Olafson,, and L. B. Stnillie. 1971. An improved fractionation system for pronase on CM-Sephadex. Can. J. Biochem. 49: 1195 1201.
48. Kalllo, P. T.,, J. E. Fagelson,, J. A. Hoch,, and M. A. Strauch. 1991. The transition state regulator Hpr of Bacillus subtilis is a DNA-binding protein. J. Biol. Chem. 266: 13411 13417.
49. Kaneko, R.,, X. Koyama,, Y.-C. Tsai,, R.-Y. Juang,, K. Yoda,, and M. Yamasaki. 1989. Molecular cloning of the structural gene for alkaline elastase YaB, a new subtilisin produced by an alkalophilic Bacillus strain. J. Bacteriol. 171: 5232 5236.
50. Kawamura, F.,, and R. H. Doi. 1984. Construction of a Bacillus subtilis double mutant deficient in extracellular alkaline and neutral proteases. J. Bacteriol. 160: 442 444.
51. Keay, L. 1969. Neutral proteases of the genes Bacillus. Biochem. Biophys. Res. Commun. 36: 257 265.
52. Kerjan, P.,, E. Keryer,, and J. Szulmajster. 1979. Characterization of a thermosensitive sporulation mutant of Bacillus subtilis affected in the structural gene of an intracellular protease. Eur. J. Biochem. 98: 353 362.
53. Kiwaki, M.,, H. Ikemura,, M. Shimizu-Kadota,, and A. Hirashima. 1989. Molecular characterization of a cell wall-associated proteinase gene from Streptococcus lactis NCD0763. Mol. Microbiol. 3: 359 369.
54. Koide, Y.,, A. Xakamura,, T. Uozumi,, and T. Beppu. 1986. Cloning and sequencing of the major intracellular serine protease gene of Bacillus subtilis. J. Bacteriol. 167: 110 116.
55. Kok, J. 1990. Genetics of the proteolytic system of lactic acid bacteria. FEMS Microbiol. Rev. 87: 15 42.
56. Kok, J.,, D. Hill,, A. J. Haandrikman,, M. J. B. deReuver,, H. Laan,, and G. Venema. 1988. Deletion analysis of the proteinase gene of Streptococcus cremoris Wg2. Appl. Environ. Microbiol. 54: 239 244.
57. Kok, J.,, K. J. Leenhouts,, A. J. Haandrlkman,, A. M. Ledeboer,, and G. Venema. 1988. Nucleotide sequence of the cell wall proteinase gene of Streptococcus cremoris Wg2. Appl. Environ. Microbiol. 54: 231 238.
58. Kok, J.,, J. M. van Dijl,, J. M,. B. M. van der Vossen,, and G. Venema. 1985. Cloning and expression of a Streptococcus cremoris proteinase in Bacillus subtilis and Streptococcus lactis. Appl. Environ. Microbiol. 50: 94 101.
59. Kubo, T.,, and T. Imanaka. 1988. Cloning and nucleotide sequence of the highly thermostable neutral protease gene from Bacillus stearothermophilus. J. Gen. Microbiol. 134: 1883 1892.
60. Kunst, F.,, M. Debarbouille,, T. Msadek,, M. Young,, C. Mauel,, D. Karamata,, A. Klier,, G. Rappoport,, and R. Dedonder. 1988. Deduced polypeptides encoded by the Bacillus subtilis sacU locus share homology with two-component sensor-regulator systems. J. Bacteriol. 170: 5093 5101.
61. Lampel, J. S.,, J. S. Aphale,, K. A. Lampel,, and W. R. Strohl. 1992. Cloning and sequencing of a gene encoding a novel extracellular neutral proteinase from Streptomyces sp. strain C5 and expression of the gene in Streptomyces lividans 1326. J. Bacteriol. 174: 2797 2808.
62. Lerner, C. G.,, T. Kobayashi,, and M. Inouye. 1990. Isolation of subtilisin pro-sequence mutations that affect formation of active protease by localized random polymerase chain reaction mutagenesis. J. Biol. Chem. 265: 20085 20086.
63. Lichenstein, H. S.,, L. A. Busse,, G. A. Smith,, L. O. Narbl,, M. O. McGinley,, M. F. Rohde,, J. L. Katzowitz,, and M. M. Zukowski. 1992. Cloning and characterization of a gene encoding extracellular metalloprotease from Streptomyces lividans. Gene 111: 125 130.
64. Mamas, S.,, and J. Millet. 1975. Purification et propriétés d'une estérase excrétée pendant la sporulation de Bacillus subtilis. Biochimie 57: 9 16.
65. Mandelstam, J.,, and W. M. Waites. 1968. Sporulation in Bacillus subtilis: the role of exoprotease. Biochem. J. 109: 793 801.
66. Mantsala, P.,, and H. Zalkin. 1980. Extracellular and membrane-bound proteases from Bacillus subtilis. J. Bacteriol. 141: 493 501.
67. Markland, F. S.,, and E. L. Smith. 1967. Subtilisin BPN' VII. Isolation of cyanogen bromide peptides and the complete amino acid sequence. J. Biol. Chem. 242: 5198 5211.
68. Markland, F. S., Jr.,, and E. L. Smith,. 1971. Subtilisins: primary structure, chemical and physical properties, p. 561 608. In P. D. Boyer (ed.), The Enzymes. Academic Press, Inc., New York.
69. Matthews, B. W.,, P. M. Colman,, J. N. Jansonius,, K. Titani,, K. A. Walsh,, and H. Neurath. 1972. Structure of thermolysin. Nature (London) New Biol. 238: 41 43.
70. Matthews, B. W.,, J. N. Jansonius,, P. M. Colman,, B. P. Schoenborn,, and D. Dupourque. 1972. Three-dimensional structure of thermolysin. Nature (London) New Biol. 238: 37 41.
71. McConn, J. D.,, D. Tsuru,, and K. T. Yasunobu. 1964. Bacillus subtilis neutral proteinase. J. Biol. Chem. 239: 3706 3715.
72. Millet, J. 1969. Characterization of proteinases excreted by Bacillus subtilis Marburg strain during sporulation. J. Appl. Bacteriol. 33: 207 219.
73. Millet, J. 1977. Characterization of a protein inhibitor of intracellular protease from Bacillus subtilis. FEBS Lett. 74: 59 61.
74. Millet, J.,, and J. Gregoire. 1979. Characterization of an inhibitor of the intracellular protease from Bacillus subtilis. Biochimie 61: 385 391.
75. Morihara, K. 1974. Comparative specificity of microbial proteinases. Adv. Enzymol. 41: 179 243.
76. Narahashi, Y. 1972. Pronase. Methods Enzymol. 19: 651 664.
77. Nishino, T.,, and S. Murao. 1986. Interaction of proteinaceous protease inhibitor of Bacillus subtilis with intracellular protease from the same strain. Agric. Biol. Chem. 50: 3065 3070.
78. Nishino, T.,, Y. Shimizu,, K. Fukahara,, and S. Murao. 1986. Isolation and characterization of a proteinaceous protease inhibitor from Bacillus subtilis. Agric. Biol. Chem. 50: 3059 3064.
79. Nishiya, U.,, and T. Imanaka. 1990. Cloning and nucleotide sequences of the Bacillus stearothermophilus neutral protease gene and its transcriptional activator gene. J. Bacteriol. 172: 4861 4869.
80. Ohta, Y.,, H. Hojo,, S. Aimoto,, T. Kobayashi,, X. Zhu,, F. Jordan,, and M. Inouye. 1991. Pro-peptide as an inter-molecular chaperone: renaturation of denatured subtilisin E with a synthetic pro-peptide. Mol. Microbiol. 5: 1507 1510.
81. Olafson, R. W.,, L. Jurasek,, M. R. Carpenter,, and L. B. Smillie. 1975. Amino acid sequence of Streptomyces griseus trypsin. Cyanogen bromide fragments and complete sequence. Biochemistry 14: 1168 1177.
82. Olaltan, S. A.,, R. J. DeLange,, and E. L. Smith. 1968. The structure of subtilisin Novo. J. Biol. Chem. 243: 5296 5301.
83. Pang, A. S.-H.,, S. Nathoo,, and S.-L. Wong. 1991. Cloning and characterization of a pair of novel genes that regulate production of extracellular enzymes in Bacillus subtilis. J. Bacteriol. 173: 46 54.
84. Pauptit, R. A.,, R. Karlsson,, D. Picot,, J. A. Jenkins,, A.-S. Nlklaus-Reimer,, and J. N. Jansonius. 1988. Crystal structure of neutral protease from Bacillus cereus refined at 3.0 Å resolution and comparison with the homologous but more thermostable enzyme thermolysin. J. Mol. Biol. 199: 525 537.
85. Perego, M.,, and J. A. Hoch. 1988. Sequence analysis and regulation of the hpr locus, a regulatory gene for protease production and sporulation in Bacillus subtilis. J. Bacteriol. 170: 2560 2567.
86. Piggot, P. J.,, and J. G. Coote. 1976. Genetic aspects of bacterial endospore formation. Bacteriol. Rev. 40: 908 962.
87. Power, S. D.,, R. M. Adams,, and J. A. Wells. 1986. Secretion and autoproteolytic maturation of subtilisin. Proc. Natl. Acad. Sci. USA 83: 3096 3100.
88. Prestidge, L.,, V. Gage,, and J. Spizizen. 1971. Protease activities during the course of sporulation in Bacillus subtilis. J. Bacteriol. 107: 815 823.
89. Priest, F. G. 1977. Extracellular enzyme synthesis in the genus Bacillus. Bacteriol. Rev. 41: 711 753.
90. Rappaport, H. P.,, W. S. Riggsby,, and D. A. Holden. 1965. A Bacillus subtilis proteinase. I. Production, purification and characterization of a proteinase from a transformable strain of Bacillus subtilis. J. Biol. Chem. 240: 78 86.
91. Read, R. J.,, and M. N. G. James. 1988. Refined crystal structure of Streptomyces griseus trypsin at 1.7 Å resolution. J. Mol. Biol. 200: 523 551.
92. Reysset, G.,, and J. Millet. 1972. Characterization of an intracellular protease in Bacillus subtilis during sporulation. Biochem. Biophys. Res. Commun. 49: 328 334.
93. Roitsch, C. A.,, and J. H. Hageman. 1983. Bacillopeptidase F: two forms of a glycoprotein serine protease from Bacillus subtilis 168. J. Bacteriol. 155: 145 152.
94. Rufo, G. A., Jr.,, B. J. Sullivan,, A. Sloma,, and J. Pero. 1990. Isolation and characterization of a novel extracellular metalloprotease from Bacillus subtilis. J. Bacteriol. 172: 1019 1023.
95. Ruppen, M. E.,, G. L. VanAlstine,, and L. Band. 1988. Control of intracellular serine protease expression in Bacillus subtilis. J. Bacteriol. 170: 136 140.
96. Sastry, K. J.,, O. P. Srivastava,, J. Millet,, P. C. Fitz-James,, and A. I. Aronson. 1983. Characterization of Bacillus subtilis mutants with a temperature-sensitive intracellular protease. J. Bacteriol. 153: 511 519.
97. Schulein, R.,, J. Kreft,, S. Gonski,, and W. Goebel. 1991. Preprosubtilisin Carlsberg processing and secretion is blocked after deletion of amino acids 97-101 in the mature part of the enzyme. Mol. Gen. Genet. 227: 137 143.
98. Setlow, P. 1976. Purification and properties of a specific proteolytic enzyme present in spores of Bacillus megaterium. J. Biol. Chem. 251: 7853 7862.
99. Setlow, P. 1988. Small, acid-soluble spore proteins of Bacillus species: structure, synthesis, genetics, function, and their degradation. Annu. Rev. Microbiol. 42: 319 338.
100. Sheehan, S. M.,, and R. L. Switzer. 1990. Intracellular serine protease 1 of Bacillus subtilis is formed in vivo as an unprocessed, active protease in stationary cells. J. Bacteriol. 172: 473 476.
101. Shen, W.F.,, T. S. Fletcher,, and C. Largman. 1987. Primary structure of human pancreatic protease E determined by sequence analysis of the cloned mRNA. Biochemistry 26: 3447 3452.
l0la.. Shiga, Y.,, K. Hasegawa,, A. Tsuboi,, H. Yamagata,, and S. Udaka. 1992. Characterization of an extracellular protease inhibitor of Bacillus brevis HPD31 and nucleotide sequence of the corresponding gene. Appl. Environ. Microbiol. 58: 525 531.
102. Shimada, H.,, M. Honjo,, I. Mita,, A. Nakayama,, A. Akaoka,, K. Manabe,, and Y. Furutani. 1985. The nucleotide sequence and some properties of the neutral protease gene of Bacillus amyloliquefaciens. J. Biotechnol. 2: 75 85.
103. Sidler, W.,, E. Niederer,, F. Suter,, and H. Zuber. 1986. The primary structure of Bacillus cereus neutral proteinase and comparison with thermolysin and Bacillus subtilis neutral proteinase. Biol. Chem. Hoppe-Seyler 367: 643 657.
104. Siezen, R. J.,, W. M. deVos,, J. A. M. Leunissen,, and B. W. Dijkstra. 1991. Homology modelling and protein engineering strategy of subtiliases, the family of subtilisin-like serine proteinases. Protein Eng. 4: 719 737.
105. Sloma, A.,, A. Ally,, D. Ally,, and J. Pero. 1988. Gene encoding a minor extracellular protease in Bacillus subtilis. J. Bacteriol. 170: 5557 5563.
106. Sloma, A.,, C. F. Rudolph,, G. A. Rufo, Jr.,, B. J. Sullivan,, K. A. Theriault,, D. Ally,, and J. Pero. 1990. Gene encoding a novel extracellular metalloprotease in Bacillus subtilis. J. Bacteriol. 172: 1024 1029.
107. Stoma,, G. A. Rufo, Jr.,, C. F. Rudolph,, B. J. Sullivan,, K. A. Theriault,, and J. Pero. 1990. Bacillopeptidase F of Bacillus subtilis: purification of the protein and cloning of the gene. J. Bacteriol. 172: 1470 1477. (Erratum, 172: 5520 5521.)
108. Sloma, A.,, G. A. Rufo, Jr.,, K. A. Theriault,, M. Dwyer,, S. W. Wilson,, and J. Pero. 1991. Cloning and characterization of the gene for an additional extracellular serine protease ol Bacillus subtilis. J. Bacteriol. 173: 6889 6895.
109. Smith, E. H.,, F. S. Markland,, C. B. Kasper,, R. J. Delange,, M. Landon,, and W. H. Evans. 1966. The complete amino acid sequence of two types of subtilisin, BPN' and Carlsberg. J. Biol. Chem. 214: 5974 5976.
110. Smith, E. L.,, R. J. DeLange,, W. H. Evans,, M. Landen,, and F. S. Markland. 1968. Subtilisin Carlsberg V.-The complete sequence; comparison with subtilisin BPN'; evolutionary relationships. J. Biol. Chem. 243: 2184 2191.
111. Sobek, H.,, H. J. Hecht,, B. Hofmann,, W. Aehle,, and D. Schomburg. 1990. Crystal structure of an alkaline protease from Bacillus alcalophilus at 2.4 Å resolution. FEBS Lett. 274: 57 60.
112. Srivastava, O. P.,, and A. I. Aronson. 1981. Isolation and characterization of a unique protease from sporulating cells of Bacillus subtilis. Arch. Microbiol. 129: 227 232.
113. Stahl, M. L.,, and E. Ferrari. 1984. Replacement of the Bacillus subtilis subtilisin structural gene with an in vitro-derived deletion mutation. J. Bacteriol. 158: 411 418.
113a.. Stark, W.,, R. A. Pauptit,, K. S. Wilson,, and J. N. Jansonius. 1992. The structure of neutral protease from Bacillus cereus at 0.2 nm resolution. Eur. J. Biochem. 207: 781 791.
114. Steinmetz, M.,, F. Kurst,, and R. Dedonder. 1976. Mapping of mutations affecting synthesis of exocellular enzymes in Bacillus subtilis. Mol. Gen. Genet. 148: 281 285.
115. Stragier, P. Personal communication.
116. Strauch, M. A.,, G. B. Spiegelman,, M. Perego,, W. C. Johnson,, D. Burbulys,, and J. A. Hoch. 1989. The transition state transcription regulator abrB of Bacillus subtilis is a DNA binding protein. EMBO J. 8: 1615 1621.
117. Strongin, A.,, D. I. Ya,, I. A. Gorodetsky,, V. V. Kuznetsova,, Z. T. Yanonis,, Z. T. Abramov,, L. P. Belyanova,, L. A. Baratova,, and V. M. Stepanov. 1979. Intracellular serine protease of Bacillus subtilis strain Marburg 168. Biochem. J. 179: 333 339.
118. Strongin, A. Y.,, L. S. Izotaova,, Z. T. Abramov,, D. I. Gorodetsky,, L. M. Ermakova,, L. A. Baratova,, L. P. Belyanova,, and V. M. Stepanov. 1978. Intracellular serine protease of Bacillus subtilis: sequence homology with extracellular subtilisins. J. Bacteriol. 133: 1401 1411.
119. Sussman, M. D.,, and P. Setlow. 1991. Cloning, nucleotide sequence, and regulation of the Bacillus subtilis gpr gene, which codes for the protease that initiates degradation of small, acid-soluble proteins during spore germination. J. Bacteriol. 173: 291 300.
120. Takagi, M.,, and T. Imanaka. 1989. Role of the pre-pro-region of neutral protease in secretion in Bacillus subtilis. J. Ferment. Bioeng. 67: 71 76.
121. Takagi, M.,, T. Imanaka,, and S. Alba. 1985. Nucleotide sequence and promoter region for the neutral protease gene from Bacillus stearothermophilus. J. Bacteriol. 163: 824 831.
122. Takekawa, S.,, H. Uozumi,, N. Tsukagoshi,, and S. Udaka. 1991. Proteases involved in generation of β- and α-amylases from a large amylase precursor in Bacillus polymyxa. J. Bacteriol. 173: 6820 6825.
123. Tanaka, T,, and M. Kawata. 1988. Cloning and characterization of Bacillus subtilis iep, which has positive and negative effects on production of extracellular proteases. J. Bacteriol. 170: 3593 3600.
124. Tanaka, T.,, M. Kawata,, Y. Nagami,, and H. Uchiyama. 1987. prtR enhances the mRNA level of the Bacillus subtilis extracellular proteases. J. Bacteriol. 169: 3044 3055.
125. Thomas, T. D.,, and G. G. Pritchard. 1987. Proteolytic enzymes of dairy starter cultures. FEMS Microbiol. Rev. 46: 245 268.
126. Titani, K.,, M. A. Hermodson,, L. H. Ericsson,, K. A. Walsh,, and H. Neurath. 1972. Amino-acid sequence of thermolysin. Nature (London) New Biol. 238: 35 37.
127. Toma, S.,, M. D. Bue,, A. Pirola,, and G. Grandi. 1986. nprRl and nprR2 regulatory regions for neutral protease expression in Bacillus subtilis. J. Bacteriol. 167: 740 743.
128. Tran, L.,, X.-C. Wu,, and S.-L. Wong. 1991. Cloning and expression of a novel protease gene encoding an extracellular neutral protease from Bacillus subtilis. J. Bacteriol. 173: 6364 6372.
129. Trowsdale, J.,, S. M.,. H. Chen,, and J. A. Hoch. 1979. Genetic analysis of a class of polymyxin resistant partial revertants of stage 0 sporulation mutants of Bacillus subtilis: map of the chromosome region near the origin of replication. Mol. Gen. Genet. 173: 61 70.
130. Tsuru, D.,, J. D. McConn,, and K. Yasunobu. 1964. Bacillus subtilis neutral proteinase. Some physical properties. J. Biol. Chem. 240: 2415 2420.
131. Uehara, H.,, K. Yamane,, and B. Maruo. 1979. Thermosensitive, extracellular neutral proteases in Bacillus subtilis: isolation, characterization, and genetics. J. Bacteriol. 139: 583 590.
132. van den Burg, B.,, H. G. Enequist,, M. E. van der Haar,, V. G. H. Eijsink,, B. K. Stulp,, and G. Venema. 1991. A highly thermostable neutral protease from Bacillus caldolyticus: cloning and expression of the gene in Bacillus subtilis and characterization of the gene product. J. Bacteriol. 173: 4107 4115.
133. vanderLaan, J.C,, G. Gerritse,, L. J. S. M. Mulleners,, R. A. C. van der Hoek,, and W. J. Quax. 1991. Cloning, characterization, and multiple chromosomal integration of a Bacillus alkaline protease gene. Appl. Environ. Microbiol. 57: 901 909.
133a.. van der Laan, J. C,, A. V. Teplyakov,, H. Kelders,, K. H. Kalk,, O. Misset,, L. J. S. M. Mulleners,, and D. W. Dijkstra. 1992. Crystal structure of the high-alkaline serine protease-PB92 from Bacillus alcalophilus. Protein Eng. 5: 405 411.
134. Vasantha, N.,, L. D. Thompson,, C. Rhodes,, C. Banner,, J. Nagle,, and D. Filpula. 1984. Genes for alkaline protease and neutral protease from Bacillus amyloliquefaciens contain a large open reading frame between the regions coding for signal sequence and mature protein. J. Bacteriol. 159: 811 819.
135. Visser, S.,, F. A. Exterkate,, C. J. Slangen,, and G. J. C. M. de Veer. 1986. Comparative study of action of cell wall proteinases from various strains of Streptococcus cremoris on bovine α si-, β-, and к-casein. Appl. Environ. Microbiol. 52: 1162 1166.
136. Vos, P.,, G. Simons,, R. J. Siezen,, and W. M. de Vos. 1989. Primary structure and organization of the gene for a procaryotic, cell envelope-located serine proteinase. J. Biol. Chem. 264: 13579 13585.
137. Vos, P.,, M. vanAsseldonk,, F. vanJeveren,, R. Siezen,, G. Simons,, and W. M. de Vos. 1989. A maturation protein is essential for production of active forms of Lactococcus lactis SK11 serine proteinase located in or secreted from the cell envelope. J. Bacteriol. 171: 2795 2802.
138. Wagner, F. W., 1986. 0, p. 17 38. In M. J. Dolling (ed.), Plant Proteolytic Enzymes, vol. 1. CRC Press, Inc., Boca Raton, Fla.
139. Wandersman, C. 1990. Secretion, processing and activation of bacterial extracellular proteases. Mol. Microbiol 3: 1825 1831.
140. Wang, L.-F.,, R. Bruckner,, and R. H. Doi. 1989. Construction of a Bacillus subtilis mutant-deficient in three extracellular proteases. J. Gen. Appl. Microbiol. 35: 487 492.
141. Wang, L.-F.,, and R. H. Doi. 1990. Complex character of senS, a novel gene regulating expression of extracellular-protein genes of Bacillus subtilis. J. Bacteriol. 172: 1939 1947.
142. Wells, J. A.,, E. Ferrari,, D. J. Henner,, D. A. Estell,, and E. Y. Chen. 1983. Cloning, sequencing, and secretion of Bacillus amyloliquefaciens subtilisin in Bacillus subtilis. Nucleic Acids Res. 11: 7911 7925.
143. Wong, S.-L.,, and R. H. Doi. 1986. Determination of the signal peptidase cleavage site in the preprosubtilisin of Bacillus subtilis. J. Biol. Chem. 261: 10176 10181.
144. Wong, S.-L.,, C. W. Price,, D. S. Goldfarb,, and R. H. Doi. 1984. The subtilisin E gene of Bacillus subtilis is transcribed from a σ 37 promoter in vivo. Proc. Natl. Acad. Sci. USA 81: 1184 1188.
145. Wright, C.S.,, R. A. Alden,andJ.Krant. 1969. Structure of subtilisin BPN' at 2.5 A resolution. Nature (London) 221: 235 242.
146. Wu, X.-C,, W. Lee,, L. Tran,, and S.-L. Wong. 1991. Engineering a Bacillus subtilis expression-secretion system with a strain deficient in six extracellular proteases. J. Bacteriol. 173: 4952 4958.
147. Wu, X.-C,, S. Nathoo,, A. S.-H. Pang,, T. Carne,, and S.-L. Wong. 1990. Cloning, genetic organization, and characterization of a structural gene encoding bacillopeptidase F from Bacillus subtilis. J. Biol. Chem. 265: 6845 6850.
148. Yang, M L,, E. Ferrari,, E. Chen,, and D. J. Henner. 1986. Identification of the pleiotropic sacQ gene of Bacillus subtilis. J. Bacteriol. 166: 113 119.
149. Yang, M.,, H. Shimotsu,, E. Ferrari,, and D. J. Henner. 1987. Characterization and mapping of the Bacillus subtilis prtR gene. J. Bacteriol. 169: 434 437.
150. Yang, M. Y.,, E. Ferrari,, and D. J. Henner. 1984. Cloning of the neutral protease gene of and use of the cloned gene to create an in vitro-derived deletion mutation. J. Bacteriol. 160: 15 21.
151. Yoshimoto, T.,, H. Oyama,, T. Honda,, H. Tone,, T. Takeshlta,, T. Kamlyama,, and D. Tsuru. 1988. Cloning and expression of subtilisin amylosacchariticus gene. J. Biochem. 103: 1060 1065.
152. Yoshimoto, T.,, H. Oyama,, T. Takeshlta,, H. Higashi,, S. L. Xu,, and D. Tsuru. 1990. Nucleotide sequence of the neutral protease gene from Bacillus subtilis var. amylosacchariticus. J. Ferment. Bioeng. 70: 370 375.
153. Zhu, X.,, Y. Ohta,, F. Jordan,, and M. Inouye. 1989. Pro-sequence of subtilisin can guide the refolding of denatured subtilisin in an intermolecular process. Nature (London) 339: 483 484.
154. Ziegler, R. J.,, A. H. Ally,, D. S. Ally,, and G. A. Hintermann. Unpublished data.
155. Zukowski, M.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error