1887

Chapter 2 : Two-Component Signal Transduction and Chemotaxis

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Two-Component Signal Transduction and Chemotaxis, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818395/9781555813017_Chap02-1.gif /docserver/preview/fulltext/10.1128/9781555818395/9781555813017_Chap02-2.gif

Abstract:

This chapter provides a review of the architecture and structures of histidine kinases (HKs) and response regulators (RRs) and a description of a well-characterized two component system, the bacterial chemotaxis signaling pathway. In addition, the potential of two-component systems as drug targets and the progress that has been made with inhibitor design and development are discussed. Two-component signal transduction systems are structured around two conserved proteins: an HK and an RR. An important area of research focuses on understanding how phosphorylation of the conserved regulatory domain affects the activities of the structurally and functionally diverse effector domains. Chemotaxis proteins were among the first HK and RRs for which biochemical activities were defined and for which three-dimensional structures were determined. In the enteric bacterium , the chemotaxis signaling pathway controls the direction of flagellar rotation; counterclockwise flagellar rotation produces smooth-swimming behavior, and clockwise rotation produces tumbling, allowing reorientation. CheB, which demethylates the chemotaxis receptors, is the primary locus of regulation. The emergence of multiple drug resistance is an increasing problem. The chapter discusses several classes of two-component systems that are attractive drug targets. Two-component regulatory systems are involved in many aspects of motility, including the regulation of expression of genes encoding the motility apparatus and chemotaxis. The well-conserved CheA-CheY-CheB components that mediate chemotaxis are discussed. The chapter describes the results of chemical library screening and initial attempts at rational design of inhibitors.

Citation: Lubetsky J, Stock A. 2005. Two-Component Signal Transduction and Chemotaxis, p 17-36. In Waksman G, Caparon M, Hultgren S (ed), Structural Biology of Bacterial Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555818395.ch2
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Schematic diagram of bacterial chemotaxis signal transduction. External stimuli trigger changes in protein modifications and protein-protein interactions that lead to behavioral responses generated by the flagellar motors, as described in the text. The proteins present in the chemotaxis system are shown as circles. CheC, CheD, and CheV (squares) are absent in but are present in a large number of other bacteria.

Citation: Lubetsky J, Stock A. 2005. Two-Component Signal Transduction and Chemotaxis, p 17-36. In Waksman G, Caparon M, Hultgren S (ed), Structural Biology of Bacterial Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555818395.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818395.chap2
1. Anand, G. S.,, P. N. Goudreau,, and A. M. Stock. 1998. Activation of methylesterase CheB: evidence of a dual role for the regulatory domain. Biochemistry 37: 14038 14047.
2. Anand, G. S.,, and A. M. Stock. 2002. Kinetic basis for the stimulatory effect of phosphorylation on the methylesterase activity of CheB. Biochemistry 41: 6752 6760.
3. Baikalov, I.,, I. Schröder,, M. Kaczor-Grzeskowiak,, D. Cascio,, R. P. Gunsalus,, and R. E. Dickerson. 1998. NarL dimerization? Suggestive evidence from a new crystal form. Biochemistry 37: 3665 3676.
4. Baikalov, I.,, I. Schröder,, M. Kaczor-Grzeskowiak,, K. Grzeskowiak,, R. P. Gunsalus,, and R. E. Dickerson. 1996. Structure of the Escherichia coli response regulator NarL. Biochemistry 35: 11053 11061.
5. Barrett, J. F.,, R. M. Goldschmidt,, L. E. Lawrence,, B. Foleno,, R. Chen,, J. P. Demers,, S. Johnson,, R. Kanojia,, J. Fernandez,, J. Bernstein,, L. Licata,, A. Donetz,, S. Huang,, D. J. Hlasta,, M. J. Macielag,, K. Ohemeng,, R. Frechette,, M. B. Frosco,, D. H. Klaubert,, J. M. Whiteley,, L. Wang,, and J. A. Hoch. 1998. Antibacterial agents that inhibit two-component signal transduction systems. Proc. Natl. Acad. Sci. USA 95: 5317 5322.
6. Barrett, J. F.,, and J. A. Hoch. 1998. Two-component signal transduction as a target for microbial anti-infective therapy. Antimicrob. Agents Chemother. 42: 1529 1536.
7. Beier, D.,, and R. Frank. 2000. Molecular characterization of two-component systems of Helicobacter pylori. J. Bacteriol. 182: 2068 2076.
8. Besant, P. G.,, M. V. Lasker,, C. D. Bui,, and C. W. Turck. 2002. Inhibition of branched-chain alpha-keto acid dehydrogenase kinase and Sln1 yeast histidine kinase by the antifungal antibiotic radicicol. Mol. Pharmacol. 62: 289 296.
9. Bilwes, A. M.,, L. A. Alex,, B. R. Crane,, and M. I. Simon. 1999. Structure of CheA, a signal-transducing histidine kinase. Cell 96: 131 141.
10. Bilwes, A. M.,, C. M. Quezada,, L. R. Croal,, B. R. Crane,, and M. I. Simon. 2001. Nucleotide binding by the histidine kinase CheA. Nat. Struct. Biol. 8: 353 360.
11. Birck, C.,, L. Mourey,, P. Gouet,, B. Fabry,, J. Schumacher,, P. Rousseau,, D. Kahn,, and J.-P. Samama. 1999. Conformational changes induced by phosphorylation of the FixJ receiver domain. Struct. Fold. Des. 7: 1505 1515.
12. Boukhvalova, M.,, R. VanBruggen,, and R. C. Stewart. 2002. CheA kinase and chemoreceptor interaction surfaces on CheW. J. Biol. Chem. 277: 23596 23603.
13. Bourret, R. B.,, and A. M. Stock. 2002. Molecular information processing: lessons from bacterial chemotaxis. J. Biol. Chem. 277: 9625 9628.
14. Bren, A.,, and M. Eisenbach. 2000. How signals are heard during bacterial chemotaxis: protein-protein interactions in sensory signal propagation. J. Bacteriol. 182: 6865 6873.
15. Buckler, D. R.,, Y. Zhou,, and A. M. Stock. 2002. Evidence of intradomain and interdomain flexibility in an OmpR/PhoB homolog from Thermotoga maritima. Structure 10: 153 164.
16. Cai, S. J.,, A. Khorchid,, M. Ikura,, and M. Inouye. 2003. Probing catalytically essential domain orientation in histidine kinase EnvZ by targeted disulfide crosslinking. J. Mol. Biol. 328: 409 418.
17. Chang, C.,, and R. C. Stewart. 1998. The two-component system. Regulation of diverse signaling pathways in prokaryotes and eukaryotes. Plant Physiol. 117: 723 731.
18. Cho, H. S.,, S. Y. Lee,, D. Yan,, X. Pan,, J. S. Parkinson,, S. Kustu,, D. E. Wemmer,, and J. G. Pelton. 2000. NMR structure of activated CheY. J. Mol. Biol. 297: 543 551.
19. Da Re, S.,, J. Schumacher,, P. Rousseau,, J. Fourment,, C. Ebel,, and D. Kahn. 1999. Phosphorylation-induced dimerization of the FixJ receiver domain. Mol. Microbiol. 34: 504 511.
20. Djordjevic, S.,, P. N. Goudreau,, Q. Xu,, A. M. Stock,, and A. H. West. 1998. Structural basis for methylesterase CheB regulation by a phosphorylation-activated domain. Proc. Natl. Acad. Sci. USA 95: 1381 1386.
21. Djordjevic, S.,, and A. M. Stock. 1998. Chemotaxis receptor recognition by methyltransferase CheR. Nat. Struct. Biol. 5: 446 450.
22. Djordjevic, S.,, and A. M. Stock. 1997. Crystal structure of the chemotaxis receptor methyltransferase CheR suggests a conserved structural motif for binding S-adenosylmethionine. Structure 5: 545 558.
23. Domagala, J. M.,, D. Alessi,, M. Cummings,, S. Gracheck,, L. Huang,, M. Huband,, G. Johnson,, E. Olson,, M. Shapiro,, R. Singh,, Y. Song,, R. Van Bogelen,, D. Vo,, and S. Wold. 1998. Bacterial two-component signalling as a therapeutic target in drug design. Inhibition of NRII by the diphenolic methanes (bisphenols). Adv. Exp. Med. Biol. 456: 269 286.
24. Ellison, D. W.,, and W. R. McCleary. 2000. The unphosphorylated receiver domain of PhoB silences the activity of its output domain. J. Bacteriol. 182: 6592 6597.
25. Fabret, C.,, and J. A. Hoch. 1998. A two-component signal transduction system essential for growth of Bacillus subtilis: implications for anti-infective therapy. J. Bacteriol. 180: 6375 6383.
26. Falke, J. J.,, and G. L. Hazelbauer. 2001. Transmembrane signaling in bacterial chemoreceptors. Trends Biochem. Sci. 26: 257 265.
27. Feng, J.,, M. R. Atkinson,, W. McCleary,, J. B. Stock,, B. L. Wanner,, and A. J. Ninfa. 1992. Role of phosphorylated metabolic intermediates in the regulation of glutamine synthetase synthesis in Escherichia coli. J. Bacteriol. 174: 6061 6070.
28. Fiedler, U.,, and V. Weiss. 1995. A common switch in activation of the response regulators NtrC and PhoB: phosphorylation induces dimerization of the receiver modules. EMBO J. 14: 3696 3705.
29. Fisher, S. L.,, W. Jiang,, B. L. Wanner,, and C. T. Walsh. 1995. Cross-talk between the histidine protein kinase VanS and the response regulator PhoB. J. Biol. Chem. 270: 23143 23149.
30. Fukuchi, K.,, Y. Kasahara,, K. Asai,, K. Kobayashi,, S. Moriya,, and N. Ogasawara. 2000. The essential twocomponent regulatory system encoded by yycF and yycG modulates expression of the ftsAZ operon in Bacillus subtilis. Microbiology 146: 1573 1583.
31. Griswold, I. J.,, H. Zhou,, R. V. Swanson,, L. P. McIntosh,, M. I. Simon,, and F. W. Dahlquist. 2002. The solution structure and interactions of CheW from Thermotoga maritima. Nat. Struct. Biol. 9: 121 125.
32. Grohmann, E.,, G. Muth,, and M. Espinosa. 2003. Conjugative plasmid transfer in gram-positive bacteria. Microbiol. Mol. Biol. Rev. 67: 277 301.
33. Hakenbeck, R.,, T. Grebe,, D. Zahner,, and J. B. Stock. 1999. β-Lactam resistance in Streptococcus pneumoniae: penicillin-binding proteins and non-penicillin-binding proteins. Mol. Microbiol. 33: 673 678.
34. Halkides, C. J.,, M. M. McEvoy,, E. Casper,, P. Matsumura,, K. Volz,, and F. W. Dahlquist. 2000. The 1.9 Å resolution crystal structure of phosphono-CheY, an analogue of the active form of the response regulator, CheY. Biochemistry 39: 5280 5286.
35. Hilliard, J. J.,, R. M. Goldschmidt,, L. Licata,, E. Z. Baum,, and K. Bush. 1999. Multiple mechanisms of action for inhibitors of histidine protein kinases from bacterial two-component systems. Antimicrob. Agents Chemother. 43: 1693 1699.
36. Hlasta, D. J.,, J. P. Demers,, B. D. Foleno,, S. A. Fraga-Spano,, J. Guan,, J. J. Hillard,, M. J. Macielag,, K. A. Ohemeng,, C. M. Sheppard,, Z. Sui,, G. C. Webb,, M. A. Weidner-Wells,, H. Werblood,, and J. F. Barret. 1998. Novel inhibitors of bacterial two-component systems with gram positive antibacterial activity: pharmacophore identification based on the screening hit closantel. Bioorg. Med. Chem. Lett. 8: 1923 1928.
37. Hoch, J. A.,, and T. J. Silhavy (ed.). 1995. Two-Component Signal Transduction. ASM Press, Washington, D.C.
38. Ikegami, T.,, T. Okada,, I. Ohki,, J. Hirayama,, T. Mizuno,, and M. Shirakawa. 2001. Solution structure and dynamic character of the histidine-containing phosphotransfer domain of anaerobic sensor kinase ArcB from Escherichia coli. Biochemistry 40: 375 386.
39. Inouye, M.,, and R. Dutta (ed.). 2003. Histidine Kinases in Signal Transduction. Academic Press, Inc., San Diego, Calif.
40. Ishige, K.,, S. Nagasawa,, S. Tokishita,, and T. Mizuno. 1994. A novel device of bacterial signal transducers. EMBO J. 13: 5195 5202.
41. Jacobs, C.,, I. J. Domian,, J. R. Maddock,, and L. Shapiro. 1999. Cell cycle-dependent polar localization of an essential bacterial histidine kinase that controls DNA replication and cell division. Cell 97: 111 120.
42. Jeon, Y.,, Y. S. Lee,, J. S. Han,, J. B. Kim,, and D. S. Hwang. 2001. Multimerization of phosphorylated and nonphosphorylated ArcA is necessary for the response regulator function of the Arc two-component signal transduction system. J. Biol. Chem. 276: 40873 40879.
43. Ji, G.,, R. Beavis,, and R. P. Novick. 1997. Bacterial interference caused by autoinducing peptide variants. Science 276: 2027 2030.
44. Ji, G.,, R. C. Beavis,, and R. P. Novick. 1995. Cell density control of staphylococcal virulence mediated by an octapeptide pheromone. Proc. Natl. Acad. Sci. USA 92: 12055 12059.
45. Josenhans, C.,, and S. Suerbaum. 2002. The role of motility as a virulence factor in bacteria. Int. J. Med. Microbiol. 291: 605 614.
46. Kanojia, R. K.,, W. Murray,, J. Bernstein,, J. Fernandez,, B. D. Foleno,, H. Krause,, L. Lawrence,, G. Webb,, and J. F. Battett. 1999. 6-Oxa isosteres of anacardic acids as potent inhibitors of bacterial histidine protein kinase (HPK)-mediated two-component regulatory systems. Bioorg. Med. Chem. Lett. 9: 2947 2952.
47. Karatan, E.,, M. M. Saulmon,, M. W. Bunn,, and G. W. Ordal. 2001. Phosphorylation of the response regulator CheV is required for adaptation to attractants during Bacillus subtilis chemotaxis. J. Biol. Chem. 276: 43618 43626.
48. Kern, D.,, B. F. Volkman,, P. Luginbuhl,, M. J. Nohaile,, S. Kustu,, and D. E. Wemmer. 1999. Structure of a transiently phosphorylated switch in bacterial signal transduction. Nature 40: 894 898.
49. Kim, K. K.,, H. Yokota,, and S.-H. Kim. 1999. Four-helical-bundle structure of the cytoplasmic domain of a serine chemotaxis receptor. Nature 400: 787 792.
50. Kirby, J. R.,, C. J. Kristich,, M. M. Saulmon,, M. A. Zimmer,, L. F. Garrity,, I. B. Zhulin,, and G. W. Ordal. 2001. CheC is related to the family of flagellar switch proteins and acts independently from CheD to control chemotaxis in Bacillus subtilis. Mol. Microbiol. 42: 573 585.
51. Kondo, H.,, A. Nakagawa,, J. Nishihira,, Y. Nishimura,, T. Mizuno,, and I. Tanaka. 1997. Escherichia coli positive regulator OmpR has a large loop structure at the putative RNA polymerase interaction site. Nat. Struct. Biol. 4: 28 31.
52. Kristich, C. J.,, and G. W. Ordal. 2002. Bacillus subtilis CheD is a chemoreceptor modification enzyme required for chemotaxis. J. Biol. Chem. 277: 25356 25362.
53. Lewis, R. J.,, J. A. Brannigan,, K. Muchová,, I. Barák,, and A. J. Wilkinson. 1999. Phosphorylated aspartate in the structure of a response regulator protein. J. Mol. Biol. 294: 9 15.
54. Li, J.,, R. V. Swanson,, M. I. Simon,, and R. M. Weis. 1995. The response regulators CheB and CheY exhibit competitive binding to the kinase CheA. Biochemistry 34: 14626 14636.
55. Lukat, G. S.,, W. R. McCleary,, A. M. Stock,, and J. B. Stock. 1992. Phosphorylation of bacterial response regulator proteins by low molecular weight phospho-donors. Proc. Natl. Acad. Sci. USA 89: 718 722.
56. Lyon, G. J.,, P. Mayville,, T. W. Muir,, and R. P. Novick. 2000. Rational design of a global inhibitor of the virulence response in Staphylococcus aureus, based in part on localization of the site of inhibition to the receptorhistidine kinase, AgrC. Proc. Natl. Acad. Sci. USA 97: 13330 13335.
57. Lyon, G. J.,, J. S. Wright,, A. Christopoulos,, R. P. Novick,, and T. W. Muir. 2002. Reversible and specific extracellular antagonism of receptor-histidine kinase signaling. J. Biol. Chem. 277: 6247 6253.
58. Macielag, M. J.,, J. P. Demers,, S. A. Fraga-Spano,, D. J. Hlasta,, S. G. Johnson,, R. M. Kanojia,, R. K. Russell,, Z. Sui,, M. A. Weidner-Wells,, H. Werblood,, B. D. Foleno,, R. M. Goldschmidt,, M. J. Loeloff,, G. C. Webb,, and J. F. Barrett. 1998. Substituted salicylanilides as inhibitors of two-component regulatory systems in bacteria. J. Med. Chem. 41: 2939 2945.
59. Macielag, M. J.,, and R. Goldschmidt. 2000. Inhibitors of bacterial two-component signalling systems. Expert Opin. Investig. Drugs 9: 2351 2369.
60. Maddock, J. R.,, and L. Shapiro. 1993. Polar location of the chemoreceptor complex in the Escherichia coli cell. Science 259: 1717 1723.
61. Maris, A. E.,, M. R. Sawaya,, M. Kaczor-Grzeskowiak,, M. R. Jarvis,, S. M. Bearson,, M. L. Kopka,, I. Schroder,, R. P. Gunsalus,, and R. E. Dickerson. 2002. Dimerization allows DNA target site recognition by the NarL response regulator. Nat. Struct. Biol. 9: 771 778.
62. Martin, P. K.,, T. Li,, D. Sun,, D. P. Biek,, and M. B. Schmid. 1999. Role in cell permeability of an essential twocomponent system in Staphylococcus aureus. J. Bacteriol. 181: 3666 3673.
63. Martinez-Hackert, E.,, and A. M. Stock. 1997. The DNA-binding domain of OmpR: crystal structure of a winged-helix transcription factor. Structure 5: 109 124.
64. Matsushita, M.,, and K. D. Janda. 2002. Histidine kinases as targets for new antimicrobial agents. Bioorg. Med. Chem. 10: 866 867.
65. Mayville, P.,, G. Ji,, R. Beavis,, H. Yang,, M. Goger,, R. P. Novick,, and T. W. Muir. 1999. Structure-activity analysis of synthetic autoinducing thiolactone peptides from Staphylococcus aureus responsible for virulence. Proc. Natl. Acad. Sci. USA 96: 1218 1223.
66. McCleary, W. R. 1996. The activation of PhoB by acetylphosphate. Mol. Microbiol. 20: 1155 1163.
67. McCleary, W. R.,, and J. B. Stock. 1994. Acetyl phosphate and the activation of two-component response regulators. J. Biol. Chem. 269: 31567 31572.
68. McCleary, W. R.,, J. B. Stock,, and A. J. Ninfa. 1993. Is acetyl phosphate a global signal in Escherichia coli? J. Bacteriol. 175: 2793 2798.
69. McDevitt, D.,, D. J. Payne,, D. J. Holmes,, and M. Rosenberg. 2002. Novel targets for the future development of antibacterial agents. J. Appl. Microbiol. 92: 28S 34S.
70. McEvoy, M. M.,, A. C. Hausrath,, G. B. Randolph,, S. J. Remington,, and F. W. Dahlquist. 1998. Two binding modes reveal flexibility in kinase/response regulator interactions in the bacterial chemotaxis pathway. Proc. Natl. Acad. Sci. USA 95: 7333 7338.
71. McEvoy, M. M.,, D. R. Muhandiram,, L. E. Kay,, and F. W. Dahlquist. 1996. Structure and dynamics of a CheY-binding domain of the chemotaxis kinase CheA determined by nuclear magnetic resonance spectroscopy. Biochemistry 35: 5633 5640.
72. Miller, M. B.,, and B. L. Bassler. 2001. Quorum sensing in bacteria. Annu. Rev. Microbiol. 55: 165 199.
73. Mizuno, T. 1997. Compilation of all genes encoding two-component phosphotransfer signal transducers in the genome of Escherichia coli. DNA Res. 4: 161 168.
74. Ninfa, E. G.,, M. R. Atkinson,, E. S. Kamberov,, and A. J. Ninfa. 1993. Mechanism of autophosphorylation of Escherichia coli nitrogen regulator II (NRII or NtrB): trans-phosphorylation between subunits. J. Bacteriol. 175: 7024 7032.
75. Park, S. Y.,, X. Chao,, G. Gonzalez-Bonet,, B. D. Beel,, A. M. Bilwes,, and B. R. Crane. 2004. Structure and function of an unusual family of protein phosphatases: the bacterial chemotaxis proteins CheC and CheX. Mol. Cell 16: 563 574.
76. Pelton, J. G.,, S. Kustu,, and D. E. Wemmer. 1999. Solution structure of the DNA-binding domain of NtrC with three alanine substitutions. J. Mol. Biol. 292: 1095 1110.
77. Quon, K. C.,, G. T. Marczynski,, and L. Shapiro. 1996. Cell cycle control by an essential bacterial twocomponent signal transduction protein. Cell 84: 83 93.
78. Robinson, V. L.,, D. R. Buckler,, and A. M. Stock. 2000. A tale of two components: a novel kinase and a regulatory switch. Nat. Struct. Biol. 7: 628 633.
79. Robinson, V. L.,, T. Wu,, and A. M. Stock. 2003. Structural analysis of the domain interface in DrrB, a response regulator of the OmpR/PhoB subfamily. J. Bacteriol. 185: 4186 4194.
80. Rosario, M. M.,, J. R. Kirby,, D. A. Bochar,, and G. W. Ordal. 1995. Chemotactic methylation and behavior in Bacillus subtilis: role of two unique proteins, CheC and CheD. Biochemistry 34: 3823 3831.
81. Rosario, M. M. L.,, and G. W. Ordal. 1996. CheC and CheD interact to regulate methylation of Bacillus subtilis methyl-accepting chemotaxis proteins. Mol. Microbiol. 21: 511 518.
82. Roychoudhury, S.,, N. A. Zielinski,, A. J. Ninfa,, N. E. Allen,, L. N. Jungheim,, T. I. Nicas,, and A. M. Chakrabarty. 1993. Inhibitors of two-component signal transduction systems: inhibition of alginate gene activation in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 90: 965 969.
83. Segall, J. E.,, S. M. Block,, and H. C. Berg. 1986. Temporal comparisons in bacterial chemotaxis. Proc. Natl. Acad. Sci. USA 83: 8987 8991.
84. Song, H. K.,, J. Y. Lee,, M. G. Lee,, J. Moon,, K. Min,, J. K. Yang,, and S. W. Suh. 1999. Insights into eukaryotic multistep phosphorelay signal transduction revealed by the crystal structure of Ypd1p from Saccharomyces cerevisiae. J. Mol. Biol. 293: 753 761.
85. Stephenson, K.,, and J. A. Hoch. 2002. Virulence- and antibiotic resistance-associated two-component signal transduction systems of Gram-positive pathogenic bacteria as targets for antimicrobial therapy. Pharmacol. Ther. 93: 293 305.
86. Stephenson, K.,, Y. Yamaguchi,, and J. A. Hoch. 2000. The mechanism of action of inhibitors of bacterial twocomponent signal transduction systems. J. Biol. Chem. 275: 38900 38904.
87. Stevens, A. M.,, N. B. Shoemaker,, L. Y. Li,, and A. A. Salyers. 1993. Tetracycline regulation of genes on Bacteroides conjugative transposons. J. Bacteriol. 175: 6134 6141.
88. Stock, A. M.,, J. M. Mottonen,, J. B. Stock,, and C. E. Schutt. 1989a. Three-dimensional structure of CheY, the response regulator of bacterial chemotaxis. Nature 337: 745 749.
89. Stock, A. M.,, V. L. Robinson,, and P. N. Goudreau. 2000. Two-component signal transduction. Annu. Rev. Biochem. 69: 183 215.
90. Stock, J. B.,, A. J. Ninfa,, and A. M. Stock. 1989b. Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol. Rev. 53: 450 490.
91. Strauch, M. A.,, D. deMendoza,, and J. A. Hoch. 1992. cis-Unsaturated fatty acids specifically inhibit a signaltransducing protein kinase required for initiation of sporulation in Bacillus subtilis. Mol. Microbiol. 6: 2909 2917.
92. Sui, Z.,, J. Guan,, D. J. Hlasta,, M. J. Macielag,, B. D. Foleno,, R. M. Goldschmidt,, M. J. Loeloff,, G. C. Webb,, and J. F. Barret. 1998. SAR studies of diaryltriazoles against bacterial two-component regulatory systems and their antibacterial activities. Bioorg. Med. Chem. Lett. 8: 1929 1934.
93. Swanson, R. V.,, R. B. Bourret,, and M. I. Simon. 1993. Intermolecular complementation of the kinase activity of CheA. Mol. Microbiol. 8: 435 441.
94. Szurmant, H.,, M. W. Bunn,, V. J. Cannistraro,, and G. W. Ordal. 2003. Bacillus subtilis hydrolyzes CheY-P at the location of its action, the flagellar switch. J. Biol. Chem. 278: 48611 48616.
95. Tanaka, T.,, S. K. Saha,, C. Tomomori,, R. Ishima,, D. Liu,, K. I. Tong,, H. Park,, R. Dutta,, L. Qin,, M. B. Swindells,, T. Yamazaki,, A. M. Ono,, M. Kainosho,, M. Inouye,, and M. Ikura. 1998. NMR structure of the histidine kinase domain of the E. coli osmosensor EnvZ. Nature 396: 88 92.
96. Throup, J. P.,, K. K. Koretke,, A. P. Bryant,, K. A. Ingraham,, A. F. Chalker,, Y. Ge,, A. Marra,, N. G. Wallis,, J. R. Brown,, D. J. Holmes,, M. Rosenberg,, and M. K. Burnham. 2000. A genomic analysis of two-component signal transduction in Streptococcus pneumoniae. Mol. Microbiol. 35: 566 576.
97. Tomomori, C.,, T. Tanaka,, R. Dutta,, H. Park,, S. K. Saha,, Y. Zhu,, R. Ishima,, D. Liu,, K. I. Tong,, H. Kurokawa,, H. Qian,, M. Inouye,, and M. Ikura. 1999. Solution structure of the homodimeric core domain of Escherichia coli histidine kinase EnvZ. Nat. Struct. Biol. 6: 729 734.
98. Trew, S. J.,, S. K. Wrigley,, L. Pairet,, J. Sohal,, P. Shanu-Wilson,, M. A. Hayes,, S. M. Martin,, R. N. Manohar,, M. I. Chicarelli-Robinson,, D. A. Kau,, C. V. Byrne,, E. M. Wellington,, J. M. Moloney,, J. Howard,, D. Hupe,, and E. R. Olson. 2000. Novel streptopyrroles from Streptomyces rimosus with bacterial protein histidine kinase inhibitory and antimicrobial activities. J. Antibiot. 53: 1 11.
99. Varughese, K. I.,, Madhusudan, X. Z., Zhou, J. M., Whiteley,, and J. A. Hoch. 1998. Formation of a novel fourhelix bundle and molecular recognition sites by dimerization of a response regulator phosphotransferase. Mol. Cell 2: 485 493.
100. Volz, K.,, and P. Matsumura. 1991. Crystal structure of Escherichia coli CheY refined at 1.7 Å resolution. J. Biol. Chem. 266: 15511 15519.
101. Walsh, C. T.,, S. L. Fisher,, I. S. Park,, M. Prahalad,, and Z. Wu. 1996. Bacterial resistance to vancomycin: five genes and one missing hydrogen bond tell the story. Chem. Biol. 3: 21 28.
102. Weidner-Wells, M. A.,, K. A. Ohemeng,, V. N. Nguyen,, S. Fraga-Spano,, M. J. Macielag,, H. M. Werblood,, B. D. Foleno,, G. C. Webb,, J. F. Barret,, and D. J. Hlasta. 2001. Amidino benzimidazole inhibitors of bacterial two-component systems. Bioorg. Med. Chem. Lett. 11: 1545 1548.
103. Welch, M.,, N. Chinardet,, L. Mourey,, C. Birck,, and J.-P. Samama. 1998. Structure of the CheY-binding domain of histidine kinase CheA in complex with CheY. Nat. Struct. Biol. 5: 25 29.
104. Welch, M.,, K. Oosawa,, S.-I. Aizawa,, and M. Eisenbach. 1994. Effects of phosphorylation, Mg 2+, and conformation of the chemotaxis protein CheY on its binding to the flagellar switch protein FliM. Biochemistry 33: 10470 10476.
105. Welch, M.,, K. Oosawa,, S.-I. Aizawa,, and M. Eisenbach. 1993. Phosphorylation-dependent binding of a signal molecule to the flagellar switch of bacteria. Proc. Natl. Acad. Sci. USA 90: 8787 8791.
106. Wolfe, A. J.,, and R. C. Stewart. 1993. The short form of the CheA protein restores kinase activity and chemotactic ability to kinase-deficient mutants. Proc. Natl. Acad. Sci. USA 90: 1518 1522.
107. Wu, J.,, J. Li,, G. Li,, D. G. Long,, and R. M. Weis. 1996. The receptor binding site for the methyltransferase of bacterial chemotaxis is distinct from the sites of methylation. Biochemistry 35: 4984 4993.
108. Wyman, C.,, I. Rombel,, A. K. North,, C. Bustamente,, and S. Kustu. 1997. Unusual oligomerization required for activity of NtrC, a bacterial enhancer-binding protein. Science 275: 1658 1661.
109. Xu, Q.,, and A. H. West. 1999. Conservation of structure and function among histidine-containing phosphotransfer (HPt) domains as revealed by the crystal structure of YPD1. J. Mol. Biol. 292: 1039 1050.
110. Yang, Y.,, and M. Inouye. 1991. Intermolecular complementation between two defective mutant signal transducing receptors. Proc. Natl. Acad. Sci. USA 88: 11057 11061.
111. Zahrt, T. C.,, and V. Deretic. 2000. An essential two-component signal transduction system in Mycobacterium tuberculosis. J. Bacteriol. 182: 3832 3838.
112. Zhao, R.,, E. J. Collins,, R. B. Bourret,, and R. E. Silversmith. 2002. Structure and catalytic mechanism of the E. coli chemotaxis phosphatase CheZ. Nat. Struct. Biol. 9: 570 575.
113. Zhou, H.,, D. F. Lowry,, R. V. Swanson,, M. I. Simon,, and F. W. Dahlquist. 1995. NMR studies of the phosphotransfer domain of the histidine kinase CheA from Escherichia coli: assignments, secondary structure, general fold, and backbone dynamics. Biochemistry 34: 13858 13870.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error