Chapter 9 : Type III Secretion Machinery and Effectors

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Type III Secretion Machinery and Effectors, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818395/9781555813017_Chap09-1.gif /docserver/preview/fulltext/10.1128/9781555818395/9781555813017_Chap09-2.gif


The translocated effectors harbor many different activities and can be used in different combinations by various bacteria to exert highly specific and unique effects on the host cell. Additionally, even homologous effectors with identical enzymatic activity can vary enough in substrate specificity and delivery to make their effect on the host cell tailored for a given pathogen. In understanding the biology of these systems, moderate- and high-resolution structural information has often played a key role and, furthermore, revealed aspects and themes in the pathogenesis of these systems that were much less clear from data generated from more indirect experimental techniques. This chapter represents only a skimming of the surface in examining these systems from a structural point of view, but it is nonetheless informative. Composed of more than 20 proteins and related to the flagellar assembly apparatus, type III secretion systems are one of the most complex protein secretion systems to be discovered. Rather than presenting the structures based on their fold or biochemical activity or on the species which utilize them, the chapter is organized in biological themes and examines the structures in related functional contexts. Detailed structural analyses of type III secretion virulence systems are only in their infancy. The field awaits high-resolution work on the needle complex, the translocon, the bacterial side elements, and the remaining arsenal of effector molecules used by the different gram-negative pathogens utilizing this translocation system in plants and animals.

Citation: Stebbins C. 2005. Type III Secretion Machinery and Effectors, p 149-177. In Waksman G, Caparon M, Hultgren S (ed), Structural Biology of Bacterial Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555818395.ch9
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1.
Figure 1.

The type III secretion system needle complex. (A) An electron micrograph of osmotically shocked bacterial cells from serovar Typhimurium reveals a structure with an inner membrane-associated base (white arrow), outer membrane ring, and filamentous extension (the “needle”; black arrow). Reprinted from with permission. (B) Higher-resolution EM reconstructions of isolated needle complexes from reveal the details of the substructures of the secretion apparatus. The needle filament (light gray arrow), the outer membrane secretin rings (white arrow), the periplasmic rings (dark gray arrow), and the inner membrane rings (black arrow) are shown. Reprinted from with permission. (C) Schematic of the needle complex, illustrating the docking of the filament with the host cell pore, the inner and outer membrane elements such as the secretin rings, periplasmic rings, and inner membrane rings. The bacterial cytoplasm contains homodimeric secretion chaperones binding to effector molecules prior to translocation through the needle complex.

Citation: Stebbins C. 2005. Type III Secretion Machinery and Effectors, p 149-177. In Waksman G, Caparon M, Hultgren S (ed), Structural Biology of Bacterial Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555818395.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Abe, A.,, M. de Grado,, R. A. Pfuetzner,, C. Sanchez-Sanmartin,, R. Devinney,, J. L. Puente,, N. C. Strynadka,, and B. B. Finlay. 1999. Enteropathogenic Escherichia coli translocated intimin receptor, Tir, requires a specific chaperone for stable secretion. Mol. Microbiol. 33: 1162 1175.
2. Aktories, K.,, G. Schmidt,, and I. Just. 2000. Rho GTPases as targets of bacterial protein toxins. Biol. Chem. 381: 421 426.
3. Bakshi, C. S.,, V. P. Singh,, M. W. Wood,, P. W. Jones,, T. S. Wallis,, and E. E. Galyov. 2000. Identification of SopE2, a Salmonella secreted protein which is highly homologous to SopE and involved in bacterial invasion of epithelial cells. J. Bacteriol. 182: 2341 2344.
4. Barbieri, J. T.,, M. J. Riese,, and K. Aktories. 2002. Bacterial toxins that modify the actin cytoskeleton. Annu. Rev. Cell Dev. Biol. 18: 315 344.
5. Barford, D.,, A. J. Flint,, and N. K. Tonks. 1994. Crystal structure of human protein tyrosine phosphatase 1B. Science 263: 1397 1404.
6. Barford, D.,, Z. Jia,, and N. K. Tonks. 1995. Protein tyrosine phosphatases take off. Nat. Struct. Biol. 2: 1043 1053.
7. Birtalan, S.,, and P. Ghosh. 2001. Structure of the Yersinia type III secretory system chaperone SycE. Nat. Struct. Biol. 8: 974 978.
8. Birtalan, S. C.,, R. M. Phillips,, and P. Ghosh. 2002. Three-dimensional secretion signals in chaperone-effector complexes of bacterial pathogens. Mol. Cell 9: 971 980.
9. Black, D. S.,, and J. B. Bliska. 1997. Identification of p130Cas as a substrate of YersiniaYopH (Yop51), a bacterial protein tyrosine phosphatase that translocates into mammalian cells and targets focal adhesions. EMBO J. 16: 2730 2744.
10. Black, D. S.,, and J. B. Bliska. 2000. The RhoGAP activity of the Yersinia pseudotuberculosis cytotoxin YopE is required for antiphagocytic function and virulence. Mol. Microbiol. 37: 515 527.
11. Bliska, J. B. 1995. Crystal structure of the Yersinia tyrosine phosphatase. Trends Microbiol. 3: 125 127.
12. Bliska, J. B.,, K. L. Guan,, J. E. Dixon,, and S. Falkow. 1991. Tyrosine phosphate hydrolysis of host proteins by an essential Yersinia virulence determinant. Proc. Natl. Acad. Sci. USA 88: 1187 1191.
13. Blocker, A.,, P. Gounon,, E. Larquet,, K. Niebuhr,, V. Cabiaux,, C. Parsot,, and P. Sansonetti. 1999. The tripartite type III secreton of Shigella flexneri inserts IpaB and IpaC into host membranes. J. Cell Biol. 147: 683 693.
14. Blocker, A.,, N. Jouihri,, E. Larquet,, P. Gounon,, F. Ebel,, C. Parsot,, P. Sansonetti,, and A. Allaoui. 2001. Structure and composition of the Shigella flexneri “needle complex,” a part of its type III secreton. Mol. Microbiol. 39: 652 663.
15. Boland, A.,, M. P. Sory,, M. Iriarte,, C. Kerbourch,, P. Wattiau,, and G. R. Cornelis. 1996. Status of YopM and YopN in the Yersinia Yop virulon: YopM of Y. enterocolitica is internalized inside the cytosol of PU5-1.8nmacrophages by the YopB, D, N delivery apparatus. EMBO J. 15: 5191 5201.
16. Bourne, H. R.,, D. A. Sanders,, and F. McCormick. 1990. The GTPase superfamily: a conserved switch for diverse cell functions. Nature 348: 125 132.
17. Bronstein, P. A.,, E. A. Miao,, and S. I. Miller. 2000. InvB is a type III secretion chaperone specific for SspA. J. Bacteriol. 182: 6638 6644.
18. Brown, I. R.,, J. W. Mansfield,, S. Taira,, E. Roine,, and M. Romantschuk. 2001. Immunocytochemical localization of HrpA and HrpZ supports a role for the Hrp pilus in the transfer of effector proteins from Pseudomonas syringae pv. tomato across the host plant cell wall. Mol. Plant-Microbe Interact. 14: 394 404.
19. Buchwald, G.,, A. Friebel,, J. E. Galan,, W. D. Hardt,, A. Wittinghofer,, and K. Scheffzek. 2002. Structural basis for the reversible activation of a Rho protein by the bacterial toxin SopE. EMBO J. 21: 3286 3295.
20. Burghout, P.,, R. Van Boxtel,, P. Van Gelder,, P. Ringler,, S. A. Muller,, J. Tommassen,, M. Koster. 2004. Structure and electrophysiological properties of the YscC secretin from the type III secretion system of Yersinia enterocolitica. J. Bacteriol. 186: 4645 4654.
21. Buttner, D.,, and U. Bonas. 2002a. Getting across—bacterial type III effector proteins on their way to the plant cell. EMBO J. 21: 5313 5322.
22. Buttner, D.,, and U. Bonas. 2002b. Port of entry—the type III secretion translocon. Trends Microbiol. 10: 186 192.
23. Buttner, D.,, D. Nennstiel,, B. Klusener,, and U. Bonas. 2002. Functional analysis of HrpF, a putative type III translocon protein from Xanthomonas campestris pv. vesicatoria. J. Bacteriol. 184: 2389 2398.
24. Cherfils, J.,, and P. Chardin. 1999. GEFs: structural basis for their activation of small GTP-binding proteins. Trends Biochem. Sci. 24: 306 311.
25. Cohen, M. L. 1992. Epidemiology of drug resistance: implications for a post-antimicrobial era. Science 257: 1050 1055.
26. Cohen, M. L. 1994. Antimicrobial resistance: prognosis for public health. Trends Microbiol. 2: 422 425.
27. Cohen, M. L. 2000. Changing patterns of infectious disease. Nature 406: 762 767.
28. Collier-Hyams, L. S.,, H. Zeng,, J. Sun,, A. D. Tomlinson,, Z. Q. Bao,, H. Chen,, J. L. Madara,, K. Orth,, and A. S. Neish. 2002. Cutting edge: Salmonella AvrA effector inhibits the key proinflammatory, anti-apoptotic NF-kappa B pathway. J. Immunol. 169: 2846 2850.
29. Cordes, F. S.,, K. Komoriya,, E. Larquet,, S. Yang,, E. H. Egelman,, A. Blocker,, and S. M. Lea. 2003. Helical structure of the needle of the type III secretion system of Shigella flexneri. J. Biol. Chem. 278: 17103 17107.
30. Cornelis, G. R. 2002. The Yersinia Ysc-Yop virulence apparatus. Int. J. Med. Microbiol. 291: 455 462.
31. Cornelis, G. R.,, and F. Van Gijsegem. 2000. Assembly and function of type III secretory systems. Annu. Rev. Microbiol. 54: 735 774.
32. Crago, A. M.,, and V. Koronakis. 1998. Salmonella InvG forms a ring-like multimer that requires the InvH lipoprotein for outer membrane localization. Mol. Microbiol. 30: 47 56.
33. Daniell, S. J.,, E. Kocsis,, E. Morris,, S. Knutton,, F. P. Booy,, and G. Frankel. 2003. 3D structure of EspA filaments from enteropathogenic Escherichia coli. Mol. Microbiol. 49: 301 308.
34. Daniell, S. J.,, N. Takahashi,, R. Wilson,, D. Friedberg,, I. Rosenshine,, F. P. Booy,, R. K. Shaw,, S. Knutton,, G. Frankel,, and S. Aizawa. 2001. The filamentous type III secretion translocon of enteropathogenic Escherichia coli. Cell Microbiol. 3: 865 871.
35. Darwin, K. H.,, L. S. Robinson,, and V. L. Miller. 2001. SigE is a chaperone for the Salmonella enterica serovar Typhimurium invasion protein SigD. J. Bacteriol. 183: 1452 1454.
36. Dixon, J. E. 1995. Structure and catalytic properties of protein tyrosine phosphatases. Ann. N.Y. Acad. Sci. 766: 18 22.
37. Elliott, S. J.,, S. W. Hutcheson,, M. S. Dubois,, J. L. Mellies,, L. A. Wainwright,, M. Batchelor,, G. Frankel,, S. Knutton,, and J. B. Kaper. 1999. Identification of CesT, a chaperone for the type III secretion of Tir in enteropathogenic Escherichia coli. Mol. Microbiol. 33: 1176 1189.
38. Evdokimov, A. G.,, D. E. Anderson,, K. M. Routzahn,, and D. S. Waugh. 2001a. Unusual molecular architecture of the Yersinia pestis cytotoxin YopM: a leucine-rich repeat protein with the shortest repeating unit. J. Mol. Biol. 312: 807 821.
39. Evdokimov, A. G.,, J. E. Tropea,, K. M. Routzahn,, T. D. Copeland,, and D. S. Waugh. 2001b. Structure of the N-terminal domain of Yersinia pestisYopH at 2.0 Å resolution. Acta Crystallogr. Ser. D 57: 793 799.
40. Evdokimov, A. G.,, J. E. Tropea,, K. M. Routzahn,, and D. S. Waugh. 2002a. Crystal structure of the Yersinia pestis GTPase activator YopE. Protein Sci. 11: 401 408.
41. Evdokimov, A. G.,, J. E. Tropea,, K. M. Routzahn,, and D. S. Waugh. 2002b. Three-dimensional structure of the type III secretion chaperone SycE from Yersinia pestis. Acta Crystallogr. Ser. D 58: 398 406.
42. Fauman, E. B.,, and M. A. Saper. 1996. Structure and function of the protein tyrosine phosphatases. Trends Biochem. Sci. 21: 413 417.
43. Fauman, E. B.,, C. Yuvaniyama,, H. L. Schubert,, J. A. Stuckey,, and M. A. Saper. 1996. The X-ray crystal structures of Yersinia tyrosine phosphatase with bound tungstate and nitrate. Mechanistic implications. J. Biol. Chem. 271: 18780 18788.
44. Fraser, C. M.,, and M. R. Dando. 2001. Genomics and future biological weapons: the need for preventive action by the biomedical community. Nat. Genet. 29: 253 256.
45. Fu, Y.,, and J. E. Galan. 1998. Identification of a specific chaperone for SptP, a substrate of the centisome 63 type III secretion system of Salmonella typhimurium. J. Bacteriol. 180: 3393 3399.
46. Fu, Y.,, and J. E. Galan. 1999. A salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion. Nature 401: 293 297.
47. Galan, J. E. 2001. Salmonella interactions with host cells: type III secretion at work. Annu. Rev. Cell Dev. Biol. 17: 53 86.
48. Galan, J. E.,, and A. Collmer. 1999. Type III secretion machines: bacterial devices for protein delivery into host cells. Science 284: 1322 1328.
49. Galan, J. E.,, and D. Zhou. 2000. Striking a balance: modulation of the actin cytoskeleton by Salmonella. Proc. Natl. Acad. Sci. USA 97: 8754 8761.
50. Galyov, E. E.,, S. Hakansson,, A. Forsberg,, and H. Wolf-Watz. 1993. A secreted protein kinase of Yersinia pseudotuberculosis is an indispensable virulence determinant. Nature 361: 730 732.
51. Gamblin, S. J.,, and S. J. Smerdon. 1998. GTPase-activating proteins and their complexes. Curr. Opin. Struct. Biol. 8: 195 201.
52. Geiser, T. K.,, B. I. Kazmierczak,, L. K. Garrity-Ryan,, M. A. Matthay,, and J. N. Engel. 2001. Pseudomonas aeruginosa ExoT inhibits in vitro lung epithelial wound repair. Cell. Microbiol. 3: 223 236.
53. Ginocchio, C. C.,, S. B. Olmsted,, C. L. Wells,, and J. E. Galan. 1994. Contact with epithelial cells induces the formation of surface appendages on Salmonella typhimurium. Cell 76: 717 724.
54. Goehring, U. M.,, G. Schmidt,, K. J. Pederson,, K. Aktories,, and J. T. Barbieri. 1999. The N-terminal domain of Pseudomonas aeruginosa exoenzyme S is a GTPase-activating protein for Rho GTPases. J. Biol. Chem. 274: 36369 36372.
55. Grosdent, N.,, I. Maridonneau-Parini,, M. P. Sory,, and G. R. Cornelis. 2002. Role of Yops and adhesins in resistance of Yersinia enterocolitica to phagocytosis. Infect. Immun. 70: 4165 4176.
56. Guan, K. L.,, and J. E. Dixon. 1990. Protein tyrosine phosphatase activity of an essential virulence determinant in Yersinia. Science 249: 553 556.
57. Guan, K. L.,, and J. E. Dixon. 1993. Bacterial and viral protein tyrosine phosphatases. Semin. Cell Biol. 4: 389 396.
58. Hakansson, S.,, E. E. Galyov,, R. Rosqvist,, and H. Wolf-Watz. 1996a. The Yersinia YpkA Ser/Thr kinase is translocated and subsequently targeted to the inner surface of the HeLa cell plasma membrane. Mol. Microbiol. 20: 593 603.
59. Hakansson, S.,, K. Schesser,, C. Persson,, E. E. Galyov,, R. Rosqvist,, F. Homble,, and H. Wolf-Watz. 1996b. The YopB protein of Yersinia pseudotuberculosis is essential for the translocation of Yop effector proteins across the target cell plasma membrane and displays a contact-dependent membrane disrupting activity. EMBO J. 15: 5812 5823.
60. Hall, A. 1998. Rho GTPases and the actin cytoskeleton. Science 279: 509 514.
61. Hamburger, Z. A.,, M. S. Brown,, R. R. Isberg,, and P. J. Bjorkman. 1999. Crystal structure of invasin: a bacterial integrin-binding protein. Science 286: 291 295.
62. Hamid, N.,, A. Gustavsson,, K. Andersson,, K. McGee,, C. Persson,, C. E. Rudd,, and M. Fallman. 1999. YopH dephosphorylates Cas and Fyn-binding protein in macrophages. Microb. Pathog. 27: 231 242.
63. Han, S.,, A. S. Arvai,, S. B. Clancy,, and J. A. Tainer. 2001. Crystal structure and novel recognition motif of rho ADP-ribosylating C3 exoenzyme from Clostridium botulinum: structural insights for recognition specificity and catalysis. J. Mol. Biol. 305: 95 107.
64. Han, S.,, J. A. Craig,, C. D. Putnam,, N. B. Carozzi,, and J. A. Tainer. 1999. Evolution and mechanism from structures of an ADP-ribosylating toxin and NAD complex. Nat. Struct. Biol. 6: 932 936.
65. Hardt, W. D.,, L. M. Chen,, K. E. Schuebel,, X. R. Bustelo,, and J. E. Galan. 1998a. S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell 93: 815 826.
66. Hardt, W. D.,, H. Urlaub,, and J. E. Galan. 1998b. A substrate of the centisome 63 type III protein secretion system of Salmonella typhimurium is encoded by a cryptic bacteriophage. Proc. Natl. Acad. Sci. USA 95: 2574 2579.
67. Hartl, F. U.,, and M. Hayer-Hartl. 2002. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295: 1852 1858.
68. Hayward, R. D.,, and V. Koronakis. 1999. Direct nucleation and bundling of actin by the SipC protein of invasive Salmonella. EMBO J. 18: 4926 4934..
69. Hayward, R. D.,, and V. Koronakis. 2002. Direct modulation of the host cell cytoskeleton by Salmonella actinbinding proteins. Trends Cell Biol. 12: 15 20.
70. Hayward, R. D.,, E. J. McGhie,, and V. Koronakis. 2000. Membrane fusion activity of purified SipB, a Salmonella surface protein essential for mammalian cell invasion. Mol. Microbiol. 37: 727 739.
71. He, S. Y.,, and Q. Jin. 2003. The Hrp pilus: learning from flagella. Curr. Opin. Microbiol. 6: 15 19.
72. Higashide, W.,, S. Dai,, V. P. Hombs,, and D. Zhou. 2002. Involvement of SipA in modulating actin dynamics during Salmonella invasion into cultured epithelial cells. Cell. Microbiol. 4: 357 365.
73. Hirshberg, M.,, R. W. Stockley,, G. Dodson,, and M. R. Webb. 1997. The crystal structure of human rac1, a member of the rho-family complexed with a GTP analogue. Nat. Struct. Biol. 4: 147 152.
74. Hoiczyk, E.,, and G. Blobel. 2001. Polymerization of a single protein of the pathogen Yersinia enterocolitica into needles punctures eukaryotic cells. Proc. Natl. Acad. Sci. USA 98: 4669 4674.
75. Holm, L.,, and C. Sander. 1993. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233: 123 138.
76. Hu, W.,, J. Yuan,, Q. L. Jin,, P. Hart,, and S. Y. He. 2001. Immunogold labeling of Hrp pili of Pseudomonas syringae pv. tomato assembled in minimal medium and in planta. Mol. Plant-Microbe Interact. 14: 234 241.
77. Hueck, C. J. 1998. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Biol. Rev. 62: 379 433.
78. Ihara, K.,, S. Muraguchi,, M. Kato,, T. Shimizu,, M. Shirakawa,, S. Kuroda,, K. Kaibuchi,, and T. Hakoshima. 1998. Crystal structure of human RhoA in a dominantly active form complexed with a GTP analogue. J. Biol. Chem. 273: 9656 9666.
79. Iriarte, M.,, and G. R. Cornelis. 1998. YopT, a new YersiniaYop effector protein, affects the cytoskeleton of host cells. Mol. Microbiol. 29: 915 929.
80. Isberg, R. R.,, and J. M. Leong. 1988. Cultured mammalian cells attach to the invasin protein of Yersinia pseudotuberculosis. Proc. Natl. Acad. Sci. USA 85: 6682 6686.
81. Isberg, R. R.,, D. L. Voorhis,, and S. Falkow. 1987. Identification of invasin: a protein that allows enteric bacteria to penetrate cultured mammalian cells. Cell 50: 769 778.
82. Jepson, M. A.,, B. Kenny,, and A. D. Leard. 2001. Role of sipA in the early stages of Salmonella typhimurium entry into epithelial cells. Cell. Microbiol. 3: 417 426.
83. Jia, Z.,, D. Barford,, A. J. Flint,, and N. K. Tonks. 1995. Structural basis for phosphotyrosine peptide recognition by protein tyrosine phosphatase 1B. Science 268: 1754 1758.
84. Jin, Q.,, and S. Y. He. 2001. Role of the Hrp pilus in type III protein secretion in Pseudomonas syringae. Science 294: 2556 2558.
85. Jin, Q.,, W. Hu,, I. Brown,, G. McGhee,, P. Hart,, A. L. Jones,, and S. Y. He. 2001. Visualization of secreted Hrp and Avr proteins along the Hrp pilus during type III secretion in Erwinia amylovora and Pseudomonas syringae. Mol. Microbiol. 40: 1129 1139.
86. Journet, L.,, C. Agrain,, P. Broz,, and G. R. Cornelis. 2003. The needle length of bacterial injectisomes is determined by a molecular ruler. Science 302: 1757 1760.
87. Kaniga, K.,, J. Uralil,, J. B. Bliska,, and J. E. Galan. 1996. A secreted protein tyrosine phosphatase with modular effector domains in the bacterial pathogen Salmonella typhimurium. Mol. Microbiol. 21: 633 641.
88. Khandelwal, P.,, K. Keliikuli,, C. L. Smith,, M. A. Saper,, and E. R. Zuiderweg. 2002. Solution structure and phosphopeptide binding to the N-terminal domain of YersiniaYopH: comparison with a crystal structure. Biochemistry 41: 11425 11437.
89. Kimbrough, T. G.,, and S. I. Miller. 2000. Contribution of Salmonella typhimurium type III secretion components to needle complex formation. Proc. Natl. Acad. Sci. USA 97: 11008 11013.
90. Kimbrough, T. G.,, and S. I. Miller. 2002. Assembly of the type III secretion needle complex of Salmonella typhimurium. Microbes Infect. 4: 75 82.
91. Knutton, S.,, I. Rosenshine,, M. J. Pallen,, I. Nisan,, B. C. Neves,, C. Bain,, C. Wolff,, G. Dougan,, and G. Frankel. 1998. A novel EspA-associated surface organelle of enteropathogenic Escherichia coli involved in protein translocation into epithelial cells. EMBO J. 17: 2166 2176.
92. Kobe, B.,, and A. V. Kajava. 2001. The leucine-rich repeat as a protein recognition motif. Curr. Opin. Struct. Biol. 11: 725 732.
93. Kubori, T.,, Y. Matsushima,, D. Nakamura,, J. Uralil,, M. Lara-Tejero,, A. Sukhan,, J. E. Galan,, and S. I. Aizawa. 1998. Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science 280: 602 605.
94. Kubori, T.,, A. Sukhan,, S. I. Aizawa,, and J. E. Galan. 2000. Molecular characterization and assembly of the needle complex of the Salmonella typhimurium type III protein secretion system. Proc. Natl. Acad. Sci. USA 97: 10225 10230.
95. Kubori, T.,, and J. E. Galan. 2003. Temporal regulation of salmonella virulence effector function by proteasome- dependent protein degradation. Cell 115: 333 342.
96. Leong, J. M.,, R. S. Fournier,, and R. R. Isberg. 1991. Mapping and topographic localization of epitopes of the Yersinia pseudotuberculosis invasin protein. Infect. Immun. 59: 3424 3433.
97. Lerm, M.,, G. Schmidt,, and K. Aktories. 2000. Bacterial protein toxins targeting rho GTPases. FEMS Microbiol. Lett. 188: 1 6.
98. Lesnick, M. L.,, N. E. Reiner,, J. Fierer,, and D. G. Guiney. 2001. The Salmonella spvB virulence gene encodes an enzyme that ADP-ribosylates actin and destabilizes the cytoskeleton of eukaryotic cells. Mol. Microbiol. 39: 1464 1470.
99. Leung, K. Y.,, and S. C. Straley. 1989. The yopM gene of Yersinia pestis encodes a released protein having homology with the human platelet surface protein GPIb alpha. J. Bacteriol. 171: 4623 4632.
100. Lilic, M.,, V. E. Galkin,, A. Orlova,, M. S. VanLoock,, E. H. Egelman,, and C. E. Stebbins. 2003. Salmonella SipA polymerizes actin by stapling filaments with nonglobular protein arms. Science 301: 1918 1921.
101. Luo, Y.,, M. G. Bertero,, E. A. Frey,, R. A. Pfuetzner,, M. R. Wenk,, L. Creagh,, S. L. Marcus,, D. Lim,, F. Sicheri,, C. Kay,, C. Haynes,, B. B. Finlay,, and N. C. Strynadka. 2001. Structural and biochemical characterization of the type III secretion chaperones CesT and SigE. Nat. Struct. Biol. 8: 1031 1036.
102. Marcus, S. L.,, M. R. Wenk,, O. Steele-Mortimer,, and B. B. Finlay. 2001. A synaptojanin-homologous region of Salmonella typhimurium SigD is essential for inositol phosphatase activity and Akt activation. FEBS Lett. 494: 201 207.
103. McDonald, C.,, P. O. Vacratsis,, J. B. Bliska,, and J. E. Dixon. 2003. The Yersinia virulence factor YopM forms a novel protein complex with two cellular kinases. J. Biol. Chem. 278: 18514 18523.
104. McGhie, E. J.,, R. D. Hayward,, and V. Koronakis. 2001. Cooperation between actin-binding proteins of invasive Salmonella: SipA potentiates SipC nucleation and bundling of actin. EMBO J. 20: 2131 2139.
105. Meijer, L. K.,, K. Schesser,, H. Wolf-Watz,, P. Sassone-Corsi,, and S. Pettersson. 2000. The bacterial protein YopJ abrogates multiple signal transduction pathways that converge on the transcription factor CREB. Cell. Microbiol. 2: 231 238.
106. Monack, D. M.,, J. Mecsas,, N. Ghori,, and S. Falkow. 1997. Yersinia signals macrophages to undergo apoptosis and YopJ is necessary for this cell death. Proc. Natl. Acad. Sci. USA 94: 10385 10390.
107. Montagna, L. G.,, M. I. Ivanov,, and J. B. Bliska. 2001. Identification of residues in the N-terminal domain of the Yersinia tyrosine phosphatase that are critical for substrate recognition. J. Biol. Chem. 276: 5005 5011.
108. Murli, S.,, R. O. Watson,, and J. E. Galan. 2001. Role of tyrosine kinases and the tyrosine phosphatase SptP in the interaction of Salmonella with host cells. Cell. Microbiol. 3: 795 810.
109. Nassar, N.,, G. R. Hoffman,, D. Manor,, J. C. Clardy,, and R. A. Cerione. 1998. Structures of Cdc42 bound to the active and catalytically compromised forms of Cdc42GAP. Nat. Struct. Biol. 5: 1047 1052.
110. Neves, B. C.,, S. Knutton,, L. R. Trabulsi,, V. Sperandio,, J. B. Kaper,, G. Dougan,, and G. Frankel. 1998. Molecular and ultrastructural characterisation of EspA from different enteropathogenic Escherichia coli serotypes. FEMS Microbiol. Lett. 169: 73 80.
111. Neyt, C.,, and G. R. Cornelis. 1999. Insertion of a Yop translocation pore into the macrophage plasma membrane by Yersinia enterocolitica: requirement for translocators YopB and YopD, but not LcrG. Mol. Microbiol. 33: 971 981.
112. Nixdorff, K.,, J. Brauburger,, and D. Hahlbohm. 2000. The biotechnology revolution: the science and applications. NATO ASI Ser. 32: 77 124.
113. Norris, F. A.,, M. P. Wilson,, T. S. Wallis,, E. E. Galyov,, and P. W. Majerus. 1998. SopB, a protein required for virulence of Salmonella dublin, is an inositol phosphate phosphatase. Proc. Natl. Acad. Sci. USA 95: 14057 14059.
114. Opalka, N.,, R. Beckmann,, N. Boisset,, M. N. Simon,, M. Russel,, S. A. Darst. 2003. Structure of the filamentous phage pIV multimer by cryo-electron microscopy. J. Mol. Biol. 325: 461 470.
115. Orth, K.,, Z. Xu,, M. B. Mudgett,, Z. Q. Bao,, L. E. Palmer,, J. B. Bliska,, W. F. Mangel,, B. Staskawicz,, and J. E. Dixon. 2000. Disruption of signaling by Yersinia effector YopJ, a ubiquitin-like protein protease. Science 290: 1594 1597.
116. Osiecki, J. C.,, J. Barker,, W. L. Picking,, A. B. Serfis,, E. Berring,, S. Shah,, A. Harrington,, and W. D. Picking. 2001. IpaC from Shigella and SipC from Salmonella possess similar biochemical properties but are functionally distinct. Mol. Microbiol. 42: 469 481.
117. Page, A. L.,, P. Sansonetti,, and C. Parsot. 2002. Spa15 of Shigella flexneri, a third type of chaperone in the type III secretion pathway. Mol. Microbiol. 43: 1533 1542.
118. Page, A. L.,, and C. Parsot. 2002. Chaperones of the type III secretion pathway: jacks of all trades. Mol. Microbiol. 46: 1 11.
119. Palmer, L. E.,, S. Hobbie,, J. E. Galan,, and J. B. Bliska. 1998. YopJ of Yersinia pseudotuberculosis is required for the inhibition of macrophage TNF-alpha production and downregulation of the MAP kinases p38 and JNK. Mol. Microbiol. 27: 953 965.
120. Palmer, L. E.,, A. R. Pancetti,, S. Greenberg,, and J. B. Bliska. 1999. YopJ of Yersinia spp. is sufficient to cause downregulation of multiple mitogen-activated protein kinases in eukaryotic cells. Infect. Immun. 67: 708 716.
121. Pang, T.,, Z. A. Bhutta,, B. B. Finlay,, and M. Altwegg. 1995. Typhoid fever and other salmonellosis: a continuing challenge. Trends Microbiol. 3: 253 255.
122. Perry, R. D.,, and J. D. Fetherston. 1997. Yersinia pestis—etiologic agent of plague. Clin. Microbiol. Rev. 10: 35 66.
123. Persson, C.,, N. Carballeira,, H. Wolf-Watz,, and M. Fallman. 1997. The PTPase YopH inhibits uptake of Yersinia, tyrosine phosphorylation of p130Cas and FAK, and the associated accumulation of these proteins in peripheral focal adhesions. EMBO J. 16: 2307 2318.
124. Rittinger, K.,, P. A. Walker,, J. F. Eccleston,, K. Nurmahomed,, D. Owen,, E. Laue,, S. J. Gamblin,, and S. J. Smerdon. 1997a. Crystal structure of a small G protein in complex with the GTPase-activating protein rhoGAP. Nature 388: 693 697.
125. Rittinger, K.,, P. A. Walker,, J. F. Eccleston,, S. J. Smerdon,, and S. J. Gamblin. 1997b. Structure at 1.65 A of RhoA and its GTPase-activating protein in complex with a transition-state analogue. Nature 389: 758 762.
126. Roine, E.,, W. Wei,, J. Yuan,, E. L. Nurmiaho-Lassila,, N. Kalkkinen,, M. Romantschuk,, and S. Y. He. 1997. Hrp pilus: an hrp-dependent bacterial surface appendage produced by Pseudomonas syringae pv. tomato DC3000. Proc. Natl. Acad. Sci. USA 94: 3459 3464.
127. Rudolph, M. G.,, C. Weise,, S. Mirold,, B. Hillenbrand,, B. Bader,, A. Wittinghofer,, and W. D. Hardt. 1999. Biochemical analysis of SopE from Salmonella typhimurium, a highly efficient guanosine nucleotide exchange factor for RhoGTPases. J. Biol. Chem. 274: 30501 30509.
128. Samatey, F. A.,, K. Imada,, S. Nagashima,, F. Vonderviszt,, T. Kumasaka,, M. Yamamoto,, and K. Namba. 2001. Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling. Nature 410: 331 337.
129. Schesser, K.,, A.-K. Spiik,, J.-M. Dukuzumuremyi,, M. F. Neurath,, S. Pettersson,, and H. Wolf-Watz. 1998. The yopJ locus is required for Yersinia-mediated inhibition of NF-kappaB activation and cytokine expression: YopJ contains a eukaryotic SH2-like domain that is essential for its repressive activity. Mol. Microbiol. 28: 1067 1079.
130. Schuch, R.,, and A. T. Maurelli. 2001. MxiM and MxiJ, base elements of the Mxi-Spa type III secretion system of Shigella, interact with and stabilize the MxiD secretin in the cell envelope. J. Bacteriol. 183: 6991 6998.
131. Sekiya, K.,, M. Ohishi,, T. Ogino,, K. Tamano,, C. Sasakawa,, and A. Abe. 2001. Supermolecular structure of the enteropathogenic Escherichia coli type III secretion system and its direct interaction with the EspA-sheath- like structure. Proc. Natl. Acad. Sci. USA 98: 11638 11643.
132. Shao, F.,, P. M. Merritt,, Z. Bao,, R. W. Innes,, and J. E. Dixon. 2002. A Yersinia effector and a Pseudomonas avirulence protein define a family of cysteine proteases functioning in bacterial pathogenesis. Cell 109: 575 588.
133. Skrzypek, E.,, C. Cowan,, and S. C. Straley. 1998. Targeting of the Yersinia pestisYopM protein into HeLa cells and intracellular trafficking to the nucleus. Mol. Microbiol. 30: 1051 1065.
134. Smith, C. L.,, P. Khandelwal,, K. Keliikuli,, E. R. Zuiderweg,, and M. A. Saper. 2001. Structure of the type III secretion and substrate-binding domain of YersiniaYopH phosphatase. Mol. Microbiol. 42: 967 979.
135. Sory, M. P.,, A. Boland,, I. Lambermont,, and G. R. Cornelis. 1995. Identification of the YopE and YopH domains required for secretion and internalization into the cytosol of macrophages, using the cyaA gene fusion approach. Proc. Natl. Acad. Sci. USA 92: 11998 12002.
136. Sprang, S. R. 1997. G proteins, effectors and GAPs: structure and mechanism. Curr. Opin. Struct. Biol. 7: 849 856.
137. Stebbins, C. E.,, and J. E. Galan. 2000. Modulation of host signaling by a bacterial mimic: structure of the Salmonella effector SptP bound to Rac1. Mol. Cell 6: 1449 1460.
138. Stebbins, C. E.,, and J. E. Galan. 2001a. Maintenance of an unfolded polypeptide by a cognate chaperone in bacterial type III secretion. Nature 414: 77 81.
139. Stebbins, C. E.,, and J. E. Galan. 2001b. Structural mimicry in bacterial virulence. Nature 412: 701 705.
140. Steele-Mortimer, O.,, J. H. Brumell,, L. A. Knodler,, S. Meresse,, A. Lopez,, and B. B. Finlay. 2002. The invasion- associated type III secretion system of Salmonella enterica serovar Typhimurium is necessary for intracellular proliferation and vacuole biogenesis in epithelial cells. Cell. Microbiol. 4: 43 54.
141. Steele-Mortimer, O.,, L. A. Knodler,, S. L. Marcus,, M. P. Scheid,, B. Goh,, C. G. Pfeifer,, V. Duronio,, and B. B. Finlay. 2000. Activation of Akt/protein kinase B in epithelial cells by the Salmonella typhimurium effector sigD. J. Biol. Chem. 275: 37718 37724.
142. Stender, S.,, A. Friebel,, S. Linder,, M. Rohde,, S. Mirold,, and W. D. Hardt. 2000. Identification of SopE2 from Salmonella typhimurium, a conserved guanine nucleotide exchange factor for Cdc42 of the host cell. Mol. Microbiol. 36: 1206 1221.
143. Stuckey, J. A.,, H. L. Schubert,, E. B. Fauman,, Z. Y. Zhang,, J. E. Dixon,, and M. A. Saper. 1994. Crystal structure of Yersinia protein tyrosine phosphatase at 2.5 Å and the complex with tungstate. Nature 370: 571 575.
144. Sukhan, A.,, T. Kubori,, J. Wilson,, and J. E. Galan. 2001. Genetic analysis of assembly of the Salmonella enterica serovar Typhimurium type III secretion-associated needle complex. J. Bacteriol. 183: 1159 1167.
145. Tamano, K.,, S. Aizawa,, E. Katayama,, T. Nonaka,, S. Imajoh-Ohmi,, A. Kuwae,, S. Nagai,, and C. Sasakawa. 2000. Supramolecular structure of the Shigella type III secretion machinery: the needle part is changeable in length and essential for delivery of effectors. EMBO J. 19: 3876 3887.
146. Tardy, F.,, F. Homble,, C. Neyt,, R. Wattiez,, G. R. Cornelis,, J. M. Ruysschaert,, and V. Cabiaux. 1999. Yersinia enterocolitica type III secretion-translocation system: channel formation by secreted Yops. EMBO J. 18: 6793 6799.
147. Terebiznik, M. R.,, O. V. Vieira,, S. L. Marcus,, A. Slade,, C. M. Yip,, W. S. Trimble,, T. Meyer,, B. B. Finlay,, and S. Grinstein. 2002. Elimination of host cell PtdIns(4,5)P(2) by bacterial SigD promotes membrane fission during invasion by Salmonella. Nat. Cell Biol. 4: 766 773.
148. Tezcan-Merdol, D.,, T. Nyman,, U. Lindberg,, F. Haag,, F. Koch-Nolte,, and M. Rhen. 2001. Actin is ADPribosylated by the Salmonella enterica virulence-associated protein SpvB. Mol. Microbiol. 39: 606 619.
149. Tsuge, H.,, M. Nagahama,, H. Nishimura,, J. Hisatsune,, Y. Sakaguchi,, Y. Itogawa,, N. Katunuma,, and J. Sakurai. 2003. Crystal structure and site-directed mutagenesis of enzymatic components from Clostridium perfringens iota-toxin. J. Mol. Biol. 325: 471 483.
150. van Eerde, A.,, C. Hamiaux,, J. Perez,, C. Parsot,, and B. W. Dijkstra. 2004. Structure of Spa15, a type III secretion chaperone from Shigella flexneri with broad specificity. EMBO Rep. 5: 477 483.
151. Van Gijsegem, F.,, J. Vasse,, J. C. Camus,, M. Marenda,, and C. Boucher. 2000. Ralstonia solanacearum produces hrp-dependent pili that are required for PopA secretion but not for attachment of bacteria to plant cells. Mol. Microbiol. 36: 249 260.
152. Van Gijsegem, F.,, J. Vasse,, R. De Rycke,, P. Castello,, and C. Boucher. 2002. Genetic dissection of Ralstonia solanacearum hrp gene cluster reveals that the HrpV and HrpX proteins are required for Hrp pilus assembly. Mol. Microbiol. 44: 935 946.
153. Van Nhieu, G. T.,, and R. R. Isberg. 1991. The Yersinia pseudotuberculosis invasin protein and human fibronectin bind to mutually exclusive sites on the alpha 5 beta 1 integrin receptor. J. Biol. Chem. 266: 24367 24375.
154. Vetter, I. R.,, and A. Wittinghofer. 2001. The guanine nucleotide-binding switch in three dimensions. Science 294: 1299 1304.
155. Wachter, C.,, C. Beinke,, M. Mattes,, and M. A. Schmidt. 1999. Insertion of EspD into epithelial target cell membranes by infecting enteropathogenic Escherichia coli. Mol. Microbiol. 31: 1695 1707.
156. Wattiau, P.,, S. Woestyn,, and G. R. Cornelis. 1996. Customized secretion chaperones in pathogenic bacteria. Mol. Microbiol. 20: 255 262.
157. Wei, W.,, A. Plovanich-Jones,, W. L. Deng,, Q. L. Jin,, A. Collmer,, H. C. Huang,, and S. Y. He. 2000. T he gene coding for the Hrp pilus structural protein is required for type III secretion of Hrp and Avr proteins in Pseudomonas syringae pv. tomato. Proc. Natl. Acad. Sci. USA 97: 2247 2252.
158. Whitman, W. B.,, D. C. Coleman,, and W. J. Wiebe. 1998. Prokaryotes: the unseen majority. Proc. Natl. Acad. Sci. USA 95: 6578 6583.
159. Wittinghofer, A.,, and E. F. Pai. 1991. The structure of Ras protein: a model for a universal molecular switch. Trends Biochem. Sci. 16: 382 387.
160. Woestyn, S.,, A. Allaoui,, P. Wattiau,, and G. R. Cornelis. 1994. YscN, the putative energizer of the Yersinia Yop secretion machinery. J. Bacteriol. 176: 1561 1569.
161. Woestyn, S.,, M. P. Sory,, A. Boland,, O. Lequenne,, and G. R. Cornelis. 1996. The cytosolic SycE and SycH chaperones of Yersinia protect the region of YopE and YopH involved in translocation across eukaryotic cell membranes. Mol. Microbiol. 20: 1261 1271.
162. Wood, M. W.,, R. Rosqvist,, P. B. Mullan,, M. H. Edwards,, and E. E. Galyov. 1996. SopE, a secreted protein of Salmonella dublin, is translocated into the target eukaryotic cell via a sip-dependent mechanism and promotes bacterial entry. Mol. Microbiol. 22: 327 338.
163. Worthylake, D. K.,, K. L. Rossman,, and J. Sondek. 2000. Crystal structure of Rac1 in complex with the guanine nucleotide exchange region of Tiam1. Nature 408: 682 688.
164. Wurtele, M.,, L. Renault,, J. T. Barbieri,, A. Wittinghofer,, and E. Wolf. 2001a. Structure of the ExoS GTPase activating domain. FEBS Lett. 491: 26 29.
165. Wurtele, M.,, E. Wolf,, K. J. Pederson,, G. Buchwald,, M. R. Ahmadian,, J. T. Barbieri,, and A. Wittinghofer. 2001b. How the Pseudomonas aeruginosa ExoS toxin downregulates Rac. Nat. Struct. Biol. 8: 23 26.
166. Yonekura, K.,, S. Maki-Yonekura,, and K. Namba. 2003. Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy. Nature 424: 643 650.
167. Young, V. B.,, V. L. Miller,, S. Falkow,, and G. K. Schoolnik. 1990. Sequence, localization and function of the invasin protein of Yersinia enterocolitica. Mol. Microbiol. 4: 1119 1128.
168. Zaharik, M. L.,, S. Gruenheid,, A. J. Perrin,, and B. B. Finlay. 2002. Delivery of dangerous goods: type III secretion in enteric pathogens. Int. J. Med. Microbiol. 291: 593 603.
169. Zhang, S.,, R. L. Santos,, R. M. Tsolis,, S. Stender,, W. D. Hardt,, A. J. Baumler,, and L. G. Adams. 2002. The Salmonella enterica serotype Typhimurium effector proteins SipA, SopA, SopB, SopD, and SopE2 act in concert to induce diarrhea in calves. Infect. Immun. 70: 3843 3855.
170. Zhang, Z. Y. 2002. Protein tyrosine phosphatases: structure and function, substrate specificity, and inhibitor development. Annu. Rev. Pharmacol. Toxicol. 42: 209 234.
171. Zhou, D.,, L. M. Chen,, L. Hernandez,, S. B. Shears,, and J. E. Galan. 2001. A Salmonella inositol polyphosphatase acts in conjunction with other bacterial effectors to promote host cell actin cytoskeleton rearrangements and bacterial internalization. Mol. Microbiol. 39: 248 259.
172. Zhou, D.,, and J. Galan. 2001. Salmonella entry into host cells: the work in concert of type III secreted effector proteins. Microbes Infect. 3: 1293 1298.
173. Zhou, D.,, M. S. Mooseker,, and J. E. Galan. 1999a. An invasion-associated Salmonella protein modulates the actin-bundling activity of plastin. Proc. Natl. Acad. Sci. USA 96: 10176 10181.
174. Zhou, D.,, M. S. Mooseker,, and J. E. Galan. 1999b. Role of the S. typhimurium actin-binding protein SipA in bacterial internalization. Science 283: 2092 2095.
175. Zumbihl, R.,, M. Aepfelbacher,, A. Andor,, C. A. Jacobi,, K. Ruckdeschel,, B. Rouot,, and J. Heesemann. 1999. The cytotoxin YopT of Yersinia enterocolitica induces modification and cellular redistribution of the small GTP-binding protein RhoA. J. Biol. Chem. 274: 29289 29293.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error