Chapter 21 :

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818463/9781555816261_Chap21-1.gif /docserver/preview/fulltext/10.1128/9781555818463/9781555816261_Chap21-2.gif


The etiological agents of Staphylococcal food poisoning (SFP) are members of the genus , predominantly . This form of food poisoning is considered intoxication; it does not involve infection by, and growth of, the bacteria in the host. This chapter primarily addresses SFP; however, in regard to the staphylococcal enterotoxins (SEs), there is significant overlap in the natural histories of both diseases. Humans are the main reservoir for staphylococci involved in human disease, including . is known for acquiring genetic resistance to heavy metals and antimicrobial agents used in clinical medicine. SFP occurs as either isolated cases or outbreaks affecting a large number of people. Biochemical and structural studies of SEs have revealed that some SEs are dependent on zinc ions to be functional and to be able to properly bind major histocompatibility complex class II (MHCII). SEs and other superantigens (SAgs) interact with a characteristic repertoire of T-cell receptors (TCR) sequences. The TCR specificity of each SE is determined by toxin residues in the shallow cavity at the top of the molecule. The structural aspects of SEs that enable them to survive degradation by pepsin and other enzymes in the gastrointestinal tract are required for the toxins to induce SFP. Progress has been made toward understanding the molecular aspects relevant to SFP. has some unique properties that promote its ability to produce foodborne illness.

Citation: Seo K, Bohach G. 2013. , p 547-573. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch21
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 21.1
Figure 21.1

Alignment of primary sequences of mature SEs and SEls in the current literature. Also shown are the consensus sequence (at the bottom) and dashes (–) to indicate gaps in the sequences made by alignment. Sequence alignment and output were conducted using the CLUSTAL W Program ( ). doi:10.1128/9781555818463.ch21f1

Citation: Seo K, Bohach G. 2013. , p 547-573. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 21.2
Figure 21.2

Interactions between APC and T cells facilitated by conventional antigens (Ags) and superantigens (SAgs). Following processing by the APC, conventional Ags are presented to highly specific T-cell receptors (TCR) in association with the Ag-binding groove of the MHCII molecule. SAgs interact with MHCII molecules (without processing) outside the Ag binding groove. The SAg/MHCII bimolecular complex binds to the TCR through specificity determined only by the V region of the receptor α or β chain.doi:10.1128/9781555818463.ch21f2

Citation: Seo K, Bohach G. 2013. , p 547-573. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 21.3
Figure 21.3

Tree representation demonstrating molecular relatedness of the currently known SE family and compared to TSST-1. This tree was created with the clustering feature of the PHYLIP program ( ). doi:10.1128/9781555818463.ch21f3

Citation: Seo K, Bohach G. 2013. , p 547-573. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 21.4
Figure 21.4

General characteristics of the locus in . This physical map shows the relative location of genes within the locus and other interacting regulatory genes and gene products (not drawn to scale). doi:10.1128/9781555818463.ch21f4

Citation: Seo K, Bohach G. 2013. , p 547-573. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 21.5
Figure 21.5

Schematic diagrams of the SEC3 crystal structure illustrating major structural features. Numerical designations defining the location of select residues and each α-helix and β-strand are shown within the two major domains. Also indicated are the N and C termini. The intramolecular disulfide linkage between Cys residues 93 and 110 (stick) connects the disulfide loop to the β5 strand containing the conserved residues ( Fig. 21.7 ) potentially important for emesis. The zinc atom bound by SEC3 faces the back of the SEC3 molecule between domains 1 and 2 and is coordinated by D83, H118, and H122. In contrast, the high-affinity zinc-binding site in SEA is positioned on the opposite edge of domain 2. The conformational topology of domain 1 is the same as the OB binding domains of several other proteins described in the text. doi:10.1128/9781555818463.ch21f5

Citation: Seo K, Bohach G. 2013. , p 547-573. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 21.6
Figure 21.6

(A) Schematic diagram of the SEA crystal structure. SEA has two MHCII binding sites. A relatively low-affinity MHCII binding occurs at a generic binding site that is conserved in most of SEs. A high-affinity MHCII binding site is located on the external surface of domain 2. This includes the high-affinity zinc-binding site, formed by His187, His225, and Asp227. The zinc ion mediates cross-linking of SEA with MHCII molecules and is crucial for maximal B- and T-cell activation. (B) A hypothetical model of MHCII-SEC-TCR complex based on the modeling predicted from the crystal structures of the SEC3-HLA-DR1 (low-affinity binding site) and SEB-Vβ complexes. doi:10.1128/9781555818463.ch21f6

Citation: Seo K, Bohach G. 2013. , p 547-573. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 21.7
Figure 21.7

Comparison of cysteine loop and adjacent sequences for SEs and the analogous regions of the SEls. Evidence suggests that proper positioning of the critical downstream residues by a stable disulfide bond is required for emesis. Toxins designated as emetic are those reported as inducing emesis in the monkey feeding assay ( ). SEI was reported to be weakly emetic ( ). doi:10.1128/9781555818463.ch21f7

Citation: Seo K, Bohach G. 2013. , p 547-573. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Alber, G.,, D. K. Hammer,, and B. Fleischer. 1990. Relationship between enterotoxic- and T lymphocyte-stimulating activity of staphylococcal enterotoxin B. J. Immunol. 144: 4501 4506.
2. Alber, G.,, P. H. Scheuber,, B. Reck,, B. Sailer-Kramer,, A. Hartmann,, and D. K. Hammer. 1989. Role of substance P in immediate-type skin reactions induced by staphylococcal enterotoxin B in unsensitized monkeys. J. Allergy Clin. Immunol. 84: 880 885.
3. Al-Daccak, R.,, K. Mehindate,, F. Damdoumi,, P. Etongue-Mayer,, H. Nilsson,, P. Antonsson,, M. Sundstrom,, M. Dohlsten,, R. P. Sekaly,, and W. Mourad. 1998. Staphylococcal enterotoxin D is a promiscuous superantigen offering multiple modes of interactions with the MHC class II receptors. J. Immunol. 160: 225 232.
4.Anonymous. 1992. Foodborne Pathogenic Microorganisms and Natural Toxins. Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Rockville, MD.
5. Asao, T.,, Y. Kumeda,, T. Kawai,, T. Shibata,, H. Oda,, K. Haruki,, H. Nakazawa,, and S. Kozaki. 2003. An extensive outbreak of staphylococcal food poisoning due to low-fat milk in Japan: estimation of enterotoxin A in the incriminated milk and powdered skim milk. Epidemiol. Infect. 130: 33 40.
6. Bayles, K. W.,, and J. J. Iandolo. 1989. Genetic and molecular analyses of the gene encoding staphylococcal enterotoxin D. J. Bacteriol. 171: 4799 4806.
7. Beery, J. T.,, S. L. Taylor,, L. R. Schlunz,, R. C. Freed,, and M. S. Bergdoll. 1984. Effects of staphylococcal enterotoxin A on the rat gastrointestinal tract. Infect. Immun. 44: 234 240.
8. Bergdoll, M. S. 1988. Monkey feeding test for staphylococcal enterotoxin. Methods Enzymol. 165: 324 333.
9. Bergdoll, M. S., 1985. The staphylococcal enterotoxin—an update, p. 247⋙̸ 254. In J. Jeljaszewicz (ed.), The Staphylococci. Gustav Fischer Verlag, Stuttgart, Germany.
10. Bergdoll, M. S., 1979. Staphylococcal intoxications, p. 443 494. In H. Riemann, and F. L. Bryan (ed.), Food-Borne Infections and Intoxications. Academic Press, Inc., New York, NY.
11. Bergdoll, M. S., 1989. Staphylococcus aureus, p. 463 523. In M. P. Doyle (ed.), Foodborne Bacterial Pathogens. Marcel Dekker, Inc., New York, NY.
12. Bergdoll, M. S.,, C. R. Borja,, R. N. Robbins,, and K. F. Weiss. 1971. Identification of enterotoxin E. Infect. Immun. 4: 593 595.
13. Bergdoll, M. S.,, M. J. Surgalla,, and G. M. Dack. 1959. Staphylococcal enterotoxin. Identification of a specific precipitating antibody with enterotoxin-neutralizing property. J. Immunol. 83: 334 338.
14. Betley, M. J.,, D. W. Borst,, and L. B. Regassa. 1992. Staphylococcal enterotoxins, toxic shock syndrome toxin and streptococcal pyrogenic exotoxins: a comparative study of their molecular biology. Chem. Immunol. 55: 1 35.
15. Betley, M. J.,, and J. J. Mekalanos. 1985. Staphylococcal enterotoxin A is encoded by phage. Science 229: 185 187.
16. Betley, M. J.,, P. M. Schlievert,, M. S. Bergdoll,, G. A. Bohach,, J. J. Iandolo,, S. A. Khan,, P. A. Pattee,, and R. R. Reiser. 1990. Staphylococcal gene nomenclature. ASM News 56: 182.
17. Blaiotta, G.,, D. Ercolini,, C. Pennacchia,, V. Fusco,, A. Casaburi,, O. Pepe,, and F. Villani. 2004. PCR detection of staphylococcal enterotoxin genes in Staphylococcus spp. strains isolated from meat and dairy products. Evidence for new variants of seG and seI in S. aureus AB-8802. J. Appl. Microbiol. 97: 719 730.
18. Bohach, G. A.,, D. J. Fast,, R. D. Nelson,, and P. M. Schlievert. 1990. Staphylococcal and streptococcal pyrogenic toxins involved in toxic shock syndrome and related illnesses. Crit. Rev. Microbiol. 17: 251 272.
19. Bohach, G. A.,, C. J. Hovde,, J. P. Handley,, and P. M. Schlievert. 1988. Cross-neutralization of staphylococcal and streptococcal pyrogenic toxins by monoclonal and polyclonal antibodies. Infect. Immun. 56: 400 404.
20. Bohach, G. A.,, L. M. Jablonski,, C. F. Deobald,, Y. I. Chi,, and C. V. Stauffacher,. 1995. Functional domains of staphylococcal enterotoxin, p. 339 356. In M. Ecklund,, J. L. Richard,, and M. Mise (ed.), Molecular Approaches to Food Safety; Issues Involving Toxic Microorganisms. Alaken Inc., Fort Collins, CO.
21. Bohach, G. A.,, C. V. Stauffacher,, D. H. Ohlendorf,, Y. I. Chi,, G. M. Vath,, and P. M. Schlievert,. 1996. The staphylococcal and streptococcal pyrogenic toxin family, p. 131 154. In B. R. Singh, and A. T. Tu (ed.), Natural Toxins II. Plenum Publishing Corporation, New York, NY.
22. Brunskill, E. W.,, and K. W. Bayles. 1996. Identification of LytSR-regulated genes from Staphylococcus aureus. J. Bacteriol. 178: 5810 5812.
23. Bryan, F. L., 1976. Staphylococcus aureus, p. 12 128. In M. P. deFigueiredo, and D. F. Splittstoesser (ed.), Food Microbiology: Public Health and Spoilage Aspects. AVI, Westport, CT.
24. Buzby, J. C.,, T. Roberts,, C. T. Lin,, and J. M. McDonald. 1996. Bacterial Foodborne Disease Medical Costs and Productivity Losses. Agricultural Economic Report 147. U.S. Department of Agriculture, Washington, DC. http://www.ers.usda.gov/publications/aer-agricultural-economic-report/aer741.aspx.
25. Casman, E. P.,, M. S. Bergdoll,, and J. Robinson. 1963. Designation of staphylococcal exterotoxins. J. Bacteriol. 85: 715 716.
26. Chan, P. F.,, and S. J. Foster. 1998. Role of SarA in virulence determinant production and environmental signal transduction in Staphylococcus aureus. J. Bacteriol. 180: 6232 6241.
27. Cheung, A. L.,, Y. T. Chien,, and A. S. Bayer. 1999. Hyperproduction of alpha-hemolysin in a sigB mutant is associated with elevated SarA expression in Staphylococcus aureus. Infect. Immun. 67: 1331 1337.
28. Cheung, A. L.,, and G. Zhang. 2002. Global regulation of virulence determinants in Staphylococcus aureus by the SarA protein family. Front. Biosci. 7: d1825 d1842.
29. Chien, Y.,, and A. L. Cheung. 1998. Molecular interactions between two global regulators, sar and agr, in Staphylococcus aureus. J. Biol. Chem. 273: 2645 2652.
30. Choi, Y.,, J. A. Lafferty,, J. R. Clements,, J. K. Todd,, E. W. Gelfand,, J. Kappler,, P. Marrack,, and B. L. Kotzin. 1990. Selective expansion of T cells expressing V beta 2 in toxic shock syndrome. J. Exp. Med. 172: 981 984.
31. Clark, W. G.,, and J. S. Page. 1968. Pyrogenic responses to staphylococcal enterotoxins A and B in cats. J. Bacteriol. 96: 1940 1946.
32. Couch, J. L.,, M. T. Soltis,, and M. J. Betley. 1988. Cloning and nucleotide sequence of the type E staphylococcal enterotoxin gene. J. Bacteriol. 170: 2954 2960.
33. Dack, G. M.,, W. E. Cary,, O. Woolper,, and H. Wiggers. 1930. An outbreak of food poisoning proved to be due to a yellow hemolytic Staphylococcus. Can. J. Microbiol. 4: 167 175.
34. Deringer, J. R.,, R. J. Ely,, S. R. Monday,, C. V. Stauffacher,, and G. A. Bohach. 1997. Vbeta-dependent stimulation of bovine and human T cells by host-specific staphylococcal enterotoxins. Infect. Immun. 65: 4048 4054.
35. Do Carmo, L. S.,, C. Cummings,, V. R. Linardi,, R. S. Dias,, J. M. De Souza,, M. J. De Sena,, D. A. Dos Santos,, J. W. Shupp,, R. K. Pereira,, and M. Jett. 2004. A case study of a massive staphylococcal food poisoning incident. Foodborne Pathog. Dis. 1: 241 246.
36. Everson, M. L.,, M. W. Hinds,, R. S. Bernstein,, and M. S. Bergdoll. 1988. Estimation of human dose of staphylococcal enterotoxin A from a large outbreak of staphylococcal food poisoning involving chocolate milk. Int. J. Food Microbiol. 7: 311 316.
37. Felsenstein, J. 1989. PHYLIP-Phylogeny Inference Package (Version 3.2). Cladistics 5: 164 166.
38. Fields, B. A.,, E. L. Malchiodi,, H. Li,, X. Ysern,, C. V. Stauffacher,, P. M. Schlievert,, K. Karjalainen,, and R. A. Mariuzza. 1996. Crystal structure of a T-cell receptor beta-chain complexed with a superantigen. Nature 384: 188 192.
39. Fitzgerald, J. R.,, S. R. Monday,, T. J. Foster,, G. A. Bohach,, P. J. Hartigan,, W. J. Meaney,, and C. J. Smyth. 2001. Characterization of a putative pathogenicity island from bovine Staphylococcus aureus encoding multiple superantigens. J. Bacteriol. 183: 63 70.
40. Fournier, B.,, and A. Klier. 2004. Protein A gene expression is regulated by DNA supercoiling which is modified by the ArlS-ArlR two-component system of Staphylococcus aureus. Microbiology 150: 3807 3819.
41. Fraser, J. D.,, S. Lowe,, M. J. Irwin,, N. R. Gascoigne,, and K. R. Hudson,. 1993. Structural model of staphylococcal enterotoxin A interaction with MHC class II antigens, p. 7 30. In B. T. Huber, and E. Palmer (ed.), Superantigens: a Pathogens’s View of the Immune System. Cold Spring Harbor Laboratory Press, Plainview, NY.
42. Friedman, M. E. 1966. Inhibition of staphylococcal enterotoxin B formation in broth cultures. J. Bacteriol. 92: 277 278.
43. Fukuchi, K.,, Y. Kasahara,, K. Asai,, K. Kobayashi,, S. Moriya,, and N. Ogasawara. 2000. The essential two-component regulatory system encoded by yycF and yycG modulates expression of the ftsAZ operon in Bacillus subtilis. Microbiology 146( Pt. 7): 1573 1583.
44. Gertz, S.,, S. Engelmann,, R. Schmid,, A. K. Ziebandt,, K. Tischer,, C. Scharf,, J. Hacker,, and M. Hecker. 2000. Characterization of the sigma(B) regulon in Staphylococcus aureus. J. Bacteriol. 182: 6983 6991.
45. Gilbert, R. J.,, and A. A. Wieneke,. 1973. Staphylococcal food poisoning with special reference to the detection of enterotoxin in food, p. 273 285. In B. C. Hobbs, and J. H. Christian (ed.), The Microbiological Safety of Food. Academic Press, Inc., New York, NY.
46. Gronenborn, A. M.,, D. R. Filpula,, N. Z. Essig,, A. Achari,, M. Whitlow,, P. T. Wingfield,, and G. M. Clore. 1991. A novel, highly stable fold of the immunoglobulin binding domain of streptococcal protein G. Science 253: 657 661.
47. Hajek, V.,, and E. Marsalek. 1973. The occurrence of enterotoxigenic Staphylococcus aureus strains in hosts of different animal species. Zentralbl. Bakteriol. Orig. A 223: 63 68.
48. Harris, T. O.,, and M. J. Betley. 1995. Biological activities of staphylococcal enterotoxin type A mutants with N-terminal substitutions. Infect. Immun. 63: 2133 2140.
49. Hase, C. C.,, and R. A. Finkelstein. 1993. Bacterial extracellular zinc-containing metalloproteases. Microbiol. Rev. 57: 823 837.
50. Herbert, S.,, P. Barry,, and R. P. Novick. 2001. Subinhibitory clindamycin differentially inhibits transcription of exoprotein genes in Staphylococcus aureus. Infect. Immun. 69: 2996 3003.
51. Hoffmann, M. L.,, L. M. Jablonski,, K. K. Crum,, S. P. Hackett,, Y. I. Chi,, C. V. Stauffacher,, D. L. Stevens,, and G. A. Bohach. 1994. Predictions of T-cell receptor- and major histocompatibility complex-binding sites on staphylococcal enterotoxin C1. Infect. Immun. 62: 3396 3407.
52. Holmberg, S. D.,, and P. A. Blake. 1984. Staphylococcal food poisoning in the United States. New facts and old misconceptions. JAMA 251: 487 489.
53. Hovde, C. J.,, J. C. Marr,, M. L. Hoffmann,, S. P. Hackett,, Y. I. Chi,, K. K. Crum,, D. L. Stevens,, C. V. Stauffacher,, and G. A. Bohach. 1994. Investigation of the role of the disulphide bond in the activity and structure of staphylococcal enterotoxin C1. Mol. Microbiol. 13: 897 909.
54. Hu, D. L.,, K. Omoe,, Y. Shimoda,, A. Nakane,, and K. Shinagawa. 2003. Induction of emetic response to staphylococcal enterotoxins in the house musk shrew ( Suncus murinus). Infect. Immun. 71: 567 570.
55. Hu, D. L.,, G. Zhu,, F. Mori,, K. Omoe,, M. Okada,, K. Wakabayashi,, S. Kaneko,, K. Shinagawa,, and A. Nakane. 2007. Staphylococcal enterotoxin induces emesis through increasing serotonin release in intestine and it is downregulated by cannabinoid receptor 1. Cell Microbiol 9: 2267 2277.
56. Huang, I. Y.,, and M. S. Bergdoll. 1970. The primary structure of staphylococcal enterotoxin B. 3. The cyanogen bromide peptides of reduced and aminoethylated enterotoxin B, and the complete amino acid sequence. J. Biol. Chem. 245: 3518 3525.
57. Hudson, K. R.,, R. E. Tiedemann,, R. G. Urban,, S. C. Lowe, J. L. Strominger, and J. D. Fraser. 1995. Staphylococcal enterotoxin A has two cooperative binding sites on major histocompatibility complex class II. J. Exp. Med. 182: 711 720.
58. Iandolo, J. J.,, and W. M. Shafer. 1977. Regulation of staphylococcal enterotoxin B. Infect. Immun. 16: 610 616.
59. Ikeda, T.,, N. Tamate,, K. Yamaguchi,, and S. Makino. 2005. Mass outbreak of food poisoning disease caused by small amounts of staphylococcal enterotoxins A and H. Appl. Environ. Microbiol. 71: 2793 2795.
60. Ingavale, S.,, W. van Wamel,, T. T. Luong,, C. Y. Lee,, and A. L. Cheung. 2005. Rat/MgrA, a regulator of autolysis, is a regulator of virulence genes in Staphylococcus aureus. Infect. Immun. 73: 1423 1431.
61. Janzon, L.,, and S. Arvidson. 1990. The role of the delta-lysin gene ( hld) in the regulation of virulence genes by the accessory gene regulator ( agr) in Staphylococcus aureus. EMBO J. 9: 1391 1399.
62. Jardetzky, T. S.,, J. H. Brown,, J. C. Gorga,, L. J. Stern,, R. G. Urban,, Y. I. Chi,, C. Stauffacher,, J. L. Strominger,, and D. C. Wiley. 1994. Three-dimensional structure of a human class II histocompatibility molecule complexed with superantigen. Nature 368: 711 718.
63. Jarraud, S.,, M. A. Peyrat,, A. Lim,, A. Tristan,, M. Bes,, C. Mougel,, J. Etienne,, F. Vandenesch,, M. Bonneville,, and G. Lina. 2001. egc, a highly prevalent operon of enterotoxin gene, forms a putative nursery of superantigens in Staphylococcus aureus. J. Immunol. 166: 669 677.
64. Jay, J. M. 1986. Modern Food Microbiology, 3rd ed., p. 437 458. Van Nostrand Reinhold Company, New York, NY.
65. Jett, M.,, R. Neill,, C. Welch,, T. Boyle,, E. Bernton,, D. Hoover,, G. Lowell,, R. E. Hunt,, S. Chatterjee,, and P. Gemski. 1994. Identification of staphylococcal enterotoxin B sequences important for induction of lymphocyte proliferation by using synthetic peptide fragments of the toxin. Infect. Immun. 62: 3408 3415.
66. Johns, M. B., Jr.,, and S. A. Khan. 1988. Staphylococcal enterotoxin B gene is associated with a discrete genetic element. J. Bacteriol. 170: 4033 4039.
67. Johnson, L. P.,, and P. M. Schlievert. 1983. A physical map of the group A streptococcal pyrogenic exotoxin bacteriophage T12 genome. Mol. Gen. Genet. 189: 251 255.
68. Jones, C. L.,, and S. A. Khan. 1986. Nucleotide sequence of the enterotoxin B gene from Staphylococcus aureus. J. Bacteriol. 166: 29 33.
69. Kappler, J.,, B. Kotzin,, L. Herron,, E. W. Gelfand,, R. D. Bigler,, A. Boylston,, S. Carrel,, D. N. Posnett,, Y. Choi,, and P. Marrack. 1989. V beta-specific stimulation of human T cells by staphylococcal toxins. Science 244: 811 813.
70. Katsuno, S.,, and M. Kondo. 1973. Regulation of staphylococcal enterotoxin B synthesis and its relation to other extracellular proteins. Jpn. J. Med. Sci. Biol. 26: 26 29.
71. Kent, T. H. 1966. Staphylococcal enterotoxin gastroenteritis in rhesus monkeys. Am. J. Pathol. 48: 387 407.
72. Klimpel, K. R.,, N. Arora,, and S. H. Leppla. 1994. Anthrax toxin lethal factor contains a zinc metalloprotease consensus sequence which is required for lethal toxin activity. Mol. Microbiol. 13: 1093 1100.
73. Komisar, J.,, J. Rivera,, A. Vega,, and J. Tseng. 1992. Effects of staphylococcal enterotoxin B on rodent mast cells. Infect. Immun. 60: 2969 2975.
74. Kornblum, J.,, B. Kreiswirth,, S. J. Projan,, H. Ross,, and R. P. Novick,. 1990. Agr: a polycistronic locus regulating exoprotein synthesis in Staphylococcus aureus, p. 373 402. In R. P. Novick, and R. Skurray (ed.), Molecular Biology of the Staphylococci. VCH Publishers, New York, NY.
75. Kullik, I. I.,, and P. Giachino. 1997. The alternative sigma factor sigmaB in Staphylococcus aureus: regulation of the sigB operon in response to growth phase and heat shock. Arch. Microbiol. 167: 151 159.
76. Kuroda, M.,, T. Ohta,, I. Uchiyama,, T. Baba,, H. Yuzawa,, I. Kobayashi,, L. Cui,, A. Oguchi,, K. Aoki,, Y. Nagai,, J. Lian,, T. Ito,, M. Kanamori,, H. Matsumaru,, A. Maruyama,, H. Murakami,, A. Hosoyama,, Y. Mizutani-Ui,, N. K. Takahashi,, T. Sawano,, R. Inoue,, C. Kaito,, K. Sekimizu,, H. Hirakawa,, S. Kuhara,, S. Goto,, J. Yabuzaki,, M. Kanehisa,, A. Yamashita,, K. Oshima,, K. Furuya,, C. Yoshino,, T. Shiba,, M. Hattori,, N. Ogasawara,, H. Hayashi,, and K. Hiramatsu. 2001. Whole genome sequencing of meticillin-resistant Staphylococcus aureus. Lancet 357: 1225 1240.
77. Leder, L.,, A. Llera,, P. M. Lavoie,, M. I. Lebedeva,, H. Li,, R. P. Sekaly,, G. A. Bohach,, P. J. Gahr,, P. M. Schlievert,, K. Karjalainen,, and R. A. Mariuzza. 1998. A mutational analysis of the binding of staphylococcal enterotoxins B and C3 to the T cell receptor beta chain and major histocompatibility complex class II. J. Exp. Med. 187: 823 833.
78. Letertre, C.,, S. Perelle,, F. Dilasser,, and P. Fach. 2003. Identification of a new putative enterotoxin SEU encoded by the egc cluster of Staphylococcus aureus. J. Appl. Microbiol. 95: 38 43.
79. Li, R.,, A. C. Manna,, S. Dai,, A. L. Cheung,, and G. Zhang. 2003. Crystal structure of the SarS protein from Staphylococcus aureus. J. Bacteriol. 185: 4219 4225.
80. Lina, G.,, G. A. Bohach,, S. P. Nair,, K. Hiramatsu,, E. Jouvin-Marche,, and R. Mariuzza. 2004. Standard nomenclature for the superantigens expressed by Staphylococcus. J. Infect. Dis. 189: 2334 2336.
81. Liu, Y.,, A. Manna,, R. Li,, W. E. Martin,, R. C. Murphy,, A. L. Cheung,, and G. Zhang. 2001. Crystal structure of the SarR protein from Staphylococcus aureus. Proc. Natl. Acad. Sci. USA 98: 6877 6882.
82. Liu, Y.,, A. C. Manna,, C. H. Pan,, I. A. Kriksunov,, D. J. Thiel,, A. L. Cheung,, and G. Zhang. 2006. Structural and function analyses of the global regulatory protein SarA from Staphylococcus aureus. Proc. Natl. Acad. Sci. USA 103: 2392 2397.
83. Marr, J. C.,, J. D. Lyon,, J. R. Roberson,, M. Lupher,, W. C. Davis,, and G. A. Bohach. 1993. Characterization of novel type C staphylococcal enterotoxins: biological and evolutionary implications. Infect. Immun. 61: 4254 4262.
84. Marrack, P.,, and J. Kappler. 1990. The staphylococcal enterotoxins and their relatives. Science 248: 1066.
85. McNamara, P. J.,, K. C. Milligan-Monroe,, S. Khalili,, and R. A. Proctor. 2000. Identification, cloning, and initial characterization of rot, a locus encoding a regulator of virulence factor expression in Staphylococcus aureus. J. Bacteriol. 182: 3197 3203.
86. Merritt, E. A.,, and W. G. Hol. 1995. AB5 toxins. Curr. Opin. Struct. Biol. 5: 165 171.
87. Merson, M. H. 1973. The epidemiology of staphylococcal foodborne disease, p. 20 37. In Proceedings of the Staphylococci in Foods Conference. Pennsylvania State University Press, University Park, PA.
88. Mitchell, D. T.,, D. G. Levitt,, P. M. Schlievert,, and D. H. Ohlendorf. 2000. Structural evidence for the evolution of pyrogenic toxin superantigens. J. Mol. Evol. 51: 520 531.
89. Miyazaki, E.,, J. M. Chen,, C. Ko,, and W. R. Bishai. 1999. The Staphylococcus aureus rsbW ( orf159) gene encodes an anti-sigma factor of SigB. J. Bacteriol. 181: 2846 2851.
90. Monday, S. R.,, and G. A. Bohach. 2001. Genes encoding staphylococcal enterotoxins G and I are linked and separated by DNA related to other staphylococcal enterotoxins. J. Nat. Toxins 10: 1 8.
91. Monday, S. R.,, and G. A. Bohach. 1999. Use of multiplex PCR to detect classical and newly described pyrogenic toxin genes in staphylococcal isolates. J. Clin. Microbiol. 37: 3411 3414.
92. Munson, S. H.,, M. T. Tremaine,, M. J. Betley,, and R. A. Welch. 1998. Identification and characterization of staphylococcal enterotoxin types G and I from Staphylococcus aureus. Infect. Immun. 66: 3337 3348.
93. Noleto, A. L.,, L. M. Malburg, Jr.,, and M. S. Bergdoll. 1987. Production of staphylococcal enterotoxin in mixed cultures. Appl. Environ. Microbiol. 53: 2271 2274.
94. Noleto, A. L.,, A. Tibana,, C. A. Silva,, L. Rubin,, and S. Schueller. 1980. Bacteriological analysis of milk. An. Microbiol. (Rio J.) 25: 41 51. (In Portuguese.)
95. Novick, R. P. 2003. Autoinduction and signal transduction in the regulation of staphylococcal virulence. Mol. Microbiol. 48: 1429 1449.
96. Novick, R. P. 2003. Mobile genetic elements and bacterial toxinoses: the superantigen-encoding pathogenicity islands of Staphylococcus aureus. Plasmid 49: 93 105.
97. Novick, R. P.,, S. J. Projan,, J. Kornblum,, H. F. Ross,, G. Ji,, B. Kreiswirth,, F. Vandenesch,, and S. Moghazeh. 1995. The agr P2 operon: an autocatalytic sensory transduction system in Staphylococcus aureus. Mol. Gen. Genet. 248: 446 458.
98. Omoe, K.,, D. L. Hu,, H. Takahashi-Omoe,, A. Nakane,, and K. Shinagawa. 2005. Comprehensive analysis of classical and newly described staphylococcal superantigenic toxin genes in Staphylococcus aureus isolates. FEMS Microbiol. Lett. 246: 191 198.
99. Omoe, K.,, D. L. Hu,, H. Takahashi-Omoe,, A. Nakane,, and K. Shinagawa. 2003. Identification and characterization of a new staphylococcal enterotoxin-related putative toxin encoded by two kinds of plasmids. Infect. Immun. 71: 6088 6094.
100. Omoe, K.,, K. Imanishi,, D. L. Hu,, H. Kato,, H. Takahashi-Omoe,, A. Nakane,, T. Uchiyama,, and K. Shinagawa. 2004. Biological properties of staphylococcal enterotoxin-like toxin type R. Infect. Immun. 72: 3664 3667.
101. Ono, H. K.,, K. Omoe,, K. Imanishi,, Y. Iwakabe,, D. L. Hu,, H. Kato,, N. Saito,, A. Nakane,, T. Uchiyama,, and K. Shinagawa. 2008. Identification and characterization of two novel staphylococcal enterotoxins, types S and T. Infect. Immun. 76: 4999 5005.
102. Orwin, P. M.,, J. R. Fitzgerald,, D. Y. Leung,, J. A. Gutierrez,, G. A. Bohach,, and P. M. Schlievert. 2003. Characterization of Staphylococcus aureus enterotoxin L. Infect. Immun. 71: 2916 2919.
103. Orwin, P. M.,, D. Y. Leung,, H. L. Donahue,, R. P. Novick,, and P. M. Schlievert. 2001. Biochemical and biological properties of staphylococcal enterotoxin K. Infect. Immun. 69: 360 366.
104. Orwin, P. M.,, D. Y. Leung,, T. J. Tripp,, G. A. Bohach,, C. A. Earhart,, D. H. Ohlendorf,, and P. M. Schlievert. 2002. Characterization of a novel staphylococcal enterotoxin-like superantigen, a member of the group V subfamily of pyrogenic toxins. Biochemistry 41: 14033 14040.
105. Petersson, K.,, M. Hakansson,, H. Nilsson,, G. Forsberg,, L. A. Svensson,, A. Liljas,, and B. Walse. 2001. Crystal structure of a superantigen bound to MHC class II displays zinc and peptide dependence. EMBO J. 20: 3306 3312.
106. Petersson, K.,, H. Pettersson,, N. J. Skartved,, B. Walse,, and G. Forsberg. 2003. Staphylococcal enterotoxin H induces V alpha-specific expansion of T cells. J. Immunol. 170: 4148 4154.
107. Pontzer, C. H.,, J. K. Russell,, and H. M. Johnson. 1989. Localization of an immune functional site on staphylococcal enterotoxin A using the synthetic peptide approach. J. Immunol. 143: 280 284.
108. Pragman, A. A.,, J. M. Yarwood,, T. J. Tripp,, and P. M. Schlievert. 2004. Characterization of virulence factor regulation by SrrAB, a two-component system in Staphylococcus aureus. J. Bacteriol. 186: 2430 2438.
109. Projan, S. J.,, S. Brown-Skrobot,, P. M. Schlievert,, F. Vandenesch,, and R. P. Novick. 1994. Glycerol monolaurate inhibits the production of beta-lactamase, toxic shock toxin-1, and other staphylococcal exoproteins by interfering with signal transduction. J. Bacteriol. 176: 4204 4209.
110. Raj, H. D.,, and M. S. Bergdoll. 1969. Effect of enterotoxin B on human volunteers. J. Bacteriol. 98: 833 834.
111. Rao, L.,, R. K. Karls,, and M. J. Betley. 1995. In vitro transcription of pathogenesis-related genes by purified RNA polymerase from Staphylococcus aureus. J. Bacteriol. 177: 2609 2614.
112. Reck, B.,, P. H. Scheuber,, W. Londong,, B. Sailer-Kramer,, K. Bartsch,, and D. K. Hammer. 1988. Protection against the staphylococcal enterotoxin-induced intestinal disorder in the monkey by anti-idiotypic antibodies. Proc. Natl. Acad. Sci. USA 85: 3170 3174.
113. Reda, K. B.,, V. Kapur,, J. A. Mollick,, J. G. Lamphear,, J. M. Musser,, and R. R. Rich. 1994. Molecular characterization and phylogenetic distribution of the streptococcal superantigen gene ( ssa) from Streptococcus pyogenes. Infect. Immun. 62: 1867 1874.
114. Regassa, L. B.,, J. L. Couch,, and M. J. Betley. 1991. Steady-state staphylococcal enterotoxin type C mRNA is affected by a product of the accessory gene regulator ( agr) and by glucose. Infect. Immun. 59: 955 962.
115. Ren, K.,, J. D. Bannan,, V. Pancholi,, A. L. Cheung,, J. C. Robbins,, V. A. Fischetti,, and J. B. Zabriskie. 1994. Characterization and biological properties of a new staphylococcal exotoxin. J. Exp. Med. 180: 1675 1683.
116. Said-Salim, B.,, P. M. Dunman,, F. M. McAleese,, D. Macapagal,, E. Murphy,, P. J. McNamara,, S. Arvidson,, T. J. Foster,, S. J. Projan,, and B. N. Kreiswirth. 2003. Global regulation of Staphylococcus aureus genes by Rot. J. Bacteriol. 185: 610 619.
117. Schad, E. M.,, A. C. Papageorgiou,, L. A. Svensson,, and K. R. Acharya. 1997. A structural and functional comparison of staphylococcal enterotoxins A and C2 reveals remarkable similarity and dissimilarity. J. Mol. Biol. 269: 270 280.
118. Schad, E. M.,, I. Zaitseva,, V. N. Zaitsev,, M. Dohlsten,, T. Kalland,, P. M. Schlievert,, D. H. Ohlendorf,, and L. A. Svensson. 1995. Crystal structure of the superantigen staphylococcal enterotoxin type A. EMBO J. 14: 3292 3301.
119. Scheuber, P. H.,, C. Denzlinger,, D. Wilker,, G. Beck,, D. Keppler,, and D. K. Hammer. 1987. Staphylococcal enterotoxin B as a nonimmunological mast cell stimulus in primates: the role of endogenous cysteinyl leukotrienes. Int. Arch. Allergy Appl. Immunol. 82: 289 291.
120. Schleifer, K. H., 1986. Gram positive cocci, p. 999 1100. In P. A. Sneath (ed.), Bergey’s Manual of Systematic Bacteriology, 1st ed., vol. 2. Williams & Wilkins Co., Baltimore, MD.
121. Schlievert, P. M.,, L. M. Jablonski,, M. Roggiani,, I. Sadler,, S. Callantine,, D. T. Mitchell,, D. H. Ohlendorf,, and G. A. Bohach. 2000. Pyrogenic toxin superantigen site specificity in toxic shock syndrome and food poisoning in animals. Infect. Immun. 68: 3630 3634.
122. Schmidt, J. J.,, and L. Spero. 1983. The complete amino acid sequence of staphylococcal enterotoxin C1. J. Biol. Chem. 258: 6300 6306.
123. Schmidt, K. A.,, N. P. Donegan,, W. A. Kwan, Jr., and A. Cheung. 2004. Influences of sigmaB and agr on expression of staphylococcal enterotoxin B ( seb) in Staphylococcus aureus. Can. J. Microbiol. 50: 351 360.
124. Smeltzer, M. S.,, M. E. Hart,, and J. J. Iandolo. 1993. Phenotypic characterization of xpr, a global regulator of extracellular virulence factors in Staphylococcus aureus. Infect. Immun. 61: 919 925.
125. Smyth, D. S.,, P. J. Hartigan,, W. J. Meaney,, J. R. Fitzgerald,, C. F. Deobald,, G. A. Bohach,, and C. J. Smyth. 2005. Superantigen genes encoded by the egc cluster and SaPIbov are predominant among Staphylococcus aureus isolates from cows, goats, sheep, rabbits and poultry. J. Med. Microbiol. 54: 401 411.
126. Spero, L.,, B. Y. Griffin,, J. L. Middlebrook,, and J. F. Metzger. 1976. Effect of single and double peptide bond scission by trypsin on the structure and activity of staphylococcal enterotoxin C. J. Biol. Chem. 251: 5580 5588.
127. Stefani, S.,, and P. E. Varaldo. 2003. Epidemiology of methicillin-resistant staphylococci in Europe. Clin. Microbiol. Infect. 9: 1179 1186.
128. Stock, J. B.,, A. J. Ninfa,, and A. M. Stock. 1989. Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol. Rev. 53: 450 490.
129. Su, Y. C.,, and A. C. Wong. 1995. Identification and purification of a new staphylococcal enterotoxin, H. Appl. Environ. Microbiol. 61: 1438 1443.
130. Sugiyama, H.,, and T. Hayama. 1965. Abdominal viscera as site of emetic action for staphylococcal enterotoxin in the monkey. J. Infect. Dis. 115: 330 336.
131. Sundberg, E. J.,, M. W. Sawicki,, S. Southwood,, P. S. Andersen,, A. Sette,, and R. A. Mariuzza. 2002. Minor structural changes in a mutated human melanoma antigen correspond to dramatically enhanced stimulation of a CD4+ tumor-infiltrating lymphocyte line. J. Mol. Biol. 319: 449 461.
132. Sundstrom, M.,, L. Abrahmsen,, P. Antonsson,, K. Mehindate,, W. Mourad,, and M. Dohlsten. 1996. The crystal structure of staphylococcal enterotoxin type D reveals Zn2+-mediated homodimerization. EMBO J. 15: 6832 6840.
133. Swaminathan, S.,, W. Furey,, J. Pletcher,, and M. Sax. 1992. Crystal structure of staphylococcal enterotoxin B, a superantigen. Nature 359: 801 806.
134. Taylor, S. L.,, L. R. Schlunz,, J. T. Beery,, D. O. Cliver,, and M. S. Bergdoll. 1982. Emetic action of staphylococcal enterotoxin A on weanling pigs. Infect. Immun. 36: 1263 1266.
135. Thomas, D. Y.,, S. Jarraud,, B. Lemercier,, G. Cozon,, K. Echasserieau,, J. Etienne,, M. L. Gougeon,, G. Lina,, and F. Vandenesch. 2006. Staphylococcal enterotoxin-like toxins U2 and V, two new staphylococcal superantigens arising from recombination within the enterotoxin gene cluster. Infect. Immun. 74: 4724 4734.
136. Thompson, J. D.,, D. G. Higgins,, and T. J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673 4680.
137. Tiedemann, R. E.,, and J. D. Fraser. 1996. Cross-linking of MHC class II molecules by staphylococcal enterotoxin A is essential for antigen-presenting cell and T cell activation. J. Immunol. 157: 3958 3966.
138. Townsend, D. E.,, and B. J. Wilkinson. 1992. Proline transport in Staphylococcus aureus: a high-affinity system and a low-affinity system involved in osmoregulation. J. Bacteriol. 174: 2702 2710.
139. Tremaine, M. T.,, D. K. Brockman,, and M. J. Betley. 1993. Staphylococcal enterotoxin A gene ( sea) expression is not affected by the accessory gene regulator ( agr). Infect. Immun. 61: 356 359.
140. seng, C. W.,, and G. C. Stewart. 2005. Rot repression of enterotoxin B expression in Staphylococcus aureus. J. Bacteriol. 187: 5301 5309.
141. Warren, J. R. 1977. Comparative kinetic stabilities of staphylococcal enterotoxin types A, B, and C1. J. Biol. Chem. 252: 6831 6834.
142. Warren, J. R.,, L. Spero,, and J. F. Metzger. 1974. Stabilization of native structure by the closed disulfide loop of staphylococcal enterotoxin B. Biochim. Biophys. Acta 359: 351 363.
143. Wengender, P. A.,, and K. J. Miller. 1995. Identification of a PutP proline permease gene homolog from Staphylococcus aureus by expression cloning of the high-affinity proline transport system in Escherichia coli. Appl. Environ. Microbiol. 61: 252 259.
144. Wikstrom, M.,, T. Drakenberg,, S. Forsen,, U. Sjobring,, and L. Bjorck. 1994. Three-dimensional solution structure of an immunoglobulin light chain-binding domain of protein L. Comparison with the IgG-binding domains of protein G. Biochemistry 33: 14011 14017.
145. Wilson, G. J.,, K. S. Seo,, T. Connelley,, O. N. Chuang-Smith,, J. A. Merriman,, C. M. Guinane,, R. A. Cartwright,, J. Y. Park,, G. A. Bohach,, P. M. Schlievert,, W. I. Morrison,, and J. R. Fitzgerald. 2011. A novel core genome-encoded superantigen contributes to lethality of community-associated MRSA necrotizing pneumonia. PLoS Pathog. 7( 10): e1002271.
146. Zhang, L.,, L. Gray,, R. P. Novick,, and G. Ji. 2002. Transmembrane topology of AgrB, the protein involved in the post-translational modification of AgrD in Staphylococcus aureus. J. Biol. Chem. 277: 34736 34742.
147. Zhang, S.,, J. J. Iandolo,, and G. C. Stewart. 1998. The enterotoxin D plasmid of Staphylococcus aureus encodes a second enterotoxin determinant ( sej). FEMS Microbiol. Lett. 168: 227 233.


Generic image for table
Table 21.1

General characteristics of selected species

Citation: Seo K, Bohach G. 2013. , p 547-573. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch21
Generic image for table
Table 21.2

Biochemical and functional properties of SEs

Citation: Seo K, Bohach G. 2013. , p 547-573. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch21
Generic image for table
Table 21.3

Prevalence of in several foods

Citation: Seo K, Bohach G. 2013. , p 547-573. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch21

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error