Chapter 33 : Fermented Vegetables

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Fermented Vegetables, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818463/9781555816261_Chap33-1.gif /docserver/preview/fulltext/10.1128/9781555818463/9781555816261_Chap33-2.gif


The wide variety of fermented foods can be classified by the products of the fermentation, such as alcohol (beer, wine); organic acids, including lactic acid and acetic acid (vegetables, dairy); carbon dioxide (bread); and amino acids or peptides from protein (fish fermentations and others). Food fermentation is one of the earliest technologies developed by humans. The primary retail fermented vegetable products produced in the United States and Europe are cucumber pickles, olives, and sauerkraut. In Asia, a variety of fermented vegetable products are available, including pickles and fermented cabbage, notably kimchi in South Korea. The fermentation process for vegetables can result in nutritious foods that may be stored for extended periods, one year or more, without refrigeration. Prior to fermentation, fresh fruits and vegetables harbor a variety of microorganisms, including aerobic spoilage microflora such as , , and species, as well as yeasts and molds. Brining vegetables for fermentation results in the production by lactic acid bacteria (LAB) of organic acids and a variety of antimicrobial compounds. With the advent of whole-genome sequencing, it has become apparent that the LAB present in vegetable fermentations have relatively small genomes compared with many other mesophilic organisms. LAB isolated from vegetable fermentations frequently contain plasmids. Plasmid-borne genes encoding proteins involved in bacteriocin production, lactose utilization, and citric acid utilization have been isolated from several species; however, none of these functions appears to be present in the ATCC 8293 plasmid.

Citation: Breidt F, Pérez-Díaz I, McFeeters R, Lee C. 2013. Fermented Vegetables, p 841-855. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch33
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Barrangou, R.,, S. S. Yoon,, F. Breidt, Jr.,, H. P. Fleming,, and T. R. Klaenhammer. 2002. Characterization of six Leuconostoc fallax bacteriophages isolated from an industrial sauerkraut fermentation. Appl. Environ. Microbiol. 68: 5452 5458.
2. Bell, T. A.,, and J. L. Etchells. 1952. Sugar and acid tolerance of spoilage yeasts from sweet-cucumber pickles. Food Technol. 6: 468 472.
3. Bell, T. A.,, J. L. Etchells,, and I. D. Jones. 1950. Softening of commercial cucumber salt-stock in relation to polygalacturonase activity. Food Technol. 4: 157 163.
4. Bell, T. A.,, J. L. Etchells,, and I. D. Jones. 1951. Pectinesterase in the cucumber. Arch. Biochem. Biophys. 31: 431 441.
5. Bolotin, A.,, P. Wincker,, S. Mauger,, O. Jaillon,, K. Malarme,, J. Weissenbach,, S. D. Ehrlich,, and A. Sorokin. 2001. The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res. 11: 731 753.
6. Breidt, F.,, and H. P. Fleming. 1992. Competitive growth of genetically marked malolactic-deficient Lactobacillus plantarum in cucumber fermentations. Appl. Environ. Microbiol. 58: 3845 3849.
7. Breidt, F.,, J. S. Hayes,, and R. F. McFeeters. 2007. Determination of 5-log reduction times for food pathogens in acidified cucumbers during storage at 10 and 25°C. J. Food Prot. 70: 2638 2641.
8. Breidt, F., Jr.,, J. S. Hayes,, J. A. Osborne,, and R. F. McFeeters. 2005. Determination of 5-log pathogen reduction times for heat-processed, acidified foods. J. Food Prot. 68: 305 310.
9. Buescher, R. W.,, and C. Burgin. 1992. Diffusion plate assay for measurement of polygalacturonase activities in pickle brines. J. Food Biochem. 16: 59 68.
10. Buescher, R.,, and C. Hamilton. 2002. Adsorption of polygalacturonase from recycled cucumber pickle brines by Pure-Flo B80 clay. J. Food Biochem. 26: 153 156.
11. Caplice, E.,, and G. F. Fitzgerald. 1999. Food fermentations: role of microorganisms in food production and preservation. Int. J. Food Microbiol. 50: 131 149.
12. Chang, H.W.,, K. H. Kim,, Y. D. Nam,, S. W. Roh,, M. S. Kim,, C. O. Jeon,, H. M. Oh,, and J. W. Bae. 2008. Analysis of yeast and archaeal population dynamics in kimchi using denaturing gradient gel electrophoresis. Int. J. Food Microbiol. 126: 159 166.
13. Chang, R.B.,, H. Waters,, and E. R. Liman. 2010. A proton current drivesaction potentials in genetically identified sour taste cell. Proc. Natl.Acad. Sci. USA 107: 22320 22325. www.pnas.org/cgi/doi/10.1073/pnas.1013664107.
14. Cheigh, H. S.,, and K. Y. Park. 1994. Biochemical, microbiological and nutritional aspects of kimchi. Crit. Rev. Food Sci. Nutr. 34: 175 203.
15. Chin, H. S.,, F. Breidt,, H. P. Fleming,, W. C. Shin,, and S. S. Yoon. 2006. Identification of predominant bacterial isolates from the fermenting kimchi using ITS-PCR and partial 16S rDNA sequence analyses. J. Microbiol. Biotechnol. 16: 68 76.
16. Ciska, E.,, and D. R. Pathak. 2004. Glucosinolate derivatives in stored fermented cabbage. J. Agric. Food Chem. 52: 7938 7943.
17. Costilow, R. N.,, C. L. Bedford,, D. Mingus,, and D. Black. 1977. Purging of natural salt-stock pickle fermentations to reduce bloater damage. J. Food Sci. 42: 234 240.
18. Da ConceicaoNeta, E. R.,, S. D. Johanningsmeier,, M. A. Drake,, and R. F. McFeeters. 2007. A chemical basis for sour taste perception of acid solutions and fresh-pack dill pickles. J. Food Sci. 72: S352 S359.
19. Daeschel, M. A.,, R. F. McFeeters,, H. P. Fleming,, T. R. Klaenhammer,, and R. B. Sanozky. 1984. Mutation and selection of Lactobacillus plantarum strains that do not produce carbon dioxide from malate. Appl. Environ. Microbiol. 47: 419 420.
20. Daxenbichler, M. E.,, C. H. VanEtten,, and P. H. Williams. 1980. Glucosinolate products in commercial sauerkraut. J. Agric. Food Chem. 28: 809 811.
21. De Castro, A.,, P. García,, C. Romero,, M. Brenes,, and A. Garrido. 2007. Industrial implementation of black ripe olive storage under acid conditions. J. Food Eng. 80: 1206 1212.
22. de las Rivas, B.,, A. Marcobal,, and R. Muñoz. 2006. Development of a multilocus sequence typing method for analysis of Lactobacillus plantarum strains. Microbiology 152: 85 93.
23. DeVuyst, L.,, and E. J. Vandamme,. 1994. Antimicrobial potential of lactic acid bacteria, p. 91 142. In L. DeVuyst, and E. J. Vandamme (ed.), Bacteriocins of Lactic acid Bacteria. Blackie Academic and Professional, London, United Kingdom.
24. Dougherty, D.P.,, F. Breidt, Jr.,, R. F. McFeeters,, and S. R. Lubkin. 2002. Energy-based dynamic model for variable temperature batch fermentation by Lactococcus lactis. Appl. Environ. Microbiol. 68: 2468 2478.
25. El-Rayah-Ahmed, A.,, and J. M. Labavitch. 1980. Cell wall metabolism in ripening fruit. II. Changes in carbohydrate-degrading enzymes in ripening ‘Bartlett’ pears. Plant Physiol. 65: 1014 1016.
26. Etchells, J. L. 1950. Salt-tolerant yeasts from commercial cucumber brines. Texas Rep. Biol. Med. 8: 103 104.
27. Etchells, J. L.,, T. A. Bell,, H. P. Fleming,, R. E. Kelling,, and R. L. Thompson. 1973. Suggested procedure for the controlled fermentation of commercially brined pickling cucumbers—the use of starter cultures and reduction of carbon dioxide accumulation. Pickle Pak Sci. 3: 4 14.
28. Etchells, J. L.,, T. A. Bell,, and W. R. Moore, Jr. 1976. Refrigerated dill pickles, questions and answers. Pickle Pak Sci. 5: 1 20.
29. Etchells, J. L.,, A. F. Borg,, and T. A. Bell. 1961. Influence of sorbic acid on populations and species of yeasts occurring in cucumber fermentations. Appl. Microbiol. 9: 139 144.
30. Etchells, J. L.,, and I. D. Jones. 1942. Pasteurization of pickle products. Fruit Prod. 21: 330 332.
31. Fernández, A. G.,, P. G. Garcia,, and M. B. Balbuena,. 1995. Olive fermentations, p. 593 627. In H.-J. Rehm, and G. Reed (ed.), Biotechnology. VCH Publishers, New York, NY.
32. Fleming, H. P.,, M. A. Daeschel,, R. F. McFeeters,, and M. D. Pierson. 1989. Butyric acid spoilage of fermented cucumbers. J. Food Sci. 54: 636 639.
33. Fleming, H.P.,, J. L. Etchells,, R. L. Thompson,, and T. A. Bell. 1975. Purging of CO 2 from cucumber brines to reduce bloater damage. J. Food Sci. 40: 1304 1310.
34. Fleming, H. P.,, E. G. Humphries,, R. L. Thompson,, and R. F. McFeeters. 2002. Bag-in-box technology: storage stability of process-ready, fermented cucumbers. Pickle Pak Sci. 8: 14 18.
35. Fleming, H.P.,, K.-H. Kyung,, and F. Breidt, Jr., 1995. Vegetable fermentations, p. 629 661. In H.-J. Rehm, and G. Reed (ed.), Biotechnology. VCH Publishers, New York, NY.
36. Fleming, H.P.,, R. F. McFeeters,, and F. Breidt,. 2001. Fermented and acidified vegetables, p. 521 532. In F. P. Downes, and K. Ito (ed.), Compendium of Methods for the Microbiological Examination of Foods, 4th ed. American Public Health Association, Washington, DC.
37. Fleming, H. P.,, R. F. McFeeters,, and M. A. Daeschel,. 1992. Fermented and acidified vegetables, p. 929 952. In C. Vanderzant, and D. F. Splittstoesser (ed.), Compendium of Methods for the Microbiological Examination of Foods, 3rd ed. American Public Health Association, Washington, DC.
38. Fleming, H. P.,, R. F. McFeeters,, and E. G. Humphries. 1988. A fermentor for study of sauerkraut fermentation. Biotechnol. Bioeng. 31: 189 197.
39. Fleming, H. P.,, R. L. Thompson,, T. A. Bell,, and L. H. Hontz. 1978. Controlled fermentation of sliced cucumbers. J. Food Sci. 43: 888 891.
40. Fleming, H. P.,, W. M. Walter, Jr.,, and J. L. Etchells. 1973. Antimicrobial properties of oleuropein and products of its hydrolysis from green olives. Appl. Microbiol. 26: 777 782.
41. Gasson, M. 1990. In vivo genetic systems in lactic acid bacteria. FEMS Microbiol. Rev. 87: 43 60.
42. Gates, K.,, and R. N. Costilow. 1981. Factors influencing softening of salt-stock pickles in air-purged fermentations. J. Food Sci. 46: 274 277.
43. Gómez, A. H. S.,, P. G. García,, and L. R. Navarro. 2006. Trends in table olive production, elaboration of table olives. Grasas y Aceites 57: 86 94.
44. Gottschalk, G. 1986. Bacterial Metabolism, 2nd ed., p. 208 220. Springer-Verlag, New York, NY.
45. Heredia, A.,, R. Guillén,, A. Jiménez,, and J. Fernández-Bolanos. 1993. Activity of glycosidases during development and ripening of olive fruit. Z. Lebensm. Unters. Forsch. 196: 147 151.
46. Holzapfel, W. H.,, R. Geisen,, and U. Schillinger. 1995. Biological preservation of foods with reference to protective cultures, bacteriocins, and food-grade enzymes. Int. J. Food Microbiol. 24: 343 362.
47. Hudson, J. M.,, and R. W. Buescher. 1986. Relationship between degree of pectin methylation and tissue firmness of cucumber pickles. J. Food Sci. 51: 138 140, 149.
48. Johanningsmeier, S. D.,, H. P. Fleming,, R. L. Thompson,, and R. F. McFeeters. 2005. Chemical and sensory properties of sauerkraut produced with Leuconostoc mesenteroides starter cultures of differing malolactic phenotypes. J. Food Sci. 70: S343 S349.
49. Jones, I. D.,, J. L. Etchells,, M. K. Veldhuis,, and O. Veerhoff. 1941. Pasteurization of genuine dill pickles. Fruit Prod. 20: 304 305, 316, 325.
50. Kala?, P.,, J. Spicka,, M. Krizek,, and T. Pelikanova. 2000. Changes in biogenic amine concentrations during sauerkraut storage. Food Chem. 69: 309 314.
51. Klaenhammer, T.,, E. Altermann,, F. Arigoni,, A. Bolotin,, F. Breidt,, J. Broadbent,, R. Cano,, S. Chaillou,, J. Deutscher,, M. Gasson,, M. van de Guchte,, J. Guzzo,, A. Hartke,, T. Hawkins,, P. Hols,, R. Hutkins,, M. Kleerebezem,, J. Kok,, O. Kuipers,, M. Lubbers,, E. Maguin,, L. McKay,, D. Mills,, A. Nauta,, R. Overbeek,, H. Pel,, D. Pridmore,, M. Saier,, D. van Sinderen,, A. Sorokin,, J. Steele,, D. O’Sullivan,, W. de Vos,, B. Weimer,, M. Zagorec,, and R. Siezen. 2002. Discovering lactic acid bacteria by genomics. Antonie van Leeuwenhoek 82: 29 58.
52. Klappenbach, J.,, J. Dunbar,, and T. Schmidt. 2000. rRNA operon copy number reflects ecological strategies of bacteria. Appl. Environ. Microbiol. 66: 1328 1333.
53. Kleerebezem, M.,, J. Boekhorst,, R. van Kranenburg,, D. Molenaar,, O. P. Kuipers,, R. Leer,, R. Tarchini,, S. A. Peters,, H. M. Sandbring,, M. W. E. J. Fiers,, W. Stickema,, R. M. K. Lankhorst,, P. A. Bron,, S. M. Hoffer,, M. N. M. Groot,, R. Kerkhoven,, M. de Vries,, B. Ursing,, W. M. de Vos,, and R. J. Siezen. 2003. Complete genome sequence of Lactobacillus plantarum WCFS1. Proc. Natl. Acad. Sci. USA 100: 1990 1995.
54. Krall, S. M.,, and R. F. McFeeters. 1998. Pectin hydrolysis: effect of temperature, degree of methylation, pH, and calcium on hydrolysis rates. J. Agric. Food Chem. 46: 1311 1315.
55. Lee, C. H., 1994. Importance of lactic acid bacteria in non-dairy food fermentation, p. 8 25. In C. H. Lee,, J. Adler-Nissen,, and G. Barwald (ed.), Lactic Acid Fermentation of Non-dairy Food and Beverages. HarnLimWon, Seoul, South Korea.
56. Lee, C. H. 2001. Fermentation Technology in Korea. Korea University Press, Seoul, South Korea.
57. Lee, C. H., 2009. Food biotechnology, p. 85 114. In G. Campbell-Platt (ed.), Food Science and Technology. Wiley-Blackwell, West Sussex, United Kingdom.
58. Lu, Z.,, E. Altermann,, F. Breidt,, and S. Kozyavkin. 2010. Sequence analysis of Leuconostoc mesenteroides bacteriophage Φ1-A4 isolated from industrial vegetable fermentation. Appl. Environ. Microbiol. 76: 1955 1966.
59. Lu, Z.,, E. Altermann,, F. Breidt, Jr.,, P. Predki,, H. P. Fleming,, and T. R. Klaenhammer. 2005. Sequence analysis of the Lactobacillus plantarum bacteriophage FJL-1. Gene 348: 45 54.
60. Lu, Z.,, F. Breidt, Jr.,, H. P. Fleming,, E. Altermann,, and T. R. Klaenhammer. 2003. Isolation and characterization of a Lactobacillus plantarum bacteriophage, FJL-1, from a cucumber fermentation. Int. J. Food Microbiol. 84: 225 235.
61. Lu, Z.,, F. Breidt, Jr.,, V. Plengvidhya,, and H. P. Fleming. 2003. Bacteriophage ecology in commercial sauerkraut fermentations. Appl. Environ. Microbiol. 69: 3192 3202.
62. Lu, Z.,, H. P. Fleming,, and R. F. McFeeters. 2002. Effects of fruit size on fresh cucumber composition and the chemical and physical consequences of fermentation. J. Food Sci. 67: 2934 2939.
63. Mah, J. H.,, Y. H. Chang,, and H. J. Hwang. 2008. Paenibacillus tyraminigenes sp. nov. isolated from Myeolchi-jeotgal, a traditional Korean salted and fermented anchovy. Int. J. Food Microbiol. 127: 209 214.
64. Makarova, K.,, A. Slesarev,, Y. Wolf,, A. Sorokin,, B. Mirkin,, E. Koonin,, A. Pavlov,, N. Pavlova,, V. Karamychev,, N. Polouchine,, V. Shakhova,, I. Grigoriev,, Y. Lou,, D. Rohksar,, S. Lucas,, K. Huang,, D. M. Goodstein,, T. Hawkins,, V. Plengvidhya,, D. Welker,, J. Hughes,, Y. Goh,, A. Benson,, K. Baldwin,, J.-H. Lee,, I. Díaz-Muñiz,, B. Dosti,, V. Smeianov,, W. Wechter,, R. Barabote,, G. Lorca,, E. Altermann,, R. Barrangou,, B. Ganesan,, Y. Xie,, H. Rawsthorne,, D. Tamir,, C. Parker,, F. Breidt, Jr.,, J. Broadbent,, R. Hutkins,, D. O’Sullivan,, J. Steele,, G. Unlu,, M. Saier,, T. Klaenhammer,, P. Richardson,, S. Kozyavkin,, B. Weimer,, and D. Mills. 2006. Comparative genomics of the lactic acid bacteria. Proc. Natl. Acad. Sci. USA 103: 15611 15616.
65. Marsili, R. T.,, and N. Miller. 2000. Determination of major aroma impact compounds in fermented cucumbers by solid-phase microextraction-gas chromatography-mass spectrometry-olfactometry detection. J. Chromatogr. Sci. 38: 307 314.
66. Maruvada, R. 2005. Evaluation of the importance of enzymatic and non-enzymatic softening in low salt cucumber fermentations. M.S. thesis. North Carolina State University, Raleigh.
67. McDonald, L. C.,, H. P. Fleming,, and H. M. Hassan. 1990. Acid tolerance of Leuconostoc mesenteroides and Lactobacillus plantarum. Appl. Environ. Microbiol. 56: 2120 2124.
68. McFeeters, R. F.,, and S. A. Armstrong. 1984. Measurement of pectin methylation in plant cell walls. Anal. Biochem. 139: 212 217.
69. McFeeters, R. F.,, M. Balbuena,, M. Brenes,, and H. P. Fleming. 1995. Softening rates of fermented cucumber tissue: effects of pH, calcium, and temperature. J. Food Sci. 60: 786 788.
70. McFeeters, R. F.,, T. A. Bell,, and H. P. Fleming. 1980. An endo-polygalacturonase in cucumber fruit. J. Food Biochem. 4: 1 16.
71. McFeeters, R. F.,, and K.-H. Chen. 1986. Utilization of electron acceptors for anaerobic mannitol metabolism by Lactobacillus plantarum. Compounds which serve as electron acceptors. Food Microbiol. 3: 73 81.
72. McFeeters, R. F.,, W. Coon,, M. P. Palnitkar,, M. Velting,, and N. Fehringer. 1978. Reuse of Fermentation Brines in the Cucumber Pickling Industry, p. 1 115. EPA-600/2-78-207. U.S. Environmental Protection Agency, Washington, DC.
73. McFeeters, R. F.,, and H. P. Fleming. 1989. Inhibition of cucumber tissue softening in acid brines by multivalent cations: inadequacy of the pectin “egg box” model to explain textural effects. J. Agric. Food Chem. 37: 1053 1059.
74. McFeeters, R. F.,, and H. P. Fleming. 1990. Effect of calcium ions on the thermodynamics of cucumber tissue softening. J. Food Sci. 55: 446 449.
75. McFeeters, R. F.,, H. P. Fleming,, and R. L. Thompson. 1982. Malic acid as a source of carbon dioxide in cucumber fermentations. J. Food Sci. 47: 1862 1865.
76. Medina, E.,, M. Brenes,, C. Romero,, A. García,, and A. de Castro. 2007. Main antimicrobial compounds in table olives. J. Agric. Food Chem. 55: 9817 9823.
77. Medina, E.,, C. Gori,, M. Servili,, A. de Castro,, C. Romero,, and M. Brenes. 2010. Main variables affecting the lactic acid fermentation of table olives. Int. J. Food Sci. Technol. 45: 1291 1296.
78. Meurer, P.,, and K. Gierschner. 1992. Occurrence and effect of indigenous and eventual microbial enzymes in lactic acid fermented vegetables. Acta Aliment. 21: 171 188.
79. Mheen, T. I.,, and T. W. Kwon. 1984. Effect of temperature and salt concentration on kimchi fermentation. Korean J. Food Sci. Technol. 16: 443 450.
80. Moret, S.,, D. Smela,, T. Populin,, and L. S. Conte. 2005. A survey on free biogenic amine content of fresh and preserved vegetables. Food Chem. 89: 355 361.
81. Mudgal, P.,, F. Breidt, Jr.,, S. R. Lubkin,, and K. P. Sandeep. 2006. Quantifying the significance of phage attack on starter cultures: a mechanistic model for population dynamics of phage and their hosts isolated from fermenting sauerkraut. Appl. Environ. Microbiol. 72: 3908 3915.
82. Nam, Y. D.,, H. W. Chang,, K. H. Kim,, S. W. Roh,, and J. W. Bae. 2009. Metatranscriptome analysis of lactic acid bacteria during kimchi fermentation with genome-probing microarrays. Int. J. Food Microbiol. 130: 140 146.
83. Nguyen-the, C.,, and F. Carlin. 1994. The microbiology of minimally processed fresh fruits and vegetables. Crit. Rev. Food Sci. Nutr. 34: 371 401.
84. Park, J.M.,, J. H. Shin,, D. W. Lee,, J. C. Song,, H. J. Suh,, U. J. Chang,, and J. M. Kim. 2010. Identification of the lactic acid bacteria in kimchi according to initial and over-ripened fermentation using PCR and 16S rRNA gene sequence analysis. Food Sci. Biotechnol. 19: 541 546.
85. Pederson, C. S.,, and M. N. Albury. 1954. The influence of salt and temperature on the microflora of sauerkraut fermentation. Food Technol. 8: 1 5.
86. Pederson, C. S.,, and M. N. Albury. 1969. The Sauerkraut Fermentation. Technical Bulletin no. 824. N.Y. State Agricultural Experiment Station, Geneva, NY.
87. Pérez-Díaz, I. M.,, and R. F. McFeeters. 2008. Microbiological preservation of cucumbers for bulk storage by the use of acetic acid and food preservatives. J. Food Sci. 73: M287 M291.
88. Pérez-Díaz, I. M.,, and R. F. McFeeters. 2010. Preservation of acidified cucumbers with a natural preservative combination of fumaric acid and allyl isothiocyanate that target lactic acid bacteria and yeasts. J. Food Sci. 75: M204 M208.
89. Plastourgos, S.,, and R. H. Vaughn. 1957. Species of Propionibacterium associated with zapatera spoilage of olives. Appl. Microbiol. 5: 267 271.
90. Plengvidhya, V.,, F. Breidt,, Z. Lu,, and H. P. Fleming. 2007. DNA fingerprinting of lactic acid bacteria in sauerkraut fermentations. Appl. Environ. Microbiol. 73: 7697 7702.
91. Pressey, R.,, and J. K. Avants. 1975. Cucumber polygalacturonase. J. Food Sci. 40: 937 939.
92. Preuss, L. M.,, W. H. Peterson,, and E. B. Fred. 1928. Gas production in the making of sauerkraut. J. Ind. Eng. Chem. 20: 1187 1190.
93. Priem, L. A.,, W. H. Peterson,, and E. B. Fred. 1927. Studies of commercial sauerkraut with special reference to changes in the bacterial flora during fermentation at low temperatures. J. Agric. Res. 34: 79 95.
94. Ruiz Barba, J. L.,, R. M. Rios Sanchez,, C. Fedriani Iriso,, J. M. Olias,, J. L. Rios,, and J. L. Jimenez-Diaz. 1990. Bactericidal effects of phenolic compounds from green olives on Lactobacillus plantarum. Syst. Appl. Microbiol. 13: 199 205.
95. Rybaczyk-Pathak, D. 2005. Joint association ofhigh cabbage/sauerkraut intake at 12–13 years of age and adulthood with reduced breast cancer risk in Polish migrant women: results from the U.S. Component of the Polish Women’s Health Study (PWHS), abstr. 3697. Abstr. Am. Assoc. Cancer Res. 4th Annu. Frontiers Cancer Prevention Res., Baltimore, MD, 2 November 2005.
96. Steinkraus, K. H. 1983. Handbook of Indigenous Fermented Foods. Marcel Dekker, New York, NY.
97. Steinkraus, K. H., 1993. Comparison of fermented foods of the East and West, p. 1 12. In C. H. Lee,, K. H. Steinkraus,, and P. J. A. Reilly (ed.), Fish Fermentation Technology. UNU Press, Tokyo, Japan.
98. Takayanagi, T.,, T. Okuda,, and K. Yokotsuka. 1997. Changes in glycosidase activity in grapes during development. J. Inst. Enol. Viticult. Yamanashi Univ. 32: 1 4.
99. Tang, H. C. L.,, and R. F. McFeeters. 1983. Relationships among cell wall constituents, calcium and texture during cucumber fermentation and storage. J. Food Sci. 48: 66 70.
100. Tolonen, M.,, T.,, T. Marianne,, V. Britta,, P. Juha-Matti,, K. Hannu,, and R. Eeva-Liisa. 2002. Plant-derived biomolecules in fermented cabbage. J. Agric. Food Chem. 50: 6798 6803.
101. Tolonen, M.,, S. Rajaniemi,, J.-M. Pihlava,, T. Johansson,, P. E. J. Saris,, and E.-L. Ryhanen. 2004. Formation of nisin, plant-derived biomolecules and antimicrobial activity in starter culture fermentations of sauerkraut. Food Microbiol. 21: 167 179.
102. Vaughn, R. H., 1985. The microbiology of vegetable fermentations, p. 49 109. In J. B. Wood (ed.), Microbiology of Fermented Foods, vol. 1. Elsevier Applied Science, Barking, United Kingdom.
103. Whitehead, H. R.,, and A. G. Cox. 1935. The occurrence of bacteriophages in starter cultures of lactic streptococci. N. Z. J. Sci. Technol. 16: 319 320.
104. Yoon, S. S.,, R. Barrangou-Poueys,, F. Breidt,, and H. P. Fleming. 2007. Detection and characterization of a lytic Pediococcus bacteriophage from the fermenting cucumber brine. J. Microbiol. Biotechnol. 17: 262 270.
105. Yoon, S. S.,, R. Barrangou-Poueys,, F. Breidt, Jr., T. R. Klaenhammer, and H. P. Fleming. 2002. Isolation and characterization of bacteriophages from fermenting sauerkraut. Appl. Environ. Microbiol. 68: 973 976.
106. Yoon, S. S.,, J. W. Kim,, F. Breidt,, and H. P. Fleming. 2001. Characterization of a lytic Lactobacillus plantarum bacteriophage and molecular cloning of a lysin gene in Escherichia coli. Int. J. Food Microbiol. 65: 63 74.
107. Yoon, S. S.,, Y. J. Shin,, S. Her,, and D. H. Oh. 1997. Isolation and characterization of the Lactobacillus plantarum bacteriophage SC921. Korean J. Appl. Microbiol. Biotechnol. 25: 96 101.
108. Zhou, A.,, and R. F. McFeeters. 1998. Volatile compounds in cucumbers fermented in low-salt conditions. J. Agric. Food Chem. 46: 2117 2122.
109. Zhou, A.,, R. F. McFeeters,, and H. P. Fleming. 2000. Development of oxidized odor and volatile aldehydes in fermented cucumber tissue exposed to oxygen. J. Agric. Food Chem. 48: 193 197.


Generic image for table
Table 33.1

Examples of acid-fermented vegetables produced in different regions of the world

Citation: Breidt F, Pérez-Díaz I, McFeeters R, Lee C. 2013. Fermented Vegetables, p 841-855. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch33
Generic image for table
Table 33.2

Distribution of ORFs among Clusters of Orthologous Groups (COG) functional categories

Citation: Breidt F, Pérez-Díaz I, McFeeters R, Lee C. 2013. Fermented Vegetables, p 841-855. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch33
Generic image for table
Table 33.3

Pyruvic acid-dissipating enzymes present in the predominant LAB in fermented vegetables

Citation: Breidt F, Pérez-Díaz I, McFeeters R, Lee C. 2013. Fermented Vegetables, p 841-855. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch33

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error