1887

Chapter 37 : Wine

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Wine, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818463/9781555816261_Chap37-1.gif /docserver/preview/fulltext/10.1128/9781555818463/9781555816261_Chap37-2.gif

Abstract:

Winemaking is a bioprocess that has its origins in antiquity. Scientific understanding of the process commenced with the studies of Louis Pasteur, who demonstrated that wines were the product of alcoholic fermentation of grape juice by yeasts. Microorganisms are fundamental to the winemaking process. To understand their contribution, it is necessary to know (i) the taxonomic identities of the species and strains associated with the process; (ii) the kinetics of their growth and survival throughout the entire production chain; (iii) the biochemical, physiological, and genomic responses of these species and their effects on the physical and chemical properties of the wine; (iv) the influence of winemaking practices upon the microbial response; and (v) the linkage between microbial action, sensory quality, and consumer acceptability of the wine. This chapter focuses on the occurrence, growth, and significance of microorganisms in winemaking. It covers wines produced only from grapes and includes table wines, sparkling wines, and fortified wines. The chapter describes the details of the process of winemaking, and emphasizes grape wines, although it is recognized that wines from other fruits are regionally popular. The microorganisms involved in the winemaking are yeasts, lactic acid bacteria (LAB), acetic acid bacteria (AAB), molds and other bacteria.

Citation: Parish M, Fleet G. 2013. Wine, p 915-947. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch37
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 37.1
Figure 37.1

Outline of processes for making red and white wines. doi:10.1128/9781555818463.ch37f1

Citation: Parish M, Fleet G. 2013. Wine, p 915-947. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch37
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 37.2
Figure 37.2

Generalized growth of yeast species during alcoholic fermentation of wine. ○ , ; ●, and species; ■, species. Variations will occur in the initial and maximum populations for each species; for fermentations inoculated with , the initial population is approximately 10 CFU/ml ( ). doi:10.1128/9781555818463.ch37f2

Citation: Parish M, Fleet G. 2013. Wine, p 915-947. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch37
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 37.3
Figure 37.3

Growth of LAB during vinification of red wines, pH 3.0 to 3.5. The solid line shows the growth of , often the only species present. Occasionally, species of and develop toward the end of malolactic fermentation or at later stages during conservation (broken line). For wines of pH 3.5 to 4.0, a similar growth curve is obtained but there may be slight growth and death of LAB during the early stages of alcoholic fermentation. Also, there is a greater chance that species of and will grow and conduct malolactic fermentation. doi:10.1128/9781555818463.ch37f3

Citation: Parish M, Fleet G. 2013. Wine, p 915-947. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch37
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818463.chap37
1. Alexandre, H.,, P. J. Costello,, F. Remize,, J. Guzzo,, and M. Guilloux-Benatier. 2004. Saccharomyces cerevisiae-Oenococcus oeni interactions in wine: current knowledge and perspectives. Int. J. Food Microbiol. 93: 141 154.
2. Alvarez-Rodríguez, M. L.,, C. Belloch,, M. Villa,, F. Uruburu,, G. Larriba,, and J.-J. R. Coque. 2003. Degradation of vanillic acid and production of guaiacol by microorganisms isolated from cork samples. FEMS Microbiol. Lett. 220: 49 55.
3. Amerine, M.A., 1985. Winemaking, p. 67 81. In H. Koprowski, and S. A. Plotin (ed.), World’s Debt to Pasteur. Alan R. Liss Incorporated, New York, NY.
4. Arena, M. E.,, and M. C. Manca de Nadra. 2005. Influence of ethanol and low pH on arginine and citrullinemetabolism in lactic acid bacteria from wine. Res. Microbiol. 156: 858 864.
5. Arevalo-Villena, M.,, E. J. Bartowsky,, D. Capone,, and M. A. Sefton. 2010. Production of indole by wine-associated microorganisms under oenological conditions. Food Microbiol. 27: 685 690.
6. Aroyo-López, F. N.,, R. Pérez-Torrado,, A. Querol,, and E. Barrio. 2010. Modulation of the glycerol and ethanol syntheses in the yeast Saccharomyces kudriavzevii differs from that exhibited by Saccharomyces cerevisiae and their hybrid. Food Microbiol. 27: 628 637.
7. Bach, B.,, S. Colas,, L. Massini,, L. Barnavon,, and P. Vuchot. 2011. Effect of nitrogen addition during alcoholic fermentation on the final content of biogenic amines in wine. Ann. Microbiol. 61: 185 190.
8. Backhus, L. E.,, J. de Risi,, P. O. Brown,, and L. F. Bisson. 2001. Functional geonomic analysis of a commercial wine strain of Saccharomyces cerevisiae under differing nitrogen conditions. FEMS Yeast Res. 1: 111 125.
9. Bae, S.,, G. H. Fleet,, and G. M. Heard. 2004. Occurrence and significance of Bacillus thuringiensis on wine grapes. Int. J. Food Microbiol. 94: 301 312.
10. Barbe, J. C.,, G. de Revel,, A. Joyeux,, A. Bertrand,, and A. Lonvaud-Funel. 2001. Role of botrytized grape micro-organisms in SO 2 binding phenomena. J. Appl. Microbiol. 90: 34 42.
11. Bartowsky, E. 2005. Oenococcus oeni and malolactic fermentation—moving into the molecular arena. Aust. J. Grape Wine Res. 11: 174 187.
12. Bartowsky, E.,, and P. A. Henschke. 2004. The buttery attribute of wine—diacetyl—desirability, spoilage and beyond. Int. J. Food Microbiol. 96: 235 252.
13. Bartowsky, E.,, and P. A. Henschke. 2008. Acetic acid bacteria spoilage of bottled red wine—a review. Int. J. Food Microbiol. 125: 60 70.
14. Bartowsky, E. J.,, D. Xia,, R. L. Gibson,, G. H. Fleet,, and P. A. Henschke. 2003. Spoilage of bottled red wine by acetic acid bacteria. Lett. Appl. Microbiol. 36: 307 314.
15. Bauer, F. F.,, and I. S. Pretorius. 2000. Yeast stress response and fermentation efficiency: how to survive the making of wine—a review. S. Afr. J. Enol. Viticult. 21: 27 51.
16. Bauer, R.,, and L. M. T. Dicks. 2004. Control of malolactic fermentation in wine—a review. S. Afr. J. Enol. Viticult. 25: 74 88.
17. Bauer, R.,, H. A. Nel,, and L. M. T. Dicks. 2003. Pediocin PD-1 as a method to control growth of Oenococcus oeni in wine. Am. J. Enol. Viticult. 54: 86 91.
18. Beh, A.L.,, G. H. Fleet,, C. Prakitchaiwattana,, and G. M. Heard,. 2006. Evaluation of molecular methods for the analysis of yeasts in foods and beverages, p. 69 106. In A. D. Hocking,, J. I. Pitt,, R. A. Samson,, and U. Thrane (ed.), Advances in Food Mycology. Springer, Berlin, Germany.
19. Bejaoui, H.,, F. Mathieu,, P. Taillandier,, and A. Lebrihi. 2004. Ochratoxin A removal in synthetic and natural grape juices by selected enological Saccharomyces strains. J. Appl. Microbiol. 97: 1038 1044.
20. Bell, S.-J.,, and P. A. Henschke. 2005. Implications of nitrogen nutrition for grapes, fermentation and wine. Aust. J. Grape Wine Res. 11: 242 295.
21. Berry, D.R.,, and J. C. Slaughter,. 2003. Alcoholic beverages fermentation, p. 25 29. In A. G. H. Lea, and J. Piggott (ed.), Fermented Beverage Production, 2nd ed. Kluwer Academic, New York, NY.
22. Berthels, N. J.,, R. R. Cordero Oteso,, F. F. Bauer,, J. M. Thevelein,, and I. S. Pretorius. 2004. Discrepancy in glucose and fructose utilization during fermentation by Saccharomyces cerevisiae wine yeast strains. FEMS Yeast Res. 4: 683 689.
23. Bidan, P.,, M. Feuillat,, and J. Moulin. 1986. Rapport de la France. Les vins Mousseux. Bull. Off. Int. Vin 59: 563 626.
24. Bisson, L.F., 1993. Yeasts—metabolism ofsugars, p. 55 75. In G. H. Fleet (ed.), Wine Microbiology and Biotechnology. Harwood Academic Publishers, Chur, Switzerland.
25. Bisson, L. F. 1999. Stuck and sluggish fermentations. Am. J. Enol. Viticult. 50: 107 119.
26. Bisson, L. F.,, A. L. Waterhouse,, S. E. Ebeler,, M. Andrew-Walker,, and J. T. Lapsley. 2002. The present and the future of the international wine industry. Nature 418: 696 699.
27. Blasco, L.,, S. Ferrer,, and I. Pardo. 2003. Development of specific fluorescent oligonucleotide probes for in situ identification of wine lactic acid bacteria. FEMS Microbiol. Lett. 225: 115 123.
28. Bloem, A.,, A. Lonvaud-Funel,, and G. de Revel. 2008. Hydrolysis of glycosidically bound flavour compounds from oak wood by Oenococcus oeni. Food Microbiol. 25: 99 104.
29. Boulton, R., 2003. Redwines, p. 107 108. In A. G. H. Lea, and J. R. Piggott (ed.), Fermented Beverage Production, 2nd ed. Kluwer Academic, New York, NY.
30. Boulton, R. B.,, V. L. Singleton,, L. F. Bisson,, and R. E. Kunkee. 1995. Principles and Practices of Winemaking. Chapman and Hall, New York, NY.
31. Cabras, R.,, and A. Angioni. 2000. Pesticide residues in grapes, wines and their processing products. J. Agric. Food Chem. 48: 967 973.
32. Cadle-Davidson, L. 2008. Monitoring pathogenesis of natural Botrytis cinerea infections in developing grape berries. Am. J. Enol. Viticult. 59: 387 395.
33. Calonnec, A.,, P. Carolaro,, C. Poupot,, D. Dubourdieu,, and P. Dariet. 2004. Effects of Uncinula necator on the yield and quality of grapes ( Vitis vinifera) and wine. Plant Pathol. 53: 434 445.
34. Campos, F. M.,, A. R. Figueiredo,, T. A. Hogg,, and J. A. Couto. 2009. Effect of phenolic acids on glucose and organic acid metabolism by lactic acid bacteria from wine. Food Microbiol. 26: 409 414.
35. Cantarelli, C., 1989. Factors affecting thebehaviour of yeast in wine fermentation, p. 127 151. In C. Cantarelli, and G. Lanzarini (ed.), Biotechnology Applications in Beverage Production. Elsevier Applied Science, London, United Kingdom.
36. Capece, A.,, C. Fiore,, A. Maraz,, and P. Romano. 2005. Molecular and technological approaches to evaluate strain biodiversity in Hanseniaspora uvarum of wine origin. J. Appl. Microbiol. 98: 136 144.
37. Capone, D. L.,, K. van Leeuwen,, K. H. Pardon,, M. A. Daniel,, G. A. Elsey,, A. D. Coulter,, and M. A. Sefton. 2010. Identification and analysis of 2-chloro-6-methylphenol, 2,6-dichlorophenol and indole: causes of taints and off-flavours in wines. Aust. J. Grape Wine Res. 16: 210 217.
38. Cappello, M. S.,, G. Bleve,, F. Grieco,, F. Dellaglio,, and G. Zacheo. 2004. Characterization of Saccharomyces cerevisiae strains isolated from must of grape grown in experimental vineyard. J. Appl. Microbiol. 97: 1274 1280.
39. Carr, F. J.,, D. Chill,, and N. Maida. 2002. The lactic acid bacteria: a literature survey. Crit. Rev. Microbiol. 28: 281 370.
40. Carrau, F. M.,, K. Medina,, E. Boido,, L. Farina,, C. Gaggero,, E. Dellacassa,, G. Versini,, and P. A. Henschke. 2005. De novo synthesis of monoterpenes by Saccharomyces cerevisiae wine yeasts. FEMS Microbiol. Lett. 243: 107 115.
41. Cebollero, E.,, D. Gonzalez-Ramos,, and R. Gonzalez. 2009. Construction of a recombinant autolytic wine yeast strain overexpressing the csc1-1 allele. Biotechnol. Prog. 25: 1598 1604.
42. Charoenchai, C.,, G. H. Fleet,, and P. Henschke. 1998. Effects of temperature, pH and sugar concentration on the growth rates and cell biomass of wine yeast. Am. J. Enol. Viticult. 49: 283 288.
43. Charoenchai, C.,, G. H. Fleet,, P. Henschke,, and B. E. N. Todd. 1997. Screening of non- Saccharomyces wine yeasts for the presence of extracellular hydrolytic enzymes. Aust. J. Grape Wine Res. 3: 2 8.
44. Charpentier, C.,, and M. Feuillat,. 1993. Yeast autolysis, p. 225 242. In G. H. Fleet (ed.), Wine Microbiology and Biotechnology. Harwood Academic Publishers, Chur, Switzerland.
45. Chiotta, M. L.,, A. Susca,, G. Stea,, G. Mulè,, G. Perrone,, A. Logrieco,, and S. N. Chulze. 2011. Phylogenetic characterization and ochratoxin A—fumonisin profile of black Aspergillus isolated from grapes in Argentina. Int. J. Food Microbiol. 149: 171 176.
46. Ciani, M.,, L. Beco,, and F. Comitini. 2006. Fermentation behavior and metabolic interactions of multistarter wine yeast fermentations. Int. J. Food Microbiol. 108: 239 245.
47. Ciani, M.,, and F. Comitini. 2011. Non- Saccharomyces wine yeasts have a promising role in biotechnological approaches to winemaking. Ann. Microbiol. 61: 25 32.
48. Ciani, M.,, F. Comitini,, I. Mannazzu,, and P. Domizio. 2010. Controlled mixed culture fermentation: a new perspective on the use of non- Saccharomyces yeasts in winemaking. FEMS Yeast Res. 10: 123 133.
49. Ciani, M.,, F. Fatichenti,, and I. Mannazzu,. 2002. Yeasts in winemaking biotechnology, p. 111 123. In M. Ciani (ed.), Biodiversity and Biotechnology of Wine Yeasts. Research Signpost, Kerala, India.
50. Clemente-Jimenez, J. M.,, L. Mingorance-Cazorla,, S. Martínez-Rodríguez,, F. J. L. Heras-Vázquez,, and F. Rodríguez-Vico. 2005. Influence of sequential yeast mixtures on wine fermentation. Int. J. Food Microbiol. 98: 301 308.
51. Cocolin, L.,, L. Bisson,, and D. A. Mills. 2000. Direct profiling of the dynamics in wine fermentations. FEMS Microbiol. Lett. 189: 81 87.
52. Cocolin, L.,, V. Pepe,, F. Comitini,, G. Comi,, and M. Ciani. 2004. Enological and genetic traits of Saccharomyces cerevisiae isolated from former and modern wineries. FEMS Yeast Res. 5: 237 246.
53. Cocolin, L.,, K. Rantsiou,, L. Iacumin,, R. Zirconi,, and G. Comi. 2004. Molecular detection and identification of Brettanomyces/Dekkera bruxellensis and Brettanomyces/Dekkera anomalus in spoiled wine. Appl. Environ. Microbiol. 70: 1347 1355.
54. Cole, V.C.,, and A. C. Noble,. 2003. Flavor chemistry, p. 393 412. In A. G. H. Lea, and J. R. Piggott (ed.), Fermented Beverage Production, 2nd ed. Kluwer Academic, New York, NY.
55. Coloretti, F.,, C. Zambonelli,, and V. Tini. 2006. Characterization of flocculent Saccharomyces interspecific hybrids for the production of sparkling wines. Food Microbiol. 23: 672 676.
56. Combina, M.,, A. Elia,, L. Mercado,, C. Catania,, A. Ganga,, and C. Martinez. 2003. Dynamics of yeast populations during spontaneous fermentations of wines from Mendonza, Argentina. Int. J. Food Microbiol. 99: 237 243.
57. Combina, M.,, L. Mercado,, P. Borgo,, A. Elia,, V. Jofré,, A. Ganga,, and C. Martinez. 2005. Yeasts associated to Malbec grape berries from Mendoza, Argentina. J. Appl. Microbiol. 98: 1055 1061.
58. Constanti, M.,, M. Poblet,, L. Arola,, A. Mas,, and J. M. Guillamón. 1997. Analysis of yeast populations during alcoholic fermentation in a newly established winery. Am. J. Enol. Viticult. 48: 339 344.
59. Conterno, L.,, C. M. L. Joseph,, T. J. Arvik,, T. Henick-Kling,, and L. F. Bisson. 2006. Genetic and physiological characterization of Brettanomyces bruxellensis strains isolated from wines. Am. J. Enol. Viticult. 57: 139 147.
60. Coombe, B. G.,, and P. R. Dry. 2004. Viticulture, 2nd ed., vol. 1. Resources. Winetitles, Adelaide, Australia.
61. Costa, A.,, A. Barata,, M. Malfeito-Ferriera,, and V. Loureiro. 2008. Evaluation of the inhibitory effect of dimethyl dicarbonate (DMDC) against wine microorganisms. Food Microbiol. 25: 422 427.
62. Costello, P.J.,, and P. A. Henschke. 2002. Mousy off-flavour of wine. Precursors and biosynthesis of the causative N-heterocycles 2-ethyl tetrahydropyridine, 2-acetyltetrahydropyridine and 2-acetyl-1-pyrroline by Lactobacillus hilgardii DSM 20176. J. Agric. Food Chem. 50: 7079 7087.
63. Coton, M.,, A. Romano,, G. Spano,, K. Ziegler,, C. Vetrana,, C. Desmarais,, A. Lonvaud-Funel,, P. Lucas,, and E. Coton. 2010. Occurrence of biogenic amine-forming lactic acid bacteria in wine and cider. Food Microbiol. 27: 1078 1085.
64. Coulon, J.,, J. I. Husnik,, D. L. Inglis,, G. K. van der Merwe,, A. Lonvaud,, D. J. Erasmus,, and H. J. J. van Vuuren. 2006. Metabolic engineering of Saccharomyces cerevisiae to minimize theproduction of ethyl carbamate in wine. Am. J. Enol. Viticult. 57: 113 124.
65. Couto, J. A.,, F. M. Campos,, F. R. Figueiredo,, and T. Hogg. 2006. Ability of lactic acid bacteria to produce volatile phenols. Am. J. Enol. Viticult. 57: 166 171.
66. Couto, J. A.,, F. Neves,, F. Campos,, and T. Hogg. 2005. Thermal inactivation of the wine spoilage yeasts Dekkera/Brettanomyces. Int. J. Food Microbiol. 104: 337 344.
67. Daeschel, M. A.,, D. S. Jung,, and B. T. Watson. 1991. Controlling malolactic fermentation with nisin and nisin-resistant strains of Leuconostoc oenos. Appl. Environ. Microbiol. 57: 601 603.
68. Dahabieh, M. S.,, J. I. Husnik,, and H. J. J. van Vuuren. 2009. Functional expression of the DUR3 gene in a wine yeast strain to minimize ethyl carbamate in Chardonnay wine. Am. J. Enol. Viticult. 60: 537 541.
69. Dávalos, A.,, and M. A. Lasunción,. 2009. Health-promoting effects of wine phenolics, p. 571 592. In M. V. Moreno-Arribas, and M. C. Polo (ed.), Wine Chemistry and Biochemistry. Springer, New York, NY.
70. Davis, C. R.,, N. F. A. Silveira,, and G. H. Fleet. 1985. Occurrence and properties of bacteriophages of Leuconstoc oenos in Australian wines. Appl. Environ. Microbiol. 50: 872 876.
71. Davis, C.,, D. Wibowo,, R. Eschenbruch,, T. H. Lee,, and G. H. Fleet. 1985. Practical implications of malolactic fermentation—a review. Am. J. Enol. Viticult. 36: 209 301.
72. Davis, C. R.,, D. Wibowo,, G. H. Fleet,, and T. H. Lee. 1988. Properties of wine lactic acid bacteria: their potential enological significance. Am. J. Enol. Viticult. 39: 137 142.
73. Davis, C. R.,, D. Wibowo,, T. H. Lee,, and G. H. Fleet. 1986. Growth and metabolism of lactic acid bacteria during and after malolactic fermentation of wines at different pH. Appl. Environ. Microbiol. 51: 539 545.
74. Degré, R., 1993. Selection andcultivation of wine yeast and bacteria, p. 421 447. In G. H. Fleet (ed.), Wine Microbiology and Biotechnology. Harwood Academic Publishers, Chur, Switzerland.
75. de las Rivas, B.,, A. Marcobal,, and R. Muñoz. 2004. Allelic diversity and population structure in Oenococcus oeni as determined from sequence analysis of housekeepinggenes. Appl. Environ. Microbiol. 70: 7210 7219.
76. de lasRivas, B.,, H. Rodríguez,, J. A. Curiel,, J. M. Landete,, and R. Muñoz. 2009. Molecular screening of wine lactic acid bacteria degradinghydroxycinnamic acids. J. Agric. Food Chem. 57: 490 494.
77. Demuyter, C.,, M. Lollier,, J-L. Legras,, and C. Le Jeune. 2004. Predominance of Saccharomyces uvarum during spontaneous alcoholic fermentation, for three consecutive years, in an Alsatian winery. J. Appl. Microbiol. 97: 1140 1148.
78. Deppenmeier, U.,, M. Hoffmeister,, and C. Prost. 2002. Biochemistry and biotechnological applications of Gluconobacter strains. Appl. Microbiol. Biotechnol. 60: 233 242.
79. Dequin, S.,, J. M. Salmon,, H.-V. Nguyen,, and B. Blondin,. 2003. Wineyeasts, p. 389 411. In T. Boekhout, and V. Robert (ed.), Yeasts in Foods: Beneficial and Detrimental Aspects, Behr’s-Verlag, Hamburg, Germany.
80. de Revel, G.,, A. Bloem,, M. Augustin,, A. Lonvaud-Funel,, and A. Bertrand. 2005. Interaction of Oenococcus oeni and oak wood compounds. Food Microbiol. 22: 569 575.
81. de Revel, G.,, N. Martin,, L. Pripis-Nicolau,, A. Lonvaud-Funel,, and A. Bertrand. 1999. Contribution to the knowledge of malolactic fermentation influence on wine aroma. J. Agric. Food Chem. 47: 4003 4008.
82. Dewey, F. M.,, M. Hill,, and R. DeScenzo. 2008. Quantification of Botrytis and laccase in winegrapes. Am. J. Enol. Viticult. 59: 47 54.
83. Dicks, L. M. T.,, F. Dellaglio,, and M. D. Collins. 1995. Proposal to reclassify Leuconostoc oenos as Oenococcus oeni (corrig.) gen. nov. Int. J. Syst. Bacteriol. 45: 395 397.
84. D’Inecco, N.,, E. J. Bartowsky,, S. Kassara,, A. Lante,, P. Spettoli,, and P. A. Henschke. 2004. Release of glycosidically bound flavour compounds of Chardonnay by Oenococcus oeni during malolactic fermentation. Food Microbiol. 21: 257 265.
85. Dittrich, H.H., 1995. Wine and brandy, p. 464 503. In G. Reed, and T. W. Nagodawithana (ed.), Biotechnology, 2nd ed., vol. 9. Enzymes, Biomass, Food and Feed. VCH, Weinheim, Germany.
86. Diviès, C., 1993. Bioreactor technologyand wine fermentation, p. 449 475. In G. H. Fleet (ed.), Wine Microbiology and Biotechnology. Harwood Academic Publishers, Chur, Switzerland.
87. Divol, B.,, and A. Lonvaud-Funel. 2005. Evidence for viable but non-culturable yeasts in botrytis-affected wine. J. Appl. Microbiol. 99: 85 93.
88. Doneche, B., 1993. Botrytizedwines, p. 327 351. In G. H. Fleet (ed.), Wine Microbiology and Biotechnology. Harwood Academic Publishers, Chur, Switzerland.
89. Drysdale, G. S.,, and G. H. Fleet. 1988. Acetic acid bacteria in winemaking—a review. Am. J. Enol. Viticult. 39: 143 154.
90. Drysdale, G. S.,, and G. H. Fleet. 1989. The effect of acetic acid bacteria upon the growth and metabolism of yeasts during the fermentation of grape juice. J. Appl. Bacteriol. 67: 471 481.
91. Dubourdieu, D.,, T. Tominaga,, I. Masneuf,, C. Peyrot des Gachons,, and M. L. Murat. 2006. The role ofyeasts in grape flavor development during fermentation: the example of Sauvignonblanc. Am. J. Enol. Viticult. 57: 81 88.
92. du Plessis, H. W.,, L. M. T. Dicks,, I. S. Pretorius,, M. G. Lambrechts,, and M. du Toit. 2004. Identification of lactic acid bacteria isolated from South African brandy base wines. Int. J. Food Microbiol. 91: 19 29.
93. du Toit, M.,, and I. S. Pretorius. 2000. Microbial spoilage and preservation of wine: using weapons from nature’s own arsenal—a review. S. Afr. J. Enol. Viticult. 21: 74 96.
94. du Toit, W. J.,, and M. G. Lambrechts. 2002. The enumeration and identification of acetic acid bacteria from South African red wine fermentations. Int. J. Food Microbiol. 74: 57 64.
95. du Toit, W. J.,, I. S. Pretorius,, and A. Lonvaud-Funel. 2005. The effect of sulphur dioxide and oxygen on the viability and culturability of a strain of Acetobacter pasteurianus and a strain of Brettanomyces bruxellensis isolated from wine. J. Appl. Microbiol. 98: 862 871.
96. Egli, C. M.,, W. D. Edinger,, C. M. Mitrakul,, and T. Henick-Kling. 1998. Dynamics of indigenous and inoculated yeast populations and their effect on the sensory character of Riesling and Chardonnay wines. J. Appl. Microbiol. 85: 779 789.
97. Emmet, R.W.,, A. R. Harris,, R. H. Taylor,, and J. K. McGechan,. 1988. Grape diseases and vineyard protection, p. 232 278. In B. G. Coombe, and P. R. Dry (ed.), Viticulture, vol. 2. Winetitles, Adelaide, Australia.
98. Erten, H. 2002. Relations between elevated temperatures and fermentative behaviour of Kloeckera apiculata and Saccharomyces cerevisiae associated with winemaking in mixed cultures. World J. Microbiol. Biotechnol. 18: 373 378.
99. Estevez, P.,, M. Luisa Gil,, and E. Falque. 2004. Effects of seven yeast strains on the volatile composition of Palomino wines. Int. J. Food Sci. Technol. 39: 61 69.
100. Esteve-Zarzoso, B.,, M. J. Peris-Torán,, E. García-Maiquez,, F. Uruburu,, and A. Querol. 2001. Yeast population dynamics during the fermentation and biological aging of sherry wines. Appl. Environ. Microbiol. 67: 2056 2061.
101. Ewart, A., 2003. Whitewines, p. 89 106. In A. G. H. Lea, and J. R. Piggott (ed.), Fermented Beverage Production, 2nd ed. Kluwer Academic, New York, NY.
102. Faia, A. M.,, and F. Radler. 1990. Investigation of the bactericidal effect of nisin on lactic acid bacteria of wine. Vitis 29: 233 238.
103. Farias, M.E.,, and M. C. Manca deNadra. 2000. Purification and partial characterization of Oenococcus oeni protease. FEMS Microbiol. Lett. 185: 263 266.
104. Fernandez-Gonzalez, M.,, R. di Stefano,, and A. Briones. 2003. Hydrolysis and transformation of terpene glycosides from Muscat must by different yeast species. Food Microbiol. 20: 35 41.
105. Feuillat, M. 2003. Yeast macromolecules: origin, composition and enological interest. Am. J. Enol. Viticult. 54: 211 213.
106. Fia, G.,, G. Giovani,, and I. Rosi. 2005. Study of β-glucosidase production by wine-related yeasts during alcoholic fermentation. A new rapid fluorimetric method to determine enzymatic activity. J. Appl. Microbiol. 99: 509 517.
107. Fleet, G. H. 1992. Spoilage yeasts. Crit. Rev. Biotechnol. 12: 1 44.
108. Fleet, G.H., 1993. The microorganisms ofwinemaking—isolation, enumeration and identification, p. 1 26. In G. H. Fleet (ed.), Wine Microbiology and Biotechnology. Harwood Academic Publishers, Chur, Switzerland.
109. Fleet, G. H. 1999. Microorganisms in food ecosystems. Int. J. Food Microbiol. 50: 101 117.
110. Fleet, G. H. 2003. Yeast interactions and wine flavour. Int. J. Food Microbiol. 86: 11 22.
111. Fleet, G.H., 2003. Yeasts in fruit and fruitproducts, p. 267 288. In T. Boeckhout, and V. Robert (ed.), Yeasts in Food: Beneficial and Detrimental Aspects. Behr’s-Verlag, Hamburg, Germany.
112. Fleet, G. H. 2008. Wine yeasts for the future. FEMS Yeast Res. 8: 979 995.
113. Fleet, G.H.,, and G. M. Heard,. 1993. Yeasts—growth during fermentation, p. 27 54. In G. H. Fleet (ed.), Wine Microbiology and Biotechnology. Harwood Academic Publishers, Chur, Switzerland.
114. Fleet, G. H.,, S. Lafon-Lafourcade,, and P. Ribereau-Gayon. 1984. Evolution of yeasts and lactic acid bacteria during fermentation and storage of Bordeaux wines. Appl. Environ. Microbiol. 48: 1034 1038.
115. Fleet, G.H.,, C. Prakitchaiwattana,, A. L. Beh,, and G. Heard,. 2002. The yeast ecology of wine grapes, p. 1 17. In M. Ciani (ed.), Biodiversity and Biotechnology of Wine Yeasts. Research Signpost, Kerala, India.
116. Francis, J. L.,, and J. L. Newton. 2005. Determining wine aroma from compositional data. Aust. J. Grape Wine Res. 11: 114 126.
117. Fredericks, I. N.,, M. du Toit,, and M. Krügel. 2011. Efficacy of ultraviolet radiation as an alternative technology to inactivate microorganisms in grape juices and wines. Food Microbiol. 28: 510 517.
118. Fugelsang, K. C.,, and C. G. Edwards. 2010. Wine Microbiology: Practical Applications and Procedures, 2nd ed. Springer, New York, NY.
119. G-Alegría, E.,, I. López,, J. I. Ruiz,, J. Sáenz,, E. Fernández,, M. Zarazaga,, M. Dizy,, C. Torres,, and F. Ruiz-Larrea. 2004. High tolerance of wild Lactobacillus plantarum and Oenococcus oeni strains to lyophilisation and stress environmental conditions of acid pH and ethanol. FEMS Microbiol. Lett. 230: 53 61.
120. Gambuti, A.,, D. Strollo,, A. Genovese,, M. Ugliano,, A. Ritieni,, and L. Moio. 2005. Influence of enological practices on ochratoxin A concentration in wine. Am. J. Enol. Viticult. 56: 155 162.
121. Ganga, M. A.,, and C. Martínez. 2004. Effect of wine yeast monoculture practice in the biodiversity of non- Saccharomyces yeasts. J. Appl. Microbiol. 96: 76 83.
122. Gao, C.,, and G. H. Fleet. 1988. The effects of temperature and pH on the ethanol tolerance of the wine yeasts, Saccharomyces cerevisiae, Candida stellata and Kloeckera apiculata. J. Appl. Bacteriol. 65: 405 410.
123. Gao, C.,, and G. H. Fleet. 1995. Cell-recycle membrane bioreactor for conducting continuous malolactic fermentation. Aust. J. Grape Wine Res. 1: 32 38.
124. Gao, C.,, and G. H. Fleet. 1995. Degradation of malic and tartaric acids by high density cell suspensions of wine yeasts. Food Microbiol. 12: 65 71.
125. Gao, Y. C.,, G. Zhang,, S. Krentz,, S. Darius,, J. Power,, and G. Lagarde. 2002. Inhibition of spoilage lactic acid bacteria by lysozyme during wine alcoholic fermentation. Aust. J. Grape Wine Res. 8: 76 83.
126. García-Ruiz, A.,, E. M. González-Rompinelli,, B. Bartolomé,, and M. V. Moreno-Arribas. 2011. Potential of wine-associated lactic acid bacteria to degrade biogenic amines. Int. J. Food Microbiol. 148: 115 120.
127. Gerbaux, V.,, C. Briffox,, A. Dumont,, and S. Krieger. 2009. Influence of inoculation with malolactic bacteria on volatile phenols in wines. Am. J. Enol. Viticult. 60: 233 235.
128. Gockowiak, H.,, and P. A. Henschke. 2003. Interaction of pH, ethanol concentration and wine matrix on induction of malolactic fermentation with commercial “direct inoculation” starter cultures. Aust. J. Grape Wine Res. 9: 200 209.
129. Goldberg, D. M., and G. J. Soleas. 2011. Wine and health: a paradigm for alcohol and antioxidants. J. Med. Biochem. 30: 93 102.
130. Gonzalez, A.,, N. Hierro,, M. Poblet,, A. Mas,, and J. M. Guillamon. 2005. Application of molecular methods to demonstrate species and strain evolution of acetic acid bacteria population during wine production. Int. J. Food Microbiol. 102: 295 304.
131. Gonzalez, A.,, H. M. Poblet,, N. Rozes,, A. Mas,, and J. M. Guillamon. 2004. Application of molecular methods for the differentiation of acetic acid bacteria in a red wine fermentation. J. Appl. Microbiol. 96: 853 860.
132. Goriushkina, T. B.,, A. P. Soldatkin,, and S. V. Dzyadevych. 2009. Application of amperometric biosensors for analysis of ethanol, glucose and lactate in wine. J. Agric. Food Chem. 57: 6528 6535.
133. Goswell, R.W.,, and R. E. Kunkee,. 1977. Fortified wines, p. 478 533. In A. H. Rose (ed.), Economic Microbiology, vol. 1. Academic Press, London, United Kingdom.
134. Granchi, L.,, M. Bosco,, A. Messini,, and M. Vincenzini. 1999. Rapid detection and quantification of yeast species during spontaneous wine fermentation by PCR-RFLP analysis of the rDNA ITS region. J. Appl. Microbiol. 87: 949 956.
135. Granchi, L. D. Gannucci, C. Viti, L. Giovannetti, and M. Vincenzini. 2003. Saccharomyces cerevisiae biodiversity in spontaneous commercial fermentations of grape musts with “adequate” and “inadequate” assimilable-nitrogen content. Lett. Appl. Microbiol. 36: 54 58.
136. Grimaldi, A.,, E. Bartowsky,, and V. Jiranek. 2005. A survey of glycosidase activities of commercial wine strains of Oenococcus oeni. Int. J. Food Microbiol. 105: 233 244.
137. Guerrini, S.,, A. Bastianini,, G. Blaiotta,, L. Granchi,, G. Moschetti,, S. Coppola,, P. Romano,, and M. Vincenzini. 2003. Phenotypic and genotypic characterization of Oenococcus oeni strains isolated from Italian wines. Int. J. Food Microbiol. 83: 1 14.
138. Guerrini, S.,, S. Mangani,, L. Granchi,, and M. Vincenzini. 2002. Biogenic amine production by Oenococcus oeni. Curr. Microbiol. 44: 374 378.
139. Guilloux-Benatier, M.,, M. O. Pageault,, A. Man,, and M. Feuillat. 2000. Lysis of yeast cells by Oenococcus oeni enzymes. J. Ind. Microbiol. Biotechnol. 25: 193 197.
140. Gutiérrez, A. R.,, S. Epifanio,, P. Garijo,, P. Lopez,, and P. Santamaria. 2001. Killer yeasts: incidence in the ecology of spontaneous fermentation. Am. J. Enol. Viticult. 52: 352 356.
141. Gutiérrez, A. R.,, P. Santamaria,, S. Epifania,, P. Garijo,, and R. Lopez. 1999. Ecology of spontaneous fermentation in one winery during 5 consecutive years. Lett. Appl. Microbiol. 29: 411 415.
142. Guzzo, J.,, M. P. Jobin,, F. Delmas,, L. C. Fortier,, D. Garmyn,, R. Tourdot-Maréchal,, B. Lee,, and C. Diviès. 2000. Regulation of stress response in Oenococcus oeni as a function of environmental changes and growth phase. Int. J. Food Microbiol. 55: 27 31.
143. Hansen, E. H.,, P. Nissen,, P. Sommer,, J. C. Nielsen,, and N. Arneborg. 2001. The effect of oxygen on the survival of non- Saccharomyces yeasts during mixed culture fermentations of grape juice with Saccharomyces cerevisiae. J. Appl. Microbiol. 91: 541 547.
144. Hayashi, H.,, R. Arai,, S. Tada,, H. Taguchi,, and Y. Ogawa. 2007. Detection and identification of Brettanomyces/Dekkera sp. yeasts with a loop-mediated isothermal amplification method. Food Microbiol. 24: 778 785.
145. Heard, G. M. 1999. Novel yeasts in winemaking—looking to the future. Food Aust. 51: 347 352.
146. Heard, G. M.,, and G. H. Fleet. 1985. Growth of natural yeast flora during the fermentation of inoculated wines. Appl. Environ. Microbiol. 50: 727 728.
147. Heard, G. M.,, and G. H. Fleet. 1988. The effects of temperature and pH on the growth of yeast species during the fermentation of grape juice. J. Appl. Bacteriol. 65: 23 28.
148. Henick-Kling, T., 1993. Malolacticfermentation, p. 289 326. In G. H. Fleet (ed.), Wine Microbiology and Biotechnology. Harwood Academic Publishers, Chur, Switzerland.
149. Henschke, P.A., 1997. Wine yeast, p. 527 560. In F. K. Zimmermann, and K. D. Entian (ed.), Yeast Sugar Metabolism. Technomic Publishing Co., Lancaster, PA.
150. Henschke, P.,, and V. Jiranek,. 1993. Yeasts—metabolism of nitrogen compounds, p. 77 164. In G. H. Fleet (ed.), Wine Microbiology and Biotechnology. Harwood Academic Publishers, Chur, Switzerland.
151. Hernawan, T.,, and G. H. Fleet. 1995. Chemical and cytological changes during the autolysis of yeasts. J. Ind. Microbiol. 14: 440 450.
152. Hocking, A. D.,, P. Varelis,, J. I. Pitt,, S. F. Cameron,, and S. L. Leong. 2003. Occurrence of ochratoxin A in Australian wine. Aust. J. Grape Wine Res. 9: 72 78.
153. Howe, P., 2003. Sparklingwines, p. 139 156. In A. G. H. Lea, and J. R. Piggott (ed.), Fermented Beverage Production, 2nd ed. Kluwer Academic, New York, NY.
154. Howell, K. S.,, D. Cozzolino,, E. J. Bartowsky,, G. H. Fleet,, and P. A. Henschke. 2006. Metabolic profiling as a tool for revealing Saccharomyces interactions during wine fermentation. FEMS Yeast Res. 6: 91 101.
155. Howell, K. S.,, M. Klein,, J. H. Swiegers,, Y. Hayasaka,, G. M. Elsey,, G. H. Fleet,, P. B. Høj,, I. S. Pretorius,, and M. A. deBarros Lopes. 2005. Genetic determinants of volatile-thiol release by Saccharomyces cerevisiae during wine fermentation. Appl. Environ. Microbiol. 71: 5420 5426.
156. Howell, K. S.,, J. H. Swiegers,, G.M. Elsey,, T. E. Siebert,, E. J. Bartowsky,, G. H. Fleet,, I. S. Pretorius,, and M. A. de Barros Lopes. 2004. Variation in 4-mercapto-4-methyl-pentan-2-one release by Saccharomyces cerevisiae commercial wine strains. FEMS Microbiol. Lett. 240: 125 129.
157. Izquierdo-Cañas, P. M.,, E. García-Romero,, B. Huertas-Nebreda,, and S. Gómez-Alonso. 2011. Colloidal silver complex as an alternative to sulphur dioxide in winemaking. Food Control 23: 73 81.
158. Jara, C.,, E. Mateo,, J. M. Guillamón,, M. J. Torija,, and A. Mas. 2008. Analysis of several methods for the extraction of high quality DNA from acetic acid bacteria in wine and vinegar for characterization by PCR-based methods. Int. J. Food Microbiol. 128: 336 341.
159. Jensen, S. L.,, N. L. Umiker,, N. Arneborg,, and C. G. Edwards. 2009. Identification and characterization of Dekkera bruxellensis, Candida pararugosa, and Pichia guilliermondii isolated from commercial red wines. Food Microbiol. 26: 915 921.
160. Jolly, N. P.,, O. P. H. Augustyn,, and I. S. Pretorius. 2003. The occurrence of non- Saccharomyces cerevisiae yeast species over three vintages in four vineyards and grape must from four production regions of the Western Cape, South Africa. S. Afr. J. Enol. Viticult. 24: 35 42.
161. Karpel, J. E.,, W. R. Place,, and L. F. Bisson. 2008. Analysis of the major hexose transporter genes in wine strains of Saccharomyces cerevisiae. Am. J. Enol. Viticult. 59: 265 275.
162. King, E. S.,, R. L. Kievit,, C. Curtin,, J. H. Swiegers,, I. S. Pretorius,, S. E. P. Bastian,, and I. L. Francis. 2010. The effect of multiple yeasts co-inoculations on Sauvignon Blanc wine aroma composition, sensory properties and consumer preference. Food Chem. 122: 618 626.
163. Kourkoutas, Y.,, A. Bekatorou,, I. A. Banat,, R. Marchant,, and A. A. Koutinas. 2004. Immobilization technologies and support materials suitable in alcohol beverages production—a review. Food Microbiol. 21: 377 397.
164. Kumar, G. R.,, R. Goyashiki,, V. Ramakrishnan,, J. E. Karpel,, and L. F. Bisson. 2008. Genes required for ethanol tolerance and utilization in Saccharomyces cerevisiae. Am. J. Enol. Viticult. 59: 401 411.
165. Kunkee, R.E.,, and L. Bisson,. 1993. Wine-making yeasts, p. 69 128. In A. H. Rose, and J. S. Harrison (ed.), The Yeasts, 2nd ed., vol. 5. Yeast Technology. Academic Press, London, United Kingdom.
166. Kurtzman, C. P. 2003. Phylogenetic circumscription of Saccharomyces, Kluyveromyces and other members of Saccharomycetaceae and the proposal of the new genera Lachancea, Nakaseomyces, Vanderwaltozyma and Zygotorulaspora. FEMS Yeast Res. 4: 233 245.
167. Lambrechts, M. G.,, and I. S. Pretorius. 2000. Yeast and its importance in wine aroma—a review. S. Afr. J. Enol. Viticult. 21: 97 129.
168. Landete, J. M.,, S. Ferrer,, and I. Pardo. 2007. Biogenic amine production by lactic acid bacteria, acetic bacteria and yeast isolated from wine. Food Control 18: 1569 1574.
169. Landete, J. M.,, B. de las Rivas,, A. Marcobal,, and R. Muñoz. 2011. PCR methods for the detection ofbiogenic amine-producing bacteria on wine. Ann. Microbiol. 61: 159 166.
170. Lee, J.,, and K. L. Steenwerth. 2011. Rootstock and vineyard floor management influence on ‘Cabernet Sauvignon’ grape yeast assimilable nitrogen (YAN). Food Chem. 127: 926 933.
171. Lee, T.H.,, and R. F. Simpson,. 1993. Microbiology and chemistry of cork taints in wine, p. 353 372. In G. H. Fleet (ed.), Wine Microbiology and Biotechnology. Harwood Academic Publishers, Chur, Switzerland.
172. Liu, S. Q. 2002. Malolactic fermentation in wine—beyond deacidificiation. J. Appl. Microbiol. 92: 589 601.
173. Logrieco, A. F.,, R. Ferracane,, G. Cozzi,, M. Haidukowsky,, A. Susca,, G. Mulè,, and A. Ritieni. 2011. Fumonisin B 2 by Aspergillus niger in the grape-wine chain: an additional potential mycotoxicological risk. Ann. Microbiol. 61: 1 3.
174. Logrieco, A.,, R. Ferracane,, M. Haidukowsky,, G. Cozzi,, A. Visconti,, and A. Ritieni. 2009. Fumonisin B 2 production by Aspergillus niger from grapes and natural occurrence in must. Food Addit. Contam. 26: 1495 1500.
175. Logrieco, A.,, R. Ferracane,, A. Visconti,, and A. Ritieni. 2010. Natural occurrence of fumonisin B 2 in red wine from Italy. Food Addit. Contam. 27: 1136 1141.
176. Lonvaud-Funel, A. 1999. Lactic acid bacteria in the quality improvement and depreciation of wine. Antonie van Leeuwenhoek 76: 317 331.
177. Lonvaud-Funel, A. 2001. Biogenic amines in wines: role of lactic acid bacteria. FEMS Microbiol. Lett. 199: 9 13.
178. Lopardo, R.,, M. Musto,, F. Cellini,, and P. D. Grieco. 2011. Development and application of a duplex PCR for the detection of Aspergillus carbonarius occurring in grapes. Ann. Microbiol. 61: 5 9.
179. Loureiro, V.,, and M. Malfeito-Ferreira. 2003. Spoilage yeasts in the wine industry. Int. J. Food Microbiol. 86: 23 50.
180. Lustrato, G.,, I. Vigentini,, A. De Leonardis,, G. Alfano,, A. Tirelli,, R. Foschino,, and G. Ranalli. 2010. Inactivation of wine spoilage yeasts Dekkera bruxellensis using low electric current treatment (LEC). J. Appl. Microbiol. 109: 594 604.
181. Magnoli, C.,, M. Violante,, M. Combina,, G. Palacio,, and A. Dalcero. 2003. Mycoflora and ochratoxin-producing strains of Aspergillus section Nigri in wine grapes in Argentina. Lett. Appl. Microbiol. 37: 179 184.
182. Magyar, I.,, and T. Tóth. 2011. Comparative evaluation of some oenological properties in wine strains of Candida stellata, Candida zemplinina, Saccharomyces uvarum and Saccharomyces cerevisiae. Food Microbiol. 28: 94 100.
183. Maicas, S. 2001. The use of alternative technologies to develop malolactic fermentation in wine. Appl. Microbiol. Biotechnol. 56: 35 39.
184. Mansfield, A. K.,, B. Zoecklein,, and R. S. Whiton. 2002. Quantification of glycosidase activity in selected strains of Brettanomyces bruxellensis and Oenococcus oeni. Am. J. Enol. Viticult. 53: 303 307.
185. Maqueda, M.,, E. Zamora,, N. Rodríguez-Cousiño,, and M. Ramírez. 2010. Wine yeast molecular typing using a simplified method for simultaneously extracting mtDNA, nuclear DNA and virus dsRNA. Food Microbiol. 27: 205 209.
186. Marks, V. D.,, G. K. van derMerwe,, and H. J. J. van Vuuren. 2003. Transcriptional profiling of wineyeast in fermenting grape juice: regulatory effect of diammonium phosphate. FEMS Yeast Res. 3: 269 287.
187. Martinez, P.,, M. J. Valcarcel,, L. Perez,, and T. Benitez. 1995. Metabolism of Saccharomyces cerevisiae flor yeasts during fermentation and biological ageing of fino sherry: by-products and aroma compounds. Am. J. Enol. Viticult. 49: 240 250.
188. Martínez-Rodríguez, A.,, A. V. Carrascosa,, J. M. Barcenilla,, M. A. Pozo-Bayon,, and M. C. Polo. 2001. Autolytic capacity and foam analysis as additional criteria for the selection of yeast strains for sparkling wine production. Food Microbiol. 18: 183 191.
189. Martínez-Rodríguez, A. J.,, M. C. Polo,, and A. V. Carrascosa. 2001. Structural and ultrastructural changes in yeast cells during autolysis in a model wine system and in sparkling wines. Int. J. Food Microbiol. 71: 45 51.
190. Martini, A.,, M. Ciani,, and G. Scorzetti. 1996. Direct enumeration and isolation of wine yeasts from grape surfaces. Am. J. Enol. Viticult. 47: 435 440.
191. Martorell, P.,, A. Querol,, and M. T. Fernández-Espinar. 2005. Rapid identification and enumeration of Saccharomyces cerevisiae cells in wine by real-time PCR. Appl. Environ. Microbiol. 71: 6823 6830.
192. Masneuf-Pomarède, I.,, M. Bely,, P. Marullo,, A. Lonvaud-Funel,, and D. Dubourdieu. 2010. Reassessment of phenotypic trains for Saccharomyces bayanus var. uvarum wine yeast strains. Int. J. Food Microbiol. 139: 79 86.
193. Matthews, A.,, A. Grimaldi,, M. Walker,, E. Bartowsky,, P. Grbin,, and V. Jiranek. 2004. Lactic acid bacteria as a potential source of enzymes for use in vinification. Appl. Environ. Microbiol. 70: 5715 5731.
194. Medina, K.,, E. Boido,, E. Dellacassa,, and F. Carrau. 2005. Yeast interactions with anthocyanins during red wine fermentation. Am. J. Enol. Viticult. 56: 104 109.
195. Mendes-Ferreira, A.,, A. Mendes-Faia,, and C. Leão. 2002. Survey of hydrogen sulphide production by wine yeasts. J. Food Prot. 65: 1033 1037.
196. Mendes-Ferreira, A.,, A. Mendes-Faia,, and C. Leão. 2004. Growth and fermentation patterns of Saccharomyces cerevisiae under different ammonium concentrations and its implications in winemaking industry. J. Appl. Microbiol. 97: 540 545.
197. Mendoza, L. M.,, M. C. Manca deNadra,, E. Bru,, and M. E. Farías. 2009. Influence of wine-relatedphysicochemical factors on the growth and metabolism of non- Saccharomyces and Saccharomyces yeasts in mixed culture. J. Ind. Microbiol. Biotechnol. 36: 229 237.
198. Merico, A.,, P. Sulo,, J. Piškur,, and C. Compagno. 2007. Fermentative lifestyle in yeasts belonging to the Saccharomyces complex. FEBS J. 274: 976 989.
199. Millet, V.,, and A. Lonvaud-Funel. 2000. The viable but non-culturable state of wine microorganisms during storage. Lett. Appl. Microbiol. 30: 136 141.
200. Mills, D.,, J. Eric,, and L. Cocolin. 2002. Yeast diversity and persistence in Botrytis-affected wine fermentation. Appl. Environ. Microbiol. 68: 4884 4893.
201. Mills, D. A.,, H. Rawsthorne,, C. Parker,, D. Tamir,, and K. Makarova. 2005. Genomic analysis of Oenococcus oeni PSU-1 and its relevance to winemaking. FEMS Microbiol. Rev. 29: 465 475.
202. Miranda, M.,, A. Ramos,, M. Veiga-da-Cunha,, M. C. Loureiro-Dias,, and H. Santos. 1997. Biochemical basis for glucose-induced inhibition of malolactic fermentation in Leuconostoc oenos. J. Bacteriol. 179: 5345 5354.
203. Mogensen, J. M.,, T. O. Larsen,, and K. F. Nielsen. 2010. Widespread occurrence of the mycotoxin fumonisin B 2 in wine. J. Agric. Food Chem. 58: 4853 4857.
204. Mora, J.,, and A. Mulet. 1991. Effects of some treatments of grape juice on the population and growth of yeast species during fermentation. Am. J. Enol. Viticult. 42: 133 136.
205. Moreira, N.,, P. Guedes de Pinho,, C. Santos,, and I. Vasconcelos. 2011. Relationship between nitrogencontent in grapes and volatiles, namely heavy sulphur compounds, in wines. Food Chem. 126: 1599 1607.
206. Moreira, N.,, F. Mendes,, P. Guedesde Pinho,, T. Hogg,, and I. Vasconcelos. 2008. Heavy sulphur compounds,higher alcohols and esters production profile of Hanseniaspora uvarum and Hanseniaspora guilliermondii grown as pure and mixed cultures in grape must. Int. J. Food Microbiol. 124: 231 238.
207. Navarro, L.,, M. Zarazaga,, J. Sáenz,, F. Ruiz-Larrea,, and C. Torres. 2000. Bacteriocin production by lactic acid bacteria isolated from Rioja wines. J. Appl. Microbiol. 88: 44 51.
208. Nehme, N.,, F. Mathieu,, and P. Taillandier. 2010. Impact of the co-culture of Saccharomyces cerevisiae- Oenococcus oeni on malolactic fermentation and partial characterization of a yeast-derived inhibitory peptidic fraction. Food Microbiol. 27: 150 157.
209. Nielsen, J. C.,, C. Prahl,, and A. Lonvaud-Funel. 1996. Malolactic fermentation in wine by direct inoculation with freeze-dried Leuconostoc oenos cultures. Am. J. Enol. Viticult. 47: 42 48.
210. Nissen, P.,, D. Nielsen,, and N. Arneborg. 2003. Viable Saccharomyces cerevisiae cells at high concentrations cause early growth arrest of non- Saccharomyces yeasts in mixed cultures by a cell-cell contact mediated mechanism. Yeast 20: 331 341.
211. Oelofsel, A.,, A. Lonvaud-Funel,, and M. du Toit. 2009. Molecular identification of Brettanomyces bruxellensis strains isolated from red wines and volatile phenol production. Food Microbiol. 26: 377 385.
212. Oelofsel, A.,, I. S. Pretorius,, and M. du Toit. 2008. Significance of Brettanomyces and Dekkera during winemaking: a synoptic review. S. Afr. J. Enol. Viticult. 29: 128 144.
213. Olguín, N.,, A. Bordons,, and C. Reguant. 2009. Influence of ethanol and pH on the gene expression of the citrate pathway in Oenococcus oeni. Food Microbiol. 26: 197 203.
214. Önal, A. 2007. A review: current analytical methods for the determination of biogenic amines in foods. Food Chem. 103: 1475 1486.
215. Pasteris, S. E.,, and A. M. Strasser de Saad. 2008. Transport of glycerol by Pediococcuspentosaceus isolated from wine. Food Microbiol. 25: 545 549.
216. Peinado, R. A.,, J. A. Mauricio,, and J. Moreno. 2006. Aromatic series in sherry wines with gluconic acid subjected to different biological aging conditions by Saccharomyces cerevisiae var capensis. Food Chem. 94: 232 239.
217. Pérez-Nevado, F.,, H. Albergaria,, T. Hogg,, and F. Girio. 2006. Cellular death of two non- Saccharomyces wine-related yeasts during mixed fermentations with Saccharomyces cerevisiae. Int. J. Food Microbiol. 108: 336 345.
218. Phister, T. G.,, and D. A. Mills. 2003. Real-time PCR assay for detection and enumeration of Dekkera bruxellensis in wine. Appl. Environ. Microbiol. 69: 7430 7434.
219. Phister, T. G.,, H. Rawsthorne,, C. M. L. Joseph,, and D. A. Mills. 2007. Real-time PCR assay for detection and enumeration of Hanseniaspora species from wine and juice. Am. J. Enol. Viticult. 58: 229 233.
220. Piermarini, S.,, G. Volpe,, M. Esti,, M. Simonetti,, and G. Palleschi. 2011. Real time monitoring of alcoholic fermentation with low-cost amperometric biosensors. Food Chem. 127: 749 754.
221. Pimentel, M. S.,, M. H. Silva,, I. Cortes,, and A. M. Faia. 1994. Growth and metabolism of sugar and acids of Leuconostoc oenos under different conditions of temperature and pH. J. Appl. Bacteriol. 76: 42 48.
222. Pinzani, P.,, L. Bonciani,, M. Pazzagli,, C. Orlando,, S. Guerrini,, and L. Granchi. 2004. Rapid detection of Oenococcus oeni in wine by real-time quantitative PCR. Lett. Appl. Microbiol. 38: 118 124.
223. Plata, C.,, C. Millan,, J. C. Mauricio,, and J. M. Ortega. 2003. Formation of ethyl acetate and isoamyl acetate by various species of wine yeasts. Food Microbiol. 20: 217 224.
224. Poblet-Icart, M.,, A. Bordons,, and A. Lonvaud-Funel. 1998. Lysogeny of Oenococcus oeni (syn. Leuconostoc oenos) and study of their induced bacteriophages. Curr. Microbiol. 36: 365 369.
225. Pohve-Jemec, K.,, N. Cadez,, T. Zagorc,, V. Bubic,, A. Zupec,, and P. Raspor. 2001. Yeast population dynamics in five spontaneous fermentations of Malvasia must. Food Microbiol. 18: 247 259.
226. Pohve-Jemec, K.,, and P. Raspor. 2005. Initial Saccharomyces cerevisiae concentration in single or composite cultures dictates bioprocess kinetics. Food Microbiol. 22: 293 300.
227. Prakitchaiwattana, C. J.,, G. H. Fleet,, and G. M. Heard. 2004. Application and evaluation of denaturing gradient gel electrophoresis to analyse the yeast ecology of wine grapes. FEMS Yeast Res. 4: 865 877.
228. Pramateftaki, P. V.,, P. Lanaridis,, and M. A. Typas. 2000. Molecular identification of wine yeasts at species or strain level: a case study with strains from two vine-growing areas of Greece. J. Appl. Microbiol. 89: 236 248.
229. Presa-Owens, C. D. L.,, P. Schlich,, H. D. Davies,, and A. C. Noble. 1998. Effect of Methode Champenoise process on aroma of four V. vinifera varieties. Am. J. Enol. Viticult. 49: 289 294.
230. Pretorius, I. 2000. Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking. Yeast 16: 675 729.
231. Pretorius, I. S.,, and E. F. Bauer. 2002. Meeting the consumer challenge through genetically customized wine yeast strains. Trends Biotechnol. 20: 426 432.
232. Pretorius, I. S.,, and P. B. Høj. 2005. Grape and wine biotechnology: challenges, opportunities and potential benefits. Aust. J. Grape Wine Res. 11: 83 108.
233. Pretorius, I. S.,, T. J. van der Westhuizen,, and O. P. H. Augustyn. 1999. Yeast biodiversity in vineyardsand wineries and its importance to the South African wine industry. A review. S. Afr. J. Enol. Viticult. 20: 61 76.
234. Pripis-Nicolau, L.,, G. de Revel,, A. Bertrand,, and A. Lonvaud-Funel. 2004. Methionine catabolism and production of volatile sulphur compounds by Oenococcus oeni. J. Appl. Microbiol. 96: 1176 1184.
235. Pueyo, E.,, A. Martínez-Rodríguez,, M. Polo,, G. Santa-María,, and B. Bartolomé. 2000. Release of lipids during yeast autolysis in a model wine system. J. Agric. Food Chem. 48: 116 122.
236. Querol, A.,, E. Barrio,, T. Huerta,, and D. Ramon. 1992. Molecular monitoring of wine fermentations conducted by active dry yeast strains. Appl. Environ. Microbiol. 58: 2948 2953.
237. Querol, A.,, M. T. Fernández-Espinar,, M. L. del Olmo,, and E. Barrio. 2003. Adaptive evolution of wine yeast. Int. J. Food Microbiol. 86: 3 10.
238. Radler, F., 1993. Yeasts—metabolism of organic acids, p. 165 182. In G. H. Fleet (ed.), Wine Microbiology and Biotechnology. Harwood Academic Publishers, Chur, Switzerland.
239. Radoi, F.,, M. Kishida,, and H. Kawasaki. 2005. Endo-polygalacturonase in Saccharomyces wine yeasts: effect of carbon source on enzyme production. FEMS Yeast Res. 5: 663 668.
239.a. Rankine, B. L. 1989. Making Good Wine. A Manual of Winemaking Practices for Australia and New Zealand. Sun Books, Melbourne, Australia.
240. Rauhut, D., 1993. Yeasts—production of sulfur compounds, p. 183 223. In G. H. Fleet (ed.), Wine Microbiology and Biotechnology. Harwood Academic Publishers, Chur, Switzerland.
241. Reader, H.P.,, and M. Dominguez,. 2003. Fortified wines: sherry, port and madeira, p. 157 194. In A. G. H. Lea, and J. R. Piggott (ed.), Fermented Beverage Production. Kluwer Academic, New York, NY.
242. Redzepovi, S.,, S. Orli,, S. Sikora,, A. Majdak,, and I. S. Pretorius. 2002. Identification and characterization of Saccharomyces cerevisiae and Saccharomyces paradoxus strains isolated from Croatian vineyards. Lett. Appl. Microbiol. 35: 305 310.
243. Reguant, C.,, R. Carrete,, N. Ferrer,, and A. Bordons. 2005. Molecular analysis of Oenococcus oeni population dynamics and the affect of aeration and temperature during alcoholic fermentation on malolactic fermentation. Int. J. Food Sci. Technol. 40: 451 459.
244. Regueiro, L. A.,, C. L. Costas,, and J. E. L. Rubio. 1993. Influence of viticultural and enological practices on the development of yeast populations during winemaking. Am. J. Enol. Viticult. 44: 405 408.
245. Renouf, V.,, M.-C. Perello,, G. de Revel,, and A. Lonvaud-Funel. 2007. Survival of wine microorganisms in the bottle during storage. Am. J. Enol. Viticult. 58: 379 386.
246. Renouf, V.,, P. Strehaiano,, and A. Lonvaud-Funel. 2008. Effectiveness of dimethyldicarbonate to prevent Brettanomyces bruxellensis growth in wine. Food Control 19: 208 216.
247. Ribéreau-Gayon, P.,, D. Dubourdieu,, B. Donéche,, and A. Lonvaud. 2000. Handbook of Enology, vol. 1. The Microbiology of Wine and Vinifications. John Wiley & Sons, Chichester, United Kingdom.
248. Richter, H.,, I. Hamann,, and G. Unden. 2003. Use of the mannitol pathway in fructose fermentation of Oenococcus oeni due to limiting redox regeneration capacity of the ethanol pathway. Arch. Microbiol. 179: 227 233.
249. Rodríguez, M. E.,, C. A. Lopes,, M. van Broock,, S. Valles,, D. Ramón,, and A. C. Caballero. 2004. Screening and typing of Patagonian wine yeasts for glycosidase activities. J. Appl. Microbiol. 96: 84 95.
250. Romano, P.,, C. Fiore,, M. Paraggio,, M. Caruso,, and A. Capece. 2003. Function of yeast species and strains in wine flavour. Int. J. Food Microbiol. 86: 169 180.
251. Romano, P.,, and G. Suzzi,. 1993. Sulfur dioxide and wine microorganisms, p. 373 394. In G. H. Fleet (ed.), Wine Microbiology and Biotechnology. Harwood Academic Publishers, Chur, Switzerland.
252. Rosi, I.,, G. Fia,, and V. Canuti. 2003. Influence of pH values and inoculation time on the growth and malolactic activity of a strain of Oenococci oeni. Aust. J. Grape Wine Res. 9: 194 199.
253. Rossignol, T.,, L. Dulau,, A. Julien,, and B. Blondin. 2003. Genome-wide monitoring of wine yeast gene expression during alcoholic fermentation. Yeast 20: 1369 1385.
254. Sabate, J.,, J. Cano,, A. Querol,, and J. M. Guillamon. 1998. Diversity of Saccharomyces strains in wine fermentation: analysis for two consecutive years. Lett. Appl. Microbiol. 26: 452 455.
255. Salaha, M.-I.,, S. Kallithraka,, I. Marmaras,, E. Koussissi,, and I. Tzourou. 2008. A natural alternative to sulphur dioxide for red wine production: influence on colour, antioxidant activity and anthocyanin content. J. Food Comp. Anal. 21: 660 666.
256. Santamaría, P.,, P. Garijo,, R. López,, C. Tenorio,, and A. R. Gutiérrez. 2005. Analysis of yeast population during spontaneous alcoholic fermentation: effect of age of the cellar and practice of inoculation. Int. J. Food Microbiol. 103: 49 56.
257. Schoeman, H.,, G. M. Wolfaardt,, A. Botha,, P. van Rensburg,, and I. S. Pretorius. 2009. Establishing a risk-assessment process for release of genetically modified wine yeast into the environment. Can. J. Microbiol. 55: 990 1002.
258. Schuller, D.,, E. Valero,, S. Dequin,, and M. Casal. 2003. Survey of molecular methods for typing wine yeast strains. FEMS Microbiol. Lett. 231: 19 26.
259. Schutz, M.,, and J. Gafner. 1994. Dynamics of the yeast strain population during spontaneous alcoholic fermentation determined by CHEF gel electrophoresis. Lett. Appl. Microbiol. 19: 253 259.
260. Semon, M. J.,, C. G. Edwards,, D. Forsyth,, and C. O. Dinn. 2001. Inducing malolactic fermentation in Chardonnay musts and wines using different strains of Oenococcus oeni. Aust. J. Grape Wine Res. 7: 52 59.
261. Serra, R.,, L. Abrunhosa,, Z. Kozakiewicz,, and A. Venancio. 2003. Black Aspergillus species as ochratoxin A producers in Portuguese wine grapes. Int. J. Food Microbiol. 88: 63 68.
262. Serra, R.,, A. Braga,, and A. Venancio. 2005. Mycotoxin-producing and other fungi isolated from grapes for wine production, with particular emphasis on ochratoxin A. Res. Microbiol. 156: 515 521.
263. Shimazu, Y.,, and M. Watanabe. 1981. Effects of yeast strains and environmental conditions on formation of organic acids in must during fermentation. J. Ferment. Technol. 59: 27 32.
264. Shimizu, K., 1993. Killeryeasts, p. 243 264. In G. H. Fleet (ed.), Wine Microbiology and Biotechnology. Harwood Academic Publishers, Chur, Switzerland.
265. Silva, S.,, F. Ramon Portugal,, P. Andrade,, M. de Fatima Texeira,, and P. Strehaiano. 2003. Malic acidconsumption by dr