Chapter 10 : Regulation of Pneumococcal Surface Proteins and Capsule

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Regulation of Pneumococcal Surface Proteins and Capsule, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818524/9781555816766_Chap10-1.gif /docserver/preview/fulltext/10.1128/9781555818524/9781555816766_Chap10-2.gif


Vaccination represents the best prospect for managing pneumococcal disease in the 21st century. Polyvalent purified capsular polysaccharide (CPS) vaccines introduced in the 1980s confer strictly serotype-specific protection and are poorly immunogenic in young children. Consequently, current global efforts are now focused on accelerating the development of alternative pneumococcal vaccines based on proteins that contribute to pathogenesis and are common to all serotypes. Bioinformatic analysis suggests that catabolite control protein A (CcpA) can potentially regulate expression of other pneumococcal surface proteins, including StrH (an N-acetylglucosaminidase), GlpO (alpha-glycerophosphate oxidase), and MalX (a maltose/maltodextrin ABC transporter). The majority of CPS serotypes are highly charged at physiological pH, and electrostatic repulsion may directly interfere with interactions with phagocytes. The prospect of developing vaccines targeted at pneumococcal surface proteins increases the importance of understanding their role in pathogenesis, their relative expression levels in various host compartments, and the mechanism(s) whereby their expression in vivo is regulated. Current knowledge on regulatory mechanisms operating on various classes of pneumococcal surface proteins is provided in this chapter. is a highly successful, human-adapted pathogen, responsible for more than a million deaths each year. The complexity of these regulatory networks makes the task of identifying the principal determinants of virulence gene expression a challenging one. Nevertheless, a thorough dissection of the critical regulatory pathways employed by in discrete in vivo niches will undoubtedly provide an improved understanding of pneumococcal pathogenesis and possibly identify novel targets for intervention.

Citation: Ogunniyi A, Paton J. 2013. Regulation of Pneumococcal Surface Proteins and Capsule, p 190-208. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch10
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Simple schematic representation of multiple regulatory circuits impacting expression of surface proteins of . Selected surface proteins are shown in purple, and their respective or putative regulators are depicted in green. Positive regulation is shown by black arrows, while negative regulation (repression) is indicated in red. doi:10.1128/9781555818524.ch10f1

Citation: Ogunniyi A, Paton J. 2013. Regulation of Pneumococcal Surface Proteins and Capsule, p 190-208. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Abeyta, M.,, G. G. Hardy,, and J. Yother. 2003. Genetic alteration of capsule type but not PspA type affects accessibility of surface-bound complement and surface antigens of Streptococcus pneumoniae. Infect. Immun. 71: 218 225.
2. Adamou, J. E.,, J. H. Heinrichs,, A. L. Erwin,, W. Walsh,, T. Gayle,, M. Dormitzer,, R. Dagan,, Y. A. Brewah,, P. Barren,, R. Lathigra,, S. Langermann,, S. Koenig,, and S. Johnson. 2001. Identification and characterization of a novel family of pneumococcal proteins that are protective against sepsis. Infect. Immun. 69: 949 958.
3. Aranda, J.,, M. E. Garrido,, N. Fittipaldi,, P. Cortes,, M. Llagostera,, M. Gottschalk,, and J. Barbe. 2010. The cation-uptake regulators AdcR and Fur are necessary for full virulence of Streptococcus suis. Vet. Microbiol. 144: 246 249.
4. Austrian, R. 1981. Some observations onthe pneumococcus and on the current status of pneumococcal disease and itsprevention. Rev. Infect. Dis. 3( Suppl.): S1 S17.
5. Barocchi, M. A.,, J. Ries,, X. Zogaj,, C. Hemsley,, B. Albiger,, A. Kanth,, S. Dahlberg,, J. Fernebro,, M. Moschioni,, V. Masignani,, K. Hultenby,, A. R. Taddei,, K. Beiter,, F. Wartha,, A. von Euler,, A. Covacci,, D. W. Holden,, S. Normark,, R. Rappuoli,, and B. Henriques-Normark. 2006. A pneumococcal pilus influences virulence and host inflammatory responses. Proc. Natl. Acad. Sci. USA 103: 2857 2862.
6. Bartilson, M.,, A. Marra,, J. Christine,, J. S. Asundi,, W. P Schneider,, and A. E. Hromockyj. 2001. Differential fluorescence induction reveals Streptococcus pneumoniae loci regulated by competence stimulatory peptide. Mol. Microbiol. 39: 126 135.
7. Bassler, B. L. 1999. How bacteria talk to each other: regulation of gene expression by quorum sensing. Curr. Opin. Microbiol. 2: 582 587.
8. Belland, R. J.,, S. G. Morrison,, P. vander Ley,, and J. Swanson. 1989. Expression and phase variation of gonococcal P.II genes in Escherichia coli involves ribosomal frameshifting and slipped-strand mispairing. Mol. Microbiol. 3: 777 786.
9. Bender, M. H.,, R. T. Cartee,, and J. Yother. 2003. Positive correlation between tyrosine phosphorylation of CpsD and capsular polysaccharide production in Streptococcus pneumoniae. J. Bacteriol. 185: 6057 6066.
10. Bender, M. H.,, and J. N. Weiser. 2006. The atypical amino-terminal LPNTG-containing domain of the pneumococcal human IgA1-specific protease is required for proper enzyme localization and function. Mol. Microbiol. 61: 526 543.
11. Bender, M. H.,, and J. Yother. 2001. CpsB is a modulator of capsule-associated tyrosine kinase activity in Streptococcus pneumoniae. J. Biol. Chem. 276: 47966 47974.
12. Berntsson, R. P.,, S. H. Smits,, L. Schmitt,, D. J. Slotboom,, and B. Poolman. 2010. A structural classification of substrate-binding proteins. FEBS Lett. 584: 2606 2617.
13. Berry, A. M.,, and J. C. Paton. 2000. Additive attenuation of virulence of Streptococcus pneumoniae by mutation of the genes encoding pneumolysin and other putative pneumococcal virulence proteins. Infect. Immun. 68: 133 140.
14. Berry, A. M.,, and J. C. Paton. 1996. Sequence heterogeneity of PsaA, a 37-kilodalton putative adhesin essential for virulence of Streptococcus pneumoniae. Infect. Immun. 64: 5255 5262.
15. Blue, C. E.,, and T. J. Mitchell. 2003. Contribution of a response regulator to the virulence of Streptococcus pneumoniae is strain dependent. Infect. Immun. 71: 4405 4413.
16. Brenot, A.,, B. F. Weston,, and M. G. Caparon. 2007. A PerR-regulated metal transporter (PmtA) is an interface between oxidative stress and metal homeostasis in Streptococcus pyogenes. Mol. Microbiol. 63: 1185 1196.
17. Briles, D. E.,, S. K. Hollingshead,, J. C. Paton,, E. W. Ades,, L. Novak,, F. W. van Ginkel,, and W. H. Benjamin, Jr. 2003. Immunizations with pneumococcal surface protein A and pneumolysin are protective against pneumonia in a murine model of pulmonary infection with Streptococcus pneumoniae. J. Infect. Dis. 188: 339 348.
18. Briles, D. E.,, L. Novak,, M. Hotomi,, F. W. van Ginkel,, and J. King. 2005. Nasal colonization with Streptococcus pneumoniae includes subpopulations of surface and invasive pneumococci. Infect. Immun. 73: 6945 6951.
19. Briles, D. E.,, J. Yother,, and L. S. McDaniel. 1988. Role of pneumococcal surface protein A in the virulence of Streptococcus pneumoniae. Rev. Infect. Dis. 10( Suppl. 2): S372 S374.
20. Brown, J. S.,, S. M. Gilliland,, and D. W. Holden. 2001a. A Streptococcus pneumoniae pathogenicity island encoding an ABC transporter involved in iron uptake and virulence. Mol. Microbiol. 40: 572 585.
21. Brown, J. S.,, A. D. Ogunniyi,, M. C. Woodrow,, D. W. Holden,, and J. C. Paton. 2001b. Immunization with components of two iron uptake ABC transporters protects mice against systemic Streptococcus pneumoniae infection. Infect. Immun. 69: 6702 6706.
22. Brown, J. S.,, S. M. Gilliland,, J. Ruiz-Albert,, and D. W. Holden. 2002. Characterization of Pit, a Streptococcus pneumoniae iron uptake ABC transporter. Infect. Immun. 70: 4389 4398.
23. Brueggemann, A. B.,, R. Pai,, D. W. Crook,, and B. Beall. 2007. Vaccine escape recombinants emerge after pneumococcal vaccination in the United States. PLoS Pathog. 3:e168.
24. Burnaugh, A. M.,, L. J. Frantz,, and S. J. King. 2008. Growth of Streptococcus pneumoniae on human glycoconjugates is dependent upon the sequential activity of bacterial exoglycosidases. J. Bacteriol. 190: 221 230.
25. Byrne, J. P.,, J. K. Morona,, J. C. Paton,, and R. Morona. 2011. Identification of Streptococcus pneumoniae Cps2C residues that affect capsular polysaccharide polymerization, cell wall ligation, and Cps2D phosphorylation. J. Bacteriol. 193: 2341 2346.
26. Camara, M.,, G. J. Boulnois,, P. W. Andrew,, and T. J. Mitchell. 1994. A neuraminidase from Streptococcus pneumoniae has the features of a surface protein. Infect. Immun. 62: 3688 3695.
27. Caymaris, S.,, H. J. Bootsma,, B. Martin,, P. W. Hermans,, M. Prudhomme,, and J. P. Claverys. 2010. The global nutritional regulator CodY is an essential protein in the human pathogen Streptococcus pneumoniae. Mol. Microbiol. 78: 344 360.
28. Chapuy-Regaud, S.,, A. D. Ogunniyi,, N. Diallo,, Y. Huet,, J. F. Desnottes,, J. C. Paton,, S. Escaich,, and M. C. Trombe. 2003. RegR, a global LacI/GalR family regulator, modulates virulence and competence in Streptococcus pneumoniae. Infect. Immun. 71: 2615 2625.
29. Chuck, A. W.,, P. Jacobs,, G. Tyrrell,, and J. D. Kellner. 2010. Pharmacoeconomic evaluation of 10- and 13-valent pneumococcal conjugate vaccines. Vaccine 28: 5485 5490.
30. Cieslewicz, M. J.,, D. L. Kasper,, Y. Wang,, and M. R. Wessels. 2001. Functional analysis in type Ia group B Streptococcus of a cluster of genes involved in extracellular polysaccharide production by diverse species of streptococci. J. Biol. Chem. 276: 139 146.
31. Claverys, J. P. 2001. A new family of high-affinity ABC manganese and zinc permeases. Res. Microbiol. 152: 231 243.
32. Corbin, B. D.,, E. H. Seeley,, A. Raab,, J. Feldmann,, M. R. Miller,, V. J. Torres,, K. L. Anderson,, B. M. Dattilo,, P. M. Dunman,, R. Gerads,, R. M. Caprioli,, W. Nacken,, W. J. Chazin,, and E. P. Skaar. 2008. Metal chelation and inhibition of bacterial growth in tissue abscesses. Science 319: 962 965.
33. Crum, N. F.,, C. P. Barrozo,, F. A. Chapman,, M. A. Ryan,, and K. L. Russell. 2004. An outbreak of conjunctivitis due to a novel unencapsulated Streptococcus pneumoniae among military trainees. Clin. Infect. Dis. 39: 1148 1154.
34. Dalia, A. B.,, A. J. Standish,, and J. N. Weiser. 2010. Three surface exoglycosidases from Streptococcus pneumoniae, NanA, BgaA, and StrH, promote resistance to opsonophagocytic killing by human neutrophils. Infect. Immun. 78: 2108 2116.
35. Dintilhac, A.,, G. Alloing,, C. Granadel,, and J. P. Claverys. 1997. Competence and virulence of Streptococcus pneumoniae: Adc and PsaA mutants exhibit a requirement for Zn and Mn resulting from inactivation of putative ABC metal permeases. Mol. Microbiol. 25: 727 739.
36. Dintilhac, A.,, and J. P. Claverys. 1997. The adc locus, which affects competence for genetic transformation in Streptococcus pneumoniae, encodes an ABC transporter with a putative lipoprotein homologous to a family of streptococcal adhesins. Res. Microbiol. 148: 119 131.
37. Douglas, R. M.,, J. C. Paton,, S. J. Duncan,, and D. J. Hansman. 1983. Antibody response to pneumococcal vaccination in children younger than five years of age. J. Infect. Dis. 148: 131 137.
38. Dziejman, M.,, and J. J. Mekalanos,. 1995. Two-component signal transduction and its role in the expression of bacterial virulence factors, p. 305 317. In J. A. Hoch, and T. J. Silhavy (ed.), Two-Component Signal Transduction. ASM Press, Washington, DC.
39. Eldholm, V.,, O. Johnsborg,, D. Straume,, H. S. Ohnstad,, K. H. Berg,, J. A. Hermoso,, and L. S. Havarstein. 2010. Pneumococcal CbpD is a murein hydrolase that requires a dual cell envelope binding specificity to kill target cells during fratricide. Mol. Microbiol. 76: 905 917.
40. Garcia, J. L.,, A. R. Sanchez-Beato,, F. J. Medrano,, and R. Lopez. 1998. Versatility of choline-binding domain. Microb. Drug Resist. 4: 25 36.
41. Garcia, P.,, J. L. Garcia,, E. Garcia,, and R. Lopez. 1986. Nucleotide sequence and expression of the pneumococcal autolysin gene from its own promoter in Escherichia coli. Gene 43: 265 272.
42. Giammarinaro, P.,, and J. C. Paton. 2002. Role of RegM, a homologue of the catabolite repressor protein CcpA, in the virulence of Streptococcus pneumoniae. Infect. Immun. 70: 5454 5461.
43. Giffard, P. M.,, and N. A. Jacques. 1994. Definition of a fundamental repeating unit in streptococcal glucosyltransferase glucan-binding regions and related sequences. J. Dent. Res. 73: 1133 1141.
44. Glucksmann, M. A.,, T. L. Reuber,, and G. C. Walker. 1993. Genes needed for the modification, polymerization, export, and processing of succinoglycan by Rhizobium meliloti: a model for succinoglycan biosynthesis. J. Bacteriol. 175: 7045 7055.
45. Gosink, K. K.,, E. R. Mann,, C. Guglielmo,, E. I. Tuomanen,, and H. R. Masure. 2000. Role of novel choline binding proteins in virulence of Streptococcus pneumoniae. Infect. Immun. 68: 5690 5695.
46. Guidolin, A.,, J. K. Morona,, R. Morona,, D. Hansman,, and J. C. Paton. 1994. Nucleotide sequence analysis of genes essential for capsular polysaccharide biosynthesis in Streptococcus pneumoniae type 19F. Infect. Immun. 62: 5384 5396.
47. Halfmann, A.,, M. Kovacs,, R. Hakenbeck,, and R. Bruckner. 2007. Identification of the genes directly controlled by the response regulator CiaR in Streptococcus pneumoniae: five out of 15 promoters drive expression of small non-coding RNAs. Mol. Microbiol. 66: 110 126.
48. Hamel, J.,, N. Charland,, I. Pineau,, C. Ouellet,, S. Rioux,, D. Martin,, and B. R. Brodeur. 2004. Prevention of pneumococcal disease in mice immunized with conserved surface-accessible proteins. Infect. Immun. 72: 2659 2670.
49. Hammerschmidt, S.,, S. Wolff,, A. Hocke,, S. Rosseau,, E. Muller,, and M. Rohde. 2005. Illustration of pneumococcal polysaccharide capsule during adherence and invasion of epithelial cells. Infect. Immun. 73: 4653 4667.
50. Hardy, G. G.,, A. D. Magee,, C. L. Ventura,, M. J. Caimano,, and J. Yother. 2001. Essential role for cellular phosphoglucomutase in virulence of type 3 Streptococcus pneumoniae. Infect. Immun. 69: 2309 2317.
51. Hava, D. L.,, and A. Camilli. 2002. Large-scale identification of serotype 4 Streptococcus pneumoniae virulence factors. Mol. Microbiol. 45: 1389 1406.
52. Hava, D. L.,, C. J. Hemsley,, and A. Camilli. 2003. Transcriptional regulation in the Streptococcus pneumoniae rlrA pathogenicity islet by RlrA. J. Bacteriol. 185: 413 421.
53. Hemsley, C.,, E. Joyce,, D. L. Hava,, A. Kawale,, and A. Camilli. 2003. MgrA, an orthologue of Mga, Acts as a transcriptional repressor of the genes within the rlrA pathogenicity islet in Streptococcus pneumoniae. J. Bacteriol. 185: 6640 6647.
54. Hendriksen, W. T.,, H. J. Bootsma,, A. van Diepen,, S. Estevao,, O. P. Kuipers,, R. de Groot,, and P. W. Hermans. 2009. Strain-specific impact of PsaR of Streptococcus pneumoniae on global gene expression and virulence. Microbiology 155: 1569 1579.
55. Hendriksen, W. T.,, T. G. Kloosterman,, H. J. Bootsma,, S. Estevao,, R. de Groot,, O. P. Kuipers,, and P. W. Hermans. 2008. Site-specific contributions of glutamine-dependent regulator GlnR and GlnR-regulated genes to virulence of Streptococcus pneumoniae. Infect. Immun. 76: 1230 1238.
56. Hendriksen, W. T.,, N. Silva,, H. J. Bootsma,, C. E. Blue,, G. K. Paterson,, A. R. Kerr,, A. de Jong,, O. P. Kuipers,, P. W. Hermans,, and T. J. Mitchell. 2007. Regulation of gene expression in Streptococcus pneumoniae by response regulator 09 is strain dependent. J. Bacteriol. 189: 1382 1389.
57. Hicks, L. A.,, L. H. Harrison,, B. Flannery,, J. L. Hadler,, W. Schaffner,, A. S. Craig,, D. Jackson,, A. Thomas,, B. Beall,, R. Lynfield,, A. Reingold,, M. M. Farley,, and C. G. Whitney. 2007. Incidence of pneumococcal disease due to non-pneumococcal conjugate vaccine (PCV7) serotypes in the United States during the era of widespread PCV7 vaccination, 1998-2004. J. Infect. Dis. 196:1346-1354.
58. Hilleringmann, M.,, F. Giusti,, B. C. Baudner,, V. Masignani,, A. Covacci,, R. Rappuoli,, M. A. Barocchi,, and I. Ferlenghi. 2008. Pneumococcal pili are composed of protofilaments exposing adhesive clusters of Rrg A. PLoS Pathog. 4: e1000026.
59. Hilleringmann, M.,, P. Ringler,, S. A. Muller,, G. De Angelis,, R. Rappuoli,, I. Ferlenghi,, and A. Engel. 2009. Molecular architecture of Streptococcus pneumoniae TIGR4 pili. EMBO J. 28: 3921 3930.
60. Hoskins, J.,, W. E. Alborn, Jr.,, J. Arnold,, L. C. Blaszczak,, S. Burgett,, B. S. DeHoff,, S. T. Estrem,, L. Fritz,, D. J. Fu,, W. Fuller,, C. Geringer,, R. Gilmour,, J. S. Glass,, H. Khoja,, A. R. Kraft,, R. E. Lagace,, D. J. LeBlanc,, L. N. Lee,, E. J. Lefkowitz,, J. Lu,, P. Matsushima,, S. M. McAhren,, M. McHenney,, K. McLeaster,, C. W. Mundy,, T. I. Nicas,, F. H. Norris,, M. O’Gara,, R. B. Peery,, G. T. Robertson,, P. Rockey,, P. M. Sun,, M. E. Winkler,, Y. Yang,, M. Young-Bellido,, G. Zhao,, C. A. Zook,, R. H. Baltz,, S. R. Jaskunas,, P. R. Rosteck, Jr.,, P. L. Skatrud,, and J. I. Glass. 2001. Genome of the bacterium Streptococcus pneumoniae strain R6. J. Bacteriol. 183: 5709 5717.
61. Hostetter, M. K. 1999. Opsonic and nonopsonic interactions of C3 with Streptococcus pneumoniae. Microb. Drug Resist. 5: 85 89.
62. Ibrahim, Y. M.,, A. R. Kerr,, J. McCluskey,, and T. J. Mitchell. 2004. Control of virulence by the two-component system CiaR/H is mediated via HtrA, a major virulence factor of Streptococcus pneumoniae. J. Bacteriol. 186: 5258 5266.
63. Iyer, R.,, N. S. Baliga,, and A. Camilli. 2005. Catabolite control protein A (CcpA) contributes to virulence and regulation of sugar metabolism in Streptococcus pneumoniae. J. Bacteriol. 187: 8340 8349.
64. Jacobsen, F. E.,, K. M. Kazmierczak,, J. P. Lisher,, M. E. Winkler,, and D. P. Giedroc. 2011. Interplay between manganese and zinc homeostasis in the human pathogen Streptococcus pneumoniae. Metallomics 3: 38 41.
65. Jedrzejas, M. J. 2001. Pneumococcal virulence factors: structure and function. Microbiol. Mol. Biol. Rev. 65: 187 207.
66. Jennings, M. P.,, Y. N. Srikhanta,, E. R. Moxon,, M. Kramer,, J. T. Poolman,, B. Kuipers,, and P. van der Ley. 1999. The genetic basis of the phase variation repertoire of lipopolysaccharide immunotypes in Neisseria meningitidis. Microbiology 145( Pt. 11): 3013 3021.
67. Johnsborg, O.,, and L. S. Håvarstein. 2009. Regulation of natural genetic transformation and acquisition of transforming DNA in Streptococcus pneumoniae. FEMS Microbiol. Rev. 33: 627 642.
68. Johnston, J. W.,, D. E. Briles,, L. E. Myers,, and S. K. Hollingshead. 2006. Mn 2+-dependent regulation of multiple genes in Streptococcus pneumoniae through PsaR and the resultant impact on virulence. Infect. Immun. 74: 1171 1180.
69. Joyce, E. A.,, A. Kawale,, S. Censini,, C. C. Kim,, A. Covacci,, and S. Falkow. 2004. LuxS is required for persistent pneumococcal carriage and expression of virulence and biosynthesis genes. Infect. Immun. 72: 2964 2975.
70. Kadioglu, A.,, J. Echenique,, S. Manco,, M. C. Trombe,, and P. W. Andrew. 2003. The MicAB two-component signaling system is involved in virulence of Streptococcus pneumoniae. Infect. Immun. 71: 6676 6679.
71. Kaufman, G. E. 2007. Characterization of a global regulatory pathway in Streptococcus pneumoniae. Ph.D. thesis. The University of Alabama at Birmingham.
72. Kaufman, G. E.,, and J. Yother. 2007. CcpA-dependent and -independent control of beta-galactosidase expression in Streptococcus pneumoniae occurs via regulation of an upstream phosphotransferase system-encoding operon. J. Bacteriol. 189: 5183 5192.
73. Kausmally, L.,, O. Johnsborg,, M. Lunde,, E. Knutsen,, and L. S. Havarstein. 2005. Choline-binding protein D (CbpD) in Streptococcus pneumoniae is essential for competence-induced cell lysis. J. Bacteriol. 187: 4338 4345.
74. Kharat, A. S.,, and A. Tomasz. 2003. Inactivation of the srtA gene affects localization of surface proteins and decreases adhesion of Streptococcus pneumoniae to human pharyngeal cells in vitro. Infect. Immun. 71: 2758 2765.
75. Kim, J. O.,, and J. N. Weiser. 1998. Association of intrastrain phase variation in quantity of capsular polysaccharide and teichoic acid with the virulence of Streptococcus pneumoniae. J. Infect. Dis. 177: 368 377.
76. King, S. J.,, K. R. Hippe,, J. M. Gould,, D. Bae,, S. Peterson,, R. T. Cline,, C. Fasching,, E. N. Janoff,, and J. N. Weiser. 2004. Phase variable desialylation of host proteins that bind to Streptococcus pneumoniae in vivo and protect the airway. Mol. Microbiol. 54: 159 171.
77. King, S. J.,, K. R. Hippe,, and J. N. Weiser. 2006. Deglycosylation of human glycoconjugates by the sequential activities of exoglycosidases expressed by Streptococcus pneumoniae. Mol. Microbiol. 59: 961 974.
78. Kloosterman, T. G.,, W. T. Hendriksen,, J. J. Bijlsma,, H. J. Bootsma,, S. A. van Hijum,, J. Kok,, P. W. Hermans,, and O. P. Kuipers. 2006. Regulation of glutamine and glutamate metabolism by GlnR and GlnA in Streptococcus pneumoniae. J. Biol. Chem. 281: 25097 25109.
79. Kloosterman, T. G.,, R. M. Witwicki,, M. M. van der Kooi-Pol,, J. J. Bijlsma,, and O. P. Kuipers. 2008. Opposite effects of Mn 2+ and Zn 2+ on PsaR-mediated expression of the virulence genes pcpA, prtA, and psaBCA of Streptococcus pneumoniae. J. Bacteriol. 190: 5382 5393.
80. Lange, R.,, C. Wagner,, A. de Saizieu,, N. Flint,, J. Molnos,, M. Stieger,, P. Caspers,, M. Kamber,, W. Keck,, and K. E. Amrein. 1999. Domain organization and molecular characterization of 13 two-component systems identified by genome sequencing of Streptococcus pneumoniae. Gene 237: 223 234.
81. Lau, G. W.,, S. Haataja,, M. Lonetto,, S. E. Kensit,, A. Marra,, A. P. Bryant,, D. McDevitt,, D. A. Morrison,, and D. W. Holden. 2001. A functional genomic analysis of type 3 Streptococcus pneumoniae virulence. Mol. Microbiol. 40: 555 571.
82. Lawrence, M. C.,, P. A. Pilling,, V. C. Epa,, A. M. Berry,, A. D. Ogunniyi,, and J. C. Paton. 1998. The crystal structure of pneumococcal surface antigen PsaA reveals a metal-binding site and a novel structure for a putative ABC-type binding protein. Structure 6: 1553 1561.
83. Lee, C. J.,, S. D. Banks,, and J. P. Li. 1991. Virulence, immunity, and vaccine related to Streptococcus pneumoniae. Crit. Rev. Microbiol. 18: 89 114.
84. LeMessurier, K. S.,, A. D. Ogunniyi,, and J. C. Paton. 2006. Differential expression of key pneumococcal virulence genes in vivo. Microbiology 152: 305 311.
85. LeMieux, J.,, D. L. Hava,, A. Basset,, and A. Camilli. 2006. RrgA and RrgB are components of a multisubunit pilus encoded by the Streptococcus pneumoniae rlrA pathogenicity islet. Infect. Immun. 74: 2453 2456.
86. Lipsitch, M.,, J. K. Dykes,, S. E. Johnson,, E. W. Ades,, J. King,, D. E. Briles,, and G. M. Carlone. 2000. Competition among Streptococcus pneumoniae for intranasal colonization in a mouse model. Vaccine 18: 2895 2901.
87. Loisel, E.,, S. Chimalapati,, C. Bougault,, A. Imberty,, B. Gallet,, A. M. Di Guilmi,, J. Brown,, T. Vernet,, and C. Durmort. 2011. Biochemical characterization of the histidine triad protein PhtD as a cell surface zinc-binding protein of pneumococcus. Biochemistry 50: 3551 3558.
88. Loisel, E.,, L. Jacquamet,, L. Serre,, C. Bauvois,, J. L. Ferrer,, T. Vernet,, A. M. Di Guilmi,, and C. Durmort. 2008. AdcAII, a new pneumococcal Zn-binding protein homologous with ABC transporters: biochemical and structural analysis. J. Mol. Biol. 381: 594 606.
89. Magee, A. D.,, and J. Yother. 2001. Requirement for capsule in colonization by Streptococcus pneumoniae. Infect. Immun. 69: 3755 3761.
90. Mahdi, L. K.,, A. D. Ogunniyi,, K. S. LeMessurier,, and J. C. Paton. 2008. Pneumococcal virulence gene expression and host cytokine profiles during pathogenesis of invasive disease. Infect. Immun. 76: 646 657.
91. Marra, A.,, S. Lawson,, J. S. Asundi,, D. Brigham,, and A. E. Hromockyj. 2002a. In vivo characterization of the psa genes from Streptococcus pneumoniae in multiple models of infection. Microbiology 148: 1483 1491.
92. Marra, A.,, J. Asundi,, M. Bartilson,, S. Lawson,, F. Fang,, J. Christine,, C. Wiesner,, D. Brigham,, W. P. Schneider,, and A. E. Hromockyj. 2002b. Differential fluorescence induction analysis of Streptococcus pneumoniae identifies genes involved in pathogenesis. Infect. Immun. 70: 1422 1433.
93. Marraffini, L. A.,, A. C. Dedent,, and O. Schneewind. 2006. Sortases and the art of anchoring proteins to the envelopes of gram-positive bacteria. Microbiol. Mol. Biol. Rev. 70: 192 221.
94. Martin, M.,, J. H. Turco,, M. E. Zegans,, R. R. Facklam,, S. Sodha,, J.A. Elliott,, J. H. Pryor,, B. Beall,, D. D. Erdman,, Y. Y. Baumgartner,, P. A. Sanchez,, J. D. Schwartzman,, J. Montero,, A. Schuchat,, and C. G. Whitney. 2003. An outbreak of conjunctivitis due to atypical Streptococcus pneumoniae. N. Engl. J. Med. 348: 1112 1121.
95. Maruvada, R.,, N. V. Prasadarao,, and C. E. Rubens. 2009. Acquisition of factor H by a novel surface protein on group B Streptococcus promotes complement degradation. FASEB J. 23: 3967 3977.
96. McAllister, L. J.,, H. J. Tseng,, A. D. Ogunniyi,, M. P. Jennings,, A. G. McEwan,, and J. C. Paton. 2004. Molecular analysis of the psa permease complex of Streptococcus pneumoniae. Mol. Microbiol. 53: 889 901.
97. McCluskey, J.,, J. Hinds,, S. Husain,, A. Witney,, and T. J. Mitchell. 2004. A two-component system that controls the expression of pneumococcal surface antigen A (PsaA) and regulates virulence and resistance to oxidative stress in Streptococcus pneumoniae. Mol. Microbiol. 51: 1661 1675.
98. McDevitt, C.A.,, A. D. Ogunniyi,, E. Valkov,, M. C. Lawrence,, B. Kobe,, A. G. McEwan,, and J. C. Paton. 2011. A molecular mechanism for bacterial susceptibility to zinc. PLoS Pathog. 7: e1002357.
99. McKessar, S. 2003. The characterisation of phase variation and a novel fimbrial protein in Streptococcus pneumoniae. Ph.D. thesis. The University of Adelaide, Adelaide, Australia.
100. Melin, M.,, E. Di Paolo,, L. Tikkanen,, H. Jarva,, C. Neyt,, H. Kayhty,, S. Meri,, J. Poolman,, and M. Vakevainen. 2010. Interaction of pneumococcal histidine triad proteins with human complement. Infect. Immun. 78: 2089 2098.
101. Mollerach, M.,, R. Lopez,, and E. Garcia. 1998. Characterization of the galU gene of Streptococcus pneumoniae encoding a uridine diphosphoglucose pyrophosphorylase: a gene essential for capsular polysaccharide biosynthesis. J. Exp. Med. 188: 2047 2056.
102. Morona, J. K.,, D. C. Miller,, R. Morona,, and J. C. Paton. 2004. The effect that mutations in the conserved capsular polysaccharide biosynthesis genes cpsA, cpsB and cpsD have on virulence of Streptococcus pneumoniae. J. Infect. Dis. 189: 1905 1913.
103. Morona, J. K.,, R. Morona,, D. C. Miller,, and J. C. Paton. 2002. Streptococcus pneumoniae capsule biosynthesis protein CpsB is a novel manganese-dependent phosphotyrosine-protein phosphatase. J. Bacteriol. 184: 577 583.
104. Morona, J. K.,, R. Morona,, D. C. Miller,, and J. C. Paton. 2003. Mutational analysis of the carboxy-terminal (YGX) 4 repeat domain of CpsD, an autophosphorylating tyrosine kinase required for capsule biosynthesis in Streptococcus pneumoniae. J. Bacteriol. 185: 3009 3019.
105. Morona, J. K.,, R. Morona,, and J. C. Paton. 2006. Attachment of capsular polysaccharide to the cell wall of Streptococcus pneumoniae type 2 is required for invasive disease. Proc. Natl. Acad. Sci. USA 103: 8505 8510.
106. Morona, J. K.,, J. C. Paton,, D. C. Miller,, and R. Morona. 2000a. Tyrosine phosphorylation of CpsD negatively regulates capsular polysaccharide biosynthesis in Streptococcus pneumoniae. Mol. Microbiol. 35: 1431 1442.
107. Morona, R.,, L. Van Den Bosch,, and C. Daniels. 2000b. Evaluation of Wzz/MPA1/MPA2 proteins based on the presence of coiled-coil regions. Microbiology 146: 1 4.
108. Moscoso, M.,, and E. Garcia. 2009. Transcriptional regulation of the capsular polysaccharide biosynthesis locus of Streptococcus pneumoniae: a bioinformatic analysis. DNA Res. 16: 177 186.
109. Musher, D. M. 1992. Infections caused by Streptococcus pneumoniae: clinical spectrum, pathogenesis, immunity, and treatment. Clin. Infect. Dis. 14: 801 807.
110. Nan, R.,, J. Gor,, I. Lengyel,, and S. J. Perkins. 2008. Uncontrolled zinc- and copper-induced oligomerisation of the human complement regulator factor H and its possible implications for function and disease. J. Mol. Biol. 384: 1341 1352.
111. Nelson, A. L.,, J. Ries,, F. Bagnoli,, S. Dahlberg,, S. Falker,, S. Rounioja,, J. Tschop,, E. Morfeldt,, I. Ferlenghi,, M. Hilleringmann,, D. W. Holden,, R. Rappuoli,, S. Normark,, M. A. Barocchi,, and B. Henriques-Normark. 2007a. RrgA is a pilus-associated adhesin in Streptococcus pneumoniae. Mol. Microbiol. 66: 329 340.
112. Nelson, A. L.,, A. M. Roche,, J. M. Gould,, K. Chim,, A. J. Ratner,, and J. N. Weiser. 2007b. Capsule enhances pneumococcal colonization by limiting mucus-mediated clearance. Infect. Immun. 75: 83 90.
113. Ng, W. L.,, H. C. Tsui,, and M. E. Winkler. 2005. Regulation of the pspA virulence factor and essential pcsB murein biosynthetic genes by the phosphorylated VicR (YycF) response regulator in Streptococcus pneumoniae. J. Bacteriol. 187: 7444 7459.
114. O'Brien, K. L.,, L. J. Wolfson,, J. P. Watt,, E. Henkle,, M. Deloria-Knoll,, N. McCall,, E. Lee,, K. Mulholland,, O. S. Levine,, and T. Cherian. 2009. Burden of disease caused by Streptococcus pneumoniae in children younger than 5 years: global estimates. Lancet 374: 893 902.
115. Ogunniyi, A. D.,, R. L. Folland,, D. E. Briles,, S. K. Hollingshead,, and J. C. Paton. 2000. Immunization of mice with combinations of pneumococcal virulence proteins elicits enhanced protection against challenge with Streptococcus pneumoniae. Infect. Immun. 68: 3028 3033.
116. Ogunniyi, A. D.,, P. Giammarinaro,, and J. C. Paton. 2002. The genes encoding virulence-associated proteins and the capsule of Streptococcus pneumoniae are upregulated and differentially expressed in vivo. Microbiology 148: 2045 2053.
117. Ogunniyi, A. D.,, M. Grabowicz,, D. E. Briles,, J. Cook,, and J. C. Paton. 2007a. Development of a vaccine against invasive pneumococcal disease based on combinations of virulence proteins of Streptococcus pneumoniae. Infect. Immun. 75: 350 357.
118. Ogunniyi, A. D.,, K. S. LeMessurier,, R. M. Graham,, J. M. Watt,, D. E. Briles,, U. H. Stroeher,, and J. C. Paton. 2007b. Contributions of pneumolysin, pneumococcal surface protein A (PspA), and PspC to pathogenicity of Streptococcus pneumoniae D39 in a mouse model. Infect. Immun. 75: 1843 1851.
119. Ogunniyi, A. D.,, M. Grabowicz,, L. K. Mahdi,, J. Cook,, D. L. Gordon,, T. A. Sadlon,, and J. C. Paton. 2009. Pneumococcal histidine triad proteins are regulated by the Zn 2+-dependent repressor AdcR and inhibit complement deposition through the recruitment of complement factor H. FASEB J. 23: 731 738.
120. Ogunniyi, A. D.,, L. K. Mahdi,, M. P. Jennings,, A. G. McEwan,, C.A. McDevitt,, M. B. Van der Hoek,, C. J. Bagley,, P. Hoffmann,, K. A. Gould,, and J. C. Paton. 2010. Central role of manganese in regulation of stress responses, physiology, and metabolism in Streptococcus pneumoniae. J. Bacteriol. 192: 4489 4497.
121. Ogunniyi, A. D.,, M. C. Woodrow,, J. T. Poolman,, and J. C. Paton. 2001. Protection against Streptococcus pneumoniae elicited by immunization with pneumolysin and CbpA. Infect. Immun. 69: 5997 6003.
122. Orihuela, C. J.,, J. N. Radin,, J. E. Sublett,, G. Gao,, D. Kaushal,, and E. I. Tuomanen. 2004. Microarray analysis of pneumococcal gene expression during invasive disease. Infect. Immun. 72: 5582 5596.
123. Overweg, K.,, C. D. Pericone,, G. G. Verhoef,, J. N. Weiser,, H. D. Meiring,, A. P. De Jong,, R. De Groot,, and P. W. Hermans. 2000. Differential protein expression in phenotypic variants of Streptococcus pneumoniae. Infect. Immun. 68: 4604 4610.
124. Panina, E. M.,, A. A. Mironov,, and M. S. Gelfand. 2003. Comparative genomics of bacterial zinc regulons: enhanced ion transport, pathogenesis, and rearrangement of ribosomal proteins. Proc. Natl. Acad. Sci. USA 100: 9912 9917.
125. Paterson, G. K.,, C. E. Blue,, and T. J. Mitchell. 2006. Role of two-component systems in the virulence of Streptococcus pneumoniae. J. Med. Microbiol. 55: 355 363.
126. Paterson, G. K.,, and T. J. Mitchell. 2006. The role of Streptococcus pneumoniae sortase A in colonisation and pathogenesis. Microbes Infect. 8: 145 153.
127. Paton, J. C., 2004. New pneumococcalvaccines: basic science developments, p. 382 402. In E. I. Tuomanen,, T. J. Mitchell,, D. A. Morrison,, and B. G. Spratt (ed.), The Pneumococcus. ASM Press, Washington, DC.
128. Paton, J. C. 1998. Novel pneumococcalsurface proteins: role in virulence and vaccine potential. TrendsMicrobiol. 6: 85 87; discussion, 87-88.
129. Paton, J. C.,, P. W. Andrew,, G. J. Boulnois,, and T. J. Mitchell. 1993. Molecular analysis of the pathogenicity of Streptococcus pneumoniae: the role of pneumococcal proteins. Annu. Rev. Microbiol. 47: 89 115.
130. Paton, J. C.,, A. M. Berry,, and R. A. Lock. 1997. Molecular analysis of putative pneumococcal virulence proteins. Microb. Drug Resist. 3: 1 10.
131. Peak, I. R.,, M. P. Jennings,, D. W. Hood,, M. Bisercic,, and E. R. Moxon. 1996. Tetrameric repeat units associated with virulence factor phase variation in Haemophilus also occur in Neisseria spp. and Moraxella catarrhalis. FEMS Microbiol. Lett. 137: 109 114.
132. Pericone, C. D.,, D. Bae,, M. Shchepetov,, T. McCool,, and J. N. Weiser. 2002. Short-sequence tandem and nontandem DNA repeats and endogenous hydrogen peroxide production contribute to genetic instability of Streptococcus pneumoniae. J. Bacteriol. 184: 4392 4399.
133. Polissi, A.,, A. Pontiggia,, G. Feger,, M. Altieri,, H. Mottl,, L. Ferrari,, and D. Simon. 1998. Large-scale identification of virulence genes from Streptococcus pneumoniae. Infect. Immun. 66: 5620 5629.
134. Rajam, G.,, J. M. Anderton,, G. M. Carlone,, J. S. Sampson,, and E. W. Ades. 2008. Pneumococcal surface adhesin A (PsaA): a review. Crit. Rev. Microbiol. 34: 131 142.
135. Reinert, R. R. 2009. The public health ramifications of pneumococcal resistance. Clin. Microbiol. Infect. 15( Suppl. 3): 1 3.
136. Reinert, R. R. 2009b. The antimicrobialresistance profile of Streptococcus pneumoniae. Clin. Microbiol. Infect. 15( Suppl. 3): 7 11.
137. Reyes-Caballero, H.,, A. J. Guerra,, F. E. Jacobsen,, K. M. Kazmierczak,, D. Cowart,, U. M. Koppolu,, R. A. Scott,, M. E. Winkler,, and D. P. Giedroc. 2010. The metalloregulatory zinc site in Streptococcus pneumoniae AdcR, a zinc-activated MarR family repressor. J. Mol. Biol. 403: 197 216.
138. Riboldi-Tunnicliffe, A.,, N. W. Isaacs,, and T. J. Mitchell. 2005. 1.2 Å crystal structure of the S. pneumoniae PhtA histidine triad domain a novel zinc binding fold. FEBS Lett. 579: 5353 5360.
139. Rioux, S.,, C. Neyt,, E. Di Paolo,, L. Turpin,, N. Charland,, S. Labbe,, M. C. Mortier,, T. J. Mitchell,, C. Feron,, D. Martin,, and J. T. Poolman. 2011. Transcriptional regulation, occurrence and putative role of the Pht family of Streptococcus pneumoniae. Microbiology 157: 336 348.
140. Rosch, J. W.,, B. Mann,, J. Thornton,, J. Sublett,, and E. Tuomanen. 2008. Convergence of regulatory networks on the pilus locus of Streptococcus pneumoniae. Infect. Immun. 76: 3187 3196.
141. Rosenow, C.,, M. Maniar,, and J. Trias. 1999. Regulation of the alpha-galactosidase activity in Streptococcus pneumoniae: characterization of the raffinose utilization system. Genome Res. 9: 1189 1197.
142. Rosenow, C.,, P. Ryan,, J. N. Weiser,, S. Johnson,, P. Fontan,, A. Ortqvist,, and H. R. Masure. 1997. Contribution of novel choline-binding proteins to adherence, colonization and immunogenicity of Streptococcus pneumoniae. Mol. Microbiol. 25: 819 829.
143. Russell, H.,, J. A. Tharpe,, D. E. Wells,, E. H. White,, and J. E. Johnson. 1990. Monoclonal antibody recognizing a species-specific protein from Streptococcus pneumoniae. J. Clin. Microbiol. 28: 2191 2195.
144. Saluja, S. K.,, and J. N. Weiser. 1995. The genetic basis of colony opacity in Streptococcus pneumoniae: evidence for the effect of box elements on the frequency of phenotypic variation. Mol. Microbiol. 16: 215 227.
145. Sanchez-Beato, A. R.,, R. Lopez,, and J. L. Garcia. 1998. Molecular characterization of PcpA: a novel choline-binding protein of Streptococcus pneumoniae. FEMS Microbiol. Lett. 164: 207 214.
146. Sebert, M. E.,, L. M. Palmer,, M. Rosenberg,, and J. N. Weiser. 2002. Microarray-based identification of htrA, a Streptococcus pneumoniae gene that is regulated by the CiaRH two-component system and contributes to nasopharyngeal colonization. Infect. Immun. 70: 4059 4067.
147. Shafeeq, S.,, T. G. Kloosterman,, and O. P. Kuipers. 2011. Transcriptional response of Streptococcus pneumoniae to Zn 2+ limitation and the repressor/activator function of AdcR. Metallomics 3: 609 618.
148. Song, X. M.,, W. Connor,, K. Hokamp,, L. A. Babiuk,, and A. A. Potter. 2009. The growth phase-dependent regulation of the pilus locus genes by two-component system TCS08 in Streptococcus pneumoniae. Microb. Pathog. 46: 28 35.
149. Spratt, B. G.,, and B. M. Greenwood. 2000. Prevention of pneumococcal disease by vaccination: does serotype replacement matter? Lancet 356: 1210 1211.
150. Standish, A. J.,, U. H. Stroeher,, and J. C. Paton. 2007. The pneumococcal two-component signal transduction system RR/HK06 regulates CbpA and PspA by two distinct mechanisms. J. Bacteriol. 189: 5591 5600.
151. Standish, A. J.,, U. H. Stroeher,, and J. C. Paton. 2005. The two-component signal transduction system RR06/HK06 regulates expression of cbpA in Streptococcus pneumoniae. Proc. Natl. Acad. Sci. USA 102: 7701 7706.
152. Stroeher, U. H.,, A. W. Paton,, A. D. Ogunniyi,, and J. C. Paton. 2003. Mutation of luxS of Streptococcus pneumoniae affects virulence in a mouse model. Infect. Immun. 71: 3206 3212.
153. Tai, S. S.,, C. J. Lee,, and R. E. Winter. 1993. Hemin utilization is related to virulence of Streptococcus pneumoniae. Infect. Immun. 61: 5401 5405.
154. Tai, S. S.,, T. R. Wang,, and C. J. Lee. 1997. Characterization of hemin binding activity of Streptococcus pneumoniae. Infect. Immun. 65: 1083 1087.
155. Talbot, U. M.,, A. W. Paton,, and J. C. Paton. 1996. Uptake of Streptococcus pneumoniae by respiratory epithelial cells. Infect. Immun. 64: 3772 3777.
156. Tettelin, H.,, K. E. Nelson,, I. T. Paulsen,, J. A. Eisen,, T. D. Read,, S. Peterson,, J. Heidelberg,, R. T. DeBoy,, D. H. Haft,, R. J. Dodson,, A. S. Durkin,, M. Gwinn,, J. F. Kolonay,, W. C. Nelson,, J. D. Peterson,, L. A. Umayam,, O. White,, S. L. Salzberg,, M. R. Lewis,, D. Radune,, E. Holtzapple,, H. Khouri,, A. M. Wolf,, T. R. Utterback,, C. L. Hansen,, L. A. McDonald,, T. V. Feldblyum,, S. Angiuoli,, T. Dickinson,, E. K. Hickey,, I. E. Holt,, B. J. Loftus,, F. Yang,, H. O. Smith,, J. C. Venter,, B. A. Dougherty,, D. A. Morrison,, S. K. Hollingshead,, and C. M. Fraser. 2001. Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. Science 293: 498 506.
157. Throup, J. P.,, K. K. Koretke,, A. P. Bryant,, K. A. Ingraham,, A. F. Chalker,, Y. Ge,, A. Marra,, N. G. Wallis,, J. R. Brown,, D. J. Holmes,, M. Rosenberg,, and M. K. Burnham. 2000. A genomic analysis of two-component signal transduction in Streptococcus pneumoniae. Mol. Microbiol. 35: 566 576.
158. Tomasz, A. 1965. Control of the competent state in Pneumococcus by a hormone-like cell product: an example for a new type of regulatory mechanism in bacteria. Nature 208: 155 159.
159. Tomasz, A. 1966. Model for the mechanism controlling the expression of competent state in Pneumococcus cultures. J. Bacteriol. 91: 1050 1061.
160. Trappetti, C.,, A. D. Ogunniyi,, M. R. Oggioni,, and J. C. Paton. 2011a. Extracellular matrix formation enhances the ability of Streptococcus pneumoniae to cause invasive disease. PLoS One 6:e19844.
161. Trappetti, C.,, A. J. Potter,, A. W. Paton,, M. R. Oggioni,, and J. C. Paton. 2011b. LuxS mediates iron-dependent biofilm formation, competence, and fratricide in Streptococcus pneumoniae. Infect. Immun. 79: 4550 4558.
162. Tuomanen, E. I.,, and H. R. Masure. 1997. Molecular and cellular biology of pneumococcal infection. Microb. Drug Resist. 3: 297 308.
163. Ulijasz, A. T.,, D. R. Andes,, J. D. Glasner,, and B. Weisblum. 2004. Regulation of iron transport in Streptococcus pneumoniae by RitR, an orphan response regulator. J. Bacteriol. 186: 8123 8136.
164. Ulijasz, A. T.,, S. P. Falk,, and B. Weisblum. 2009. Phosphorylation of the RitR DNA-binding domain by a Ser-Thr phosphokinase: implications for global gene regulation in the streptococci. Mol. Microbiol. 71: 382 390.
165. van Opijnen, T.,, K. L. Bodi,, and A. Camilli. 2009. Tn-seq: high-throughput parallel sequencing for fitness and genetic interaction studies in microorganisms. Nat. Methods 6: 767 772.
166. Ventura, C. L.,, R. T. Cartee,, W. T. Forsee,, and J. Yother. 2006. Control of capsular polysaccharide chain length by UDP-sugar substrate concentrations in Streptococcus pneumoniae. Mol. Microbiol. 61: 723 733.
167. Wagner, C.,, A. de Saizieu,, H.-J. Schönfeld,, M. Kamber,, R. Lange,, C. J. Thompson,, and M. G. Page. 2002. Genetic analysis and functional characterization of the Streptococcus pneumoniae vic operon. Infect. Immun. 70: 6121 6128.
168. Waite, R. D.,, D. W. Penfold,, J. K. Struthers,, and C. G. Dowson. 2003. Spontaneous sequence duplications within capsule genes cap8E and tts control phase variation in Streptococcus pneumoniae serotypes 8 and 37. Microbiology 149: 497 504.
169. Waite, R. D.,, J. K. Struthers,, and C. G. Dowson. 2001. Spontaneous sequence duplication within an open reading frame of the pneumococcal type 3 capsule locus causes high-frequency phase variation. Mol. Microbiol. 42: 1223 1232.
170. Wani, J. H.,, J. V. Gilbert,, A. G. Plaut,, and J. N. Weiser. 1996. Identification, cloning, and sequencing of the immunoglobulin A1 protease gene of Streptococcus pneumoniae. Infect. Immun. 64: 3967 3974.
171. Wartha, F.,, K. Beiter,, B. Albiger,, J. Fernebro,, A. Zychlinsky,, S. Normark,, and B. Henriques-Normark. 2007. Capsule and D-alanylated lipoteichoic acids protect Streptococcus pneumoniae against neutrophil extracellular traps. Cell. Microbiol. 9: 1162 1171.
172. Weickert, M. J.,, and S. Adhya. 1992. A family of bacterial regulators homologous to Gal and Lac repressors. J. Biol. Chem. 267: 15869 15874.
173. Weickert, M. J.,, and G. H. Chambliss. 1990. Site-directed mutagenesis of a catabolite repression operator sequence in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 87: 6238 6242.
174. Weiser, J. N. 1998. Phase variation in colony opacity by Streptococcus pneumoniae. Microb. Drug Resist. 4: 129 135.
175. Weiser, J. N., 2004. Mechanisms of carriage, p. 169 182. In E. I. Tuomanen,, T. J. Mitchell,, D. A. Morrison,, and B. G. Spratt (ed.), The Pneumococcus. ASM Press, Washington, DC.
176. Weiser, J. N.,, R. Austrian,, P. K. Sreenivasan,, and H. R. Masure. 1994. Phase variation in pneumococcal opacity: relationship between colonial morphology and nasopharyngeal colonization. Infect. Immun. 62: 2582 2589.
177. Weiser, J. N.,, D. Bae,, H. Epino,, S. B. Gordon,, M. Kapoor,, L. A. Zenewicz,, and M. Shchepetov. 2001. Changes in availability of oxygen accentuate differences in capsular polysaccharide expression by phenotypic variants and clinical isolates of Streptococcus pneumoniae. Infect. Immun. 69: 5430 5439.
178. Weiser, J. N.,, J. M. Love,, and E. R. Moxon. 1989. The molecular mechanism of phase variation of H. influenzae lipopolysaccharide. Cell 59: 657 665.
179. Weiser, J. N.,, Z. Markiewicz,, E. I. Tuomanen,, and J. H. Wani. 1996. Relationship between phase variation in colony morphology, intrastrain variation in cell wall physiology, and nasopharyngeal colonization by Streptococcus pneumoniae. Infect. Immun. 64: 2240 2245.
180. Whitfield, C.,, and A. Paiment. 2003. Biosynthesis and assembly of group 1 capsular polysaccharides in Escherichia coli and related extracellular polysaccharides in other bacteria. Carbohydr. Res. 338: 2491 2502.
181. Whitfield, C.,, and I. S. Roberts. 1999. Structure, assembly and regulation of expression of capsules in Escherichia coli. Mol. Microbiol. 31: 1307 1319.
182. Winkelstein, J. A. 1981. The role of complement in the host’s defense against Streptococcus pneumoniae. Rev. Infect. Dis. 3: 289 298.
183. Wizemann, T. M.,, J. H. Heinrichs,, J. E. Adamou,, A. L. Erwin,, C. Kunsch,, G. H. Choi,, S. C. Barash,, C. A. Rosen,, H. R. Masure,, E. Tuomanen,, A. Gayle,, Y. A. Brewah,, W. Walsh,, P. Barren,, R. Lathigra,, M. Hanson,, S. Langermann,, S. Johnson,, and S. Koenig. 2001. Use of a whole genome approach to identify vaccine molecules affording protection against Streptococcus pneumoniae infection. Infect. Immun. 69: 1593 1598.
184. Yamaguchi, M.,, Y. Minamide,, Y. Terao,, R. Isoda,, T. Ogawa,, S. Yokota,, S. Hamada,, and S. Kawabata. 2009. Nrc of Streptococcus pneumoniae suppresses capsule expression and enhances anti-phagocytosis. Biochem. Biophys. Res. Commun. 390: 155 160.
185. Yang, Q. L.,, and E. C. Gotschlich. 1996. Variation of gonococcal lipooligosaccharide structure is due to alterations in poly-G tracts in lgt genes encoding glycosyl transferases. J. Exp. Med. 183: 323 327.
186. Yother, J.,, and D. E. Briles. 1992. Structural properties and evolutionary relationships of PspA, a surface protein of Streptococcus pneumoniae, as revealed by sequence analysis. J. Bacteriol. 174: 601 609.
187. Zähner, D.,, and R. Hakenbeck. 2000. The Streptococcus pneumoniae beta-galactosidase is a surface protein. J. Bacteriol. 182: 5919 5921.


Generic image for table
Table 1

Pneumococcal TCSTSs and their roles in virulence

Citation: Ogunniyi A, Paton J. 2013. Regulation of Pneumococcal Surface Proteins and Capsule, p 190-208. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch10
Generic image for table
Table 2

Pneumococcal surface proteins and their known or putative regulators

Citation: Ogunniyi A, Paton J. 2013. Regulation of Pneumococcal Surface Proteins and Capsule, p 190-208. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch10

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error