1887

Chapter 12 : Toxin and Virulence Regulation in

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Toxin and Virulence Regulation in , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818524/9781555816766_Chap12-1.gif /docserver/preview/fulltext/10.1128/9781555818524/9781555816766_Chap12-2.gif

Abstract:

Of the more than 200 different serogroups of that have been isolated, only two of these, O1 and O139, have been found to have epidemic and pandemic potential. CTXφ carries the genes for CT () and the VPI contains the genes () responsible for the synthesis and assembly of the essential colonization factor toxin-coregulated pilus (TCP). As part of the acetoin operon, AphA represses the expression of two PhoB-activated genes, and , that encode proteins which influence motility and biofilm formation by altering c-di-GMP levels in the cell. Bicarbonate may be an important in vivo signal that increases the activity of ToxT during infection and induces virulence gene expression. Once has disseminated out of the host and virulence gene expression is no longer required, TcpP and ToxT levels are decreased by proteolysis and H-NS reestablishes repression at the various promoters. Thus, like GbpA, FrhA plays an important role in in both the host and in the aquatic environment. A model for infection involves motile bacteria attaching to the intestinal cell surface, after which they upregulate virulence factor expression and downregulate motility. The flagellar regulatory hierarchy also influences virulence gene expression in through the quorum sensing system. Recent advances in the development of cDNA sequencing (RNA-seq) have facilitated the generation of comprehensive transcriptome profiles of during infection in both the rabbit and mouse models of cholera.

Citation: Skorupski K, Taylor R. 2013. Toxin and Virulence Regulation in , p 241-261. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch12
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

The virulence cascade. The VPI is shown by a blue line, CTXΦ by a red line, and the ancestral genome by black lines. At low cell density, in the absence of CAI-1 and AI-2, CqsS and LuxPQ phosphorylate LuxO, which, together with σ, activates the expression of to . The resulting small RNAs, together with Hfq, destabilize the message, leading to activation of expression by Lrp and VpsR. AphA cooperates with AphB to activate the promoter. TcpPH cooperates with ToxRS to activate the promoter. ToxT then activates the and promoters. At low cell density, AphA also represses the expression of to - and . At high cell density, in the presence of CAI-1 and AI-2, LuxO is not phosphorylated and to are not expressed. This allows for the accumulation of HapR, which binds to a site in the promoter overlapping the VpsR binding site, repressing its expression and turning off the virulence cascade. doi:10.1128/9781555818524.ch12f1

Citation: Skorupski K, Taylor R. 2013. Toxin and Virulence Regulation in , p 241-261. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818524.chap12
1. Abuaita, B. H.,, and J. H. Withey. 2009. Bicarbonate induces Vibrio cholerae virulence gene expression by enhancing ToxT activity. Infect. Immun. 77: 4111 4120.
2. Abuaita, B. H.,, and J. H. Withey. 2011. Termination of Vibrio cholerae virulence gene expression is mediated by proteolysis of the major virulence activator, ToxT. Mol. Microbiol. 81: 1640 1653.
3. Alam, A.,, R. C. LaRocque,, J. B. Harris,, C. Vanderspurt,, E. T. Ryan,, F. Qadri,, and S. B. Calderwood. 2005. Hyperinfectivity of human-passaged Vibrio cholerae can be modeled by growth in the infant mouse. Infect. Immun. 73: 6674 6679.
4. Alekshun, M. N.,, S. B. Levy,, T. R. Mealy,, B. A. Seaton,, and J. F. Head. 2001. The crystal structure ofMarR, a regulator of multiple antibiotic resistance, at 2.3 Å resolution. Nat. Struct. Biol. 8: 710 714.
5. Atlung, T.,, and H. Ingmer. 1997. H-NS: a modulator of environmentally regulated gene expression. Mol. Microbiol. 24: 7 17.
6. Barthelmebs, L.,, B. Lecomte,, C. Divies,, and J.-F. Cavin. 2000. Inducible metabolism of phenolic acids in Pediococcus pentosaceus is encoded by an autoregulated operon which involves a new class of negative transcriptional regulator. J. Bacteriol. 182: 6724 6731.
7. Beck, N. A.,, E. S. Krukonis,, and V. J. DiRita. 2004. TcpH influences virulence gene expression in Vibrio cholerae by inhibiting the degradation of the transcription activator TcpP. J. Bacteriol. 186: 8309 8316.
8. Bellair, M.,, and J. H. Withey. 2008. Flexibility of Vibrio cholerae ToxT in transcription activation of genes having altered promoter spacing. J. Bacteriol. 190: 7925 7931.
9. Beyhan, S.,, A. D. Tischler,, A. Camilli,, and F. H. Yildiz. 2006. Differences in gene expression between the classical and El Torbiotypes of Vibrio cholerae O1. Infect. Immun. 74: 3633 3642.
10. Bina, J.,, Z. Zhu,, M. Dziejman,, S. Faruque,, S. Calderwood,, and J. J. Mekalanos. 2003. ToxR regulon of Vibrio cholerae and its expression in vibrios shed by cholera patients. Proc. Natl. Acad. Sci. USA 100: 2801 2806.
11. Bradley, E. S.,, K. Bodi,, A. M. Ismail,, and A. Camilli. 2011. A genome-wide approach to discovery of small RNAs involved in regulation of virulence in Vibrio cholerae. PLoS Pathog. 7: e1002126.
12. Brinkman, A. B.,, T. J. G. Ettema,, W. M. deVos,, and J. van der Oost. 2003. The Lrp family of transcriptional regulators. Mol. Microbiol. 48: 287 294.
13. Brown, R. C.,, and R. K. Taylor. 1995. Organization of tcp, acf, and toxT genes within a ToxT-dependent operon. Mol. Microbiol. 16: 425 439.
14. Butler, S. M.,, and A. Camilli. 2004. Both chemotaxis and net motility greatly influence the infectivity of Vibrio cholerae. Proc. Natl. Acad. Sci. USA 101: 5018 5023.
15. Butler, S. M.,, and A. Camilli. 2005. Going against the grain: chemotaxis and infection in Vibrio cholerae. Nat. Rev. Microbiol. 3: 611 620.
16. Butler, S. M.,, E. J. Nelson,, N. Chowdhury,, S. M. Faruque,, S. B. Calderwood,, and A. Camilli. 2006. Cholera stool bacteria repress chemotaxis to increase infectivity. Mol. Microbiol. 60: 417 426.
17. Calvo, J. M.,, and R. G. Matthews. 1994. The leucine-responsive regulatory protein, a global regulator of metabolism in Escherichia coli. Microbiol. Rev. 58: 466 490.
18. Carroll, P. A.,, K. T. Tashima,, M. B. Rogers,, V. J. DiRita,, and S. B. Calderwood. 1997. Phase variation in tcpH modulates expression of the ToxR regulon in Vibrio cholerae. Mol. Microbiol. 25: 1099 1111.
19. Casper-Lindley, C.,, and F. H. Yildiz. 2004. VpsT is a transcriptional regulator required for expression of vps biosynthesis genes and the development of rugose colonial morphology in Vibrio cholerae O1 El Tor. J. Bacteriol. 186: 1574 1578.
20. Cerda-Maira, F. A.,, C. S. Ringelberg,, and R. K. Taylor. 2008. The bile response repressor BreR regulates expression of the Vibrio cholerae breAB efflux system operon. J. Bacteriol. 190: 7441 7452.
21. Champion, G. A.,, M. N. Neely,, M. A. Brennan,, and V. J. DiRita. 1997. A branch in the ToxR regulatory cascade of Vibrio cholerae revealed by characterization of toxT mutant strains. Mol. Microbiol. 23: 323 331.
22. Chaparro, A. P.,, S. K. Ali,, and K. E. Klose. 2010. The ToxT-dependent methyl-accepting chemoreceptors AcfB and TcpI contribute to Vibrio cholerae intestinal colonization. FEMS Microbiol. Lett. 302: 99 105.
23. Chatterjee, A.,, P. K. Dutta,, and R. Chowdhury. 2007. Effect of fatty acids and cholesterol present in bile on expression of virulence factors and motility of Vibrio cholerae. Infect. Immun. 75: 1946 1953.
24. Childers, B. M.,, X. Cao,, G. G. Weber,, B. Demeler,, P. J. Hart,, and K. E. Klose. 2011. N-terminal residues of the Vibrio cholerae virulence regulatory protein ToxT involved in dimerization and modulation by fatty acids. J. Biol. Chem. 286: 28644 28655.
25. Correa, N. E.,, J. R. Barker,, and K. E. Klose. 2004. The Vibrio cholerae FlgM homologue is an anti-s 28 factor that is secreted through the sheathed polar flagellum. J. Bacteriol. 186: 4613 4619.
26. Correa, N. E.,, C. M. Lauriano,, R. McGee,, and K. E. Klose. 2000. Phosphorylation of the flagellar regulatory protein FlrC is necessary for Vibrio cholerae motility and enhanced colonization. Mol. Microbiol. 35: 743 755.
27. Craig, L.,, R. K. Taylor,, M. E. Pique,, B. D. Adair,, A. S. Arvai,, M. Singh,, S. J. Lloyd,, D. S. Shin,, E. D. Getzoff,, M. Yeager,, K. T. Forest,, and J. A. Tainer. 2003. Type IV pilin structure and assembly: X-ray and EM analyses of Vibrio cholerae toxin-coregulated pilus and Pseudomonas aeruginosa PAK pilin. Mol. Cell 11: 1139 1150.
28. Crawford, J. A.,, J. B. Kaper,, and V. J. DiRita. 1998. Analysis of ToxR-dependent transcription activation of ompU, the gene encoding a major envelope protein in Vibrio cholerae. Mol. Microbiol. 29: 235 256.
29. Crawford, J. A.,, E. S. Krukonis,, and V. J. DiRita. 2003. Membrane localization of the ToxR winged-helix domain is required for TcpP-mediated virulence gene activation in Vibrio cholerae. Mol. Microbiol. 47: 1459 1473.
30. De Silva, R. S.,, G. Kovacikova,, W. Lin,, R. K. Taylor,, K. Skorupski,, and F. J. Kull. 2005. Crystal structure of the virulence gene activator AphA from Vibrio cholerae reveals it is a novel member of the winged helix transcription factor superfamily. J. Biol. Chem. 280: 13779 13783.
31. De Silva, R. S.,, G. Kovacikova,, W. Lin,, R. K. Taylor,, K. Skorupski,, and F. J. Kull. 2007. Crystal structure of the Vibrio cholerae quorum-sensing regulatory protein HapR. J. Bacteriol. 189: 5683 5691.
32. Deutscher, J.,, C. Francke,, and P. W. Postma. 2006. How phosphotransferase system-related protein phosphorylation regulates carbon metabolism in bacteria. Microbiol. Mol. Biol. Rev. 70: 939 1031.
33. Ding, Y.,, and M. K. Waldor. 2003. Deletion of a Vibrio cholerae ClC channel results in acid sensitivity and enhanced intestinal colonization. Infect. Immun. 71: 4197 4200.
34. DiRita, V. J.,, and J. J. Mekalanos. 1991. Periplasmic interaction between two membrane regulatory proteins, ToxR and ToxS, results in signal transduction and transcriptional activation. Cell 64: 29 37.
35. DiRita, V. J.,, C. Parsot,, G. Jander,, and J. J. Mekalanos. 1991. Regulatory cascade controls virulence in Vibrio cholerae. Proc. Natl. Acad. Sci. USA 88: 5403 5407.
36. DiRita, V. J.,, M. Neely,, R. K. Taylor,, and P. M. Bruss. 1996. Differential expression of the ToxR regulon in classical and El Tor biotypes of V. cholerae is due to biotype-specific control over toxT expression. Proc. Natl. Acad. Sci. USA 93: 7991 7995.
37. Dorman, C. J. 2007. H-NS, the genome sentinel. Nat. Rev. Microbiol. 5: 157 161.
38. Dutzler, R. 2006. The ClC family of chloride channels and transporters. Curr. Opin. Struct. Biol. 16: 439 446.
39. Dziejman, M.,, and J. J. Mekalanos. 1994. Analysis of membrane protein interaction: ToxR can dimerize the amino terminus of phage lambda repressor. Mol. Microbiol. 13: 485 494.
40. Fang, F. C.,, and S. Rimsky. 2008. New insights into transcriptional regulation by H-NS. Curr. Opin. Microbiol. 11: 113 120.
41. Faruque, S. M.,, M. J. Albert,, and J. J. Mekalanos. 1998. Epidemiology, genetics, and ecology of toxigenic Vibrio cholerae. Microbiol. Mol. Biol. Rev. 62: 1301 1314.
42. Faruque, S. M.,, K. Biswas,, S. M. N. Udden,, Q. S. Ahmad,, D. A. Sack,, G. B. Nair,, and J. J. Mekalanos. 2006. Transmissibility of cholera: in vivo-formed biofilms and their relationship to infectivity and persistence in the environment. Proc. Natl. Acad. Sci. USA 103: 6350 6355.
43. Finkelstein, R. A.,, M. Boesman-Finkelstein,, Y. Chang,, and C. C. Häse. 1992. Vibrio cholerae hemagglutinin/protease, colonial variation, virulence, and detachment. Infect. Immun. 60: 472 478.
44. Finkelstein, R. A.,, M. Boesman-Finkelstein,, and P. Holt. 1983. Vibrio cholerae hemagglutinin/lectin/protease hydrolyzes fibronectin and ovomucin: F. M. Burnet revisited. Proc. Natl. Acad. Sci. USA 80: 1092 1095.
45. Finne, J.,, M. E. Breimer,, G. C. Hansson,, K.-A. Karlsson,, H. Leffler,, J. F. G. Vliegenthart,, and H. van Halbeek. 1989. Novel polyfucosylated N-linked glycopeptides with blood group A, H, X, and Y determinants from human small intestinal epithelial cells. J.Biol. Chem. 264: 5720 5735.
46. Fong, J. C. N.,, and F. H. Yildiz. 2008. Interplay between cyclic AMP-cyclic AMP receptor protein and cyclic di-GMP signaling in Vibrio cholerae biofilm formation. J. Bacteriol. 190: 6646 6659.
47. Fong, J. C. N.,, K. A. Syed,, K. E. Klose,, and F. H. Yildiz. 2010. Role of Vibrio polysaccharide ( vps) genes in VPS production, biofilm formation and Vibrio cholerae pathogenesis. Microbiology 156: 2757 2769.
48. Gallegos, M.-T.,, R. Schleif,, A. Bairoch,, K. Hofmann,, and J. L. Ramos. 1997. AraC/XylS family of transcriptional regulators. Microbiol. Mol. Biol. Rev. 61: 393 410.
49. Galperin, M. Y.,, A. N. Nikolskaya,, and E. V. Koonin. 2001. Novel domains of the prokaryotic two-component signal transduction systems. FEMS Microbiol. Lett. 203: 11 21.
50. Gardel, C. L.,, and J. J. Mekalanos. 1996. Alterations in Vibrio cholerae motility phenotypes correlate with changes in virulence factor expression. Infect. Immun. 64: 2246 2255.
51. Goosen, N.,, and P. van de Putte. 1995. The regulation of transcription initiation by integration host factor. Mol. Microbiol. 16: 1 7.
52. Goss, T. J.,, C. P. Seaborn,, M. D. Gray,, and E. S. Krukonis. 2010. Identification of the TcpP binding site in the toxT promoter of Vibrio cholerae and the role of ToxR in TcpP-mediated activation. Infect. Immun. 78: 4122 4133.
53. Gunn, J. S. 2000. Mechanisms of bacterial resistance and response to bile. Microbes Infect. 2: 907 913.
54. Gupta, S.,, and R. Chowdhury. 1997. Bile affects production of virulence factors and motility of Vibrio cholerae. Infect. Immun. 65: 1131 1134.
55. Hammer, B. K.,, and B. L. Bassler. 2003. Quorum sensing controls biofilm formation in Vibrio cholerae. Mol. Microbiol. 50: 101 114.
56. Häse, C. C. 2001. Analysis of the role of flagellar activity in virulence gene expression in Vibrio cholerae. Microbiology 147: 831 837.
57. Häse, C. C.,, and B. Barquera. 2001. Role of sodium bioenergetics in Vibrio cholerae. Biochem. Biophys. Acta 1505: 169 178.
58. Häse, C. C.,, and J. J. Mekalanos. 1998. TcpP protein is a positive regulator of virulence gene expression in Vibrio cholerae. Proc. Natl. Acad. Sci. USA 95: 730 734.
59. Häse, C. C.,, and J. J. Mekalanos. 1999. Effects of changes in membrane sodium flux on virulence gene expression in Vibrio cholerae. Proc. Natl. Acad. Sci. USA 96: 3183 3187.
60. Hengge, R. 2009. Principles of c-di-GMP signalling in bacteria. Nat. Rev. Microbiol. 7: 263 273.
61. Herrington, D. A.,, R. H. Hall,, G. Losonsky,, J. J. Mekalanos,, R. K. Taylor,, and M. M. Levine. 1988. Toxin, toxin-coregulated pili, and the toxR regulon are essential for Vibrio cholerae colonization in humans J. Exp. Med. 168: 1487 1492.
62. Herz, K.,, S. Vimont,, E. Padan,, and P. Berche. 2003. Roles of NhaA, NhaB, and NhaD Na +/H + antiporters in survival of Vibrio cholerae in a saline environment. J. Bacteriol. 185: 1236 1244.
63. Higgins, D. E.,, and V. J. DiRita. 1994. Transcriptional control of toxT, a regulatory gene in the ToxR regulon of Vibrio cholerae. Mol. Microbiol. 14: 17 29.
64. Higgins, D. E.,, E. Nazareno,, and V. J. DiRita. 1992. The virulence gene activator ToxT from Vibrio cholerae is a member of the AraC family of transcriptional activators. J. Bacteriol. 174: 6974 6980.
65. Hsiao, A.,, Z. Liu,, A. Joelsson,, and J. Zhu. 2006. Vibrio cholerae virulence regulator-coordinated evasion of host immunity. Proc. Natl. Acad. Sci. USA 103: 14542 14547.
66. Hsiao, A.,, X. Xu,, B. Kan,, R. V. Kulkarni,, and J. Zhu. 2009. Direct regulation by the Vibrio cholerae regulator ToxT to modulate colonization and anticolonization pilus expression. Infect. Immun. 77: 1383 1388.
67. Hsieh, Y.-J.,, and B. L. Wanner. 2010. Global regulation by the seven-component P i signaling system. Curr. Opin. Microbiol. 13: 198 203.
68. Hulbert, R. R.,, and R. K. Taylor. 2002. Mechanism of ToxT-dependent transcriptional activation at the Vibrio cholerae tcpA promoter. J. Bacteriol. 184: 5533 5544.
69. Hung, D. T.,, J. Zhu,, D. Sturtevant,, and J. J. Mekalanos. 2006. Bile acids stimulate biofilm formation in Vibrio cholerae. Mol. Microbiol. 59: 193 201.
70. Iwanaga, M.,, K. Yamamoto,, N. Higa,, Y. Ichinose,, N. Nakasone,, and M. Tanabe. 1986. Culture conditions for stimulating cholera toxin production by Vibrio cholerae O1 El Tor. Microbiol. Immunol. 30: 1075 1083.
71. Jobling, M. G.,, and R. K. Holmes. 1997. Characterization of hapR, a positive regulator of the Vibrio cholerae HA/protease gene hap, and its identification as a functional homologue of the Vibrio harveyi luxR gene. Mol. Microbiol. 26: 1023 1034.
72. Jude, B. A.,, R. M. Martinez,, K. Skorupski,, and R. K. Taylor. 2009. Levels of the secreted Vibrio cholerae attachment factor GbpA are modulated by quorum-sensing-induced proteolysis. J.Bacteriol. 191: 6911 6917.
73. Jude, B. A.,, and R. K. Taylor. 2011. The physical basis of type 4 pilus-mediated microcolony formation by Vibrio cholerae O1. J.Struct. Biol. 175: 1 9.
74. Kamruzzaman, M.,, S. M. N. Udden,, D. E. Cameron,, S. B. Calderwood,, G. B. Nair,, J. J. Mekalanos,, and S. M. Faruque. 2010. Quorum-regulated biofilms enhance the development of conditionally viable, environmental Vibrio cholerae. Proc. Natl. Acad. Sci. USA 107: 1588 1593.
75. Kanjilal, S.,, R. Citorik,, R. C. LaRocque,, M. F. Ramoni,, and S. B. Calderwood. 2010. A systems biology approach to modeling Vibrio cholerae gene expression under virulence-inducing conditions. J. Bacteriol. 192: 4300 4310.
76. Kaper, J. B.,, J. G. Morris, Jr.,, and M. M. Levine. 1995. Cholera. Clin. Microbiol. Rev. 8: 48 86.
77. Karaolis, D. K. R.,, J. A. Johnson,, C. C. Bailey,, E. C. Boedeker,, J. Kaper,, and P. R. Reeves. 1998. A Vibrio cholerae pathogenicity island associated with epidemic and pandemic strains. Proc. Natl. Acad. Sci. USA 95: 3134 3139.
78. Kirn, T. J.,, N. Bose,, and R. K. Taylor. 2003. Secretion of a soluble colonization factor by the TCP type 4 pilus biogenesis pathway for V. cholerae. Mol. Microbiol. 49: 81 92.
79. Kirn, T. J.,, B. A. Jude,, and R. K. Taylor. 2005. A colonization factor links Vibrio cholerae environmental survival and human infection. Nature 438: 863 866.
80. Kirn, T.J.,, M. J. Lafferty,, C. M. P. Sandoe,, and R. K. Taylor. 2000. Delineation of pilin domains required for bacterial association into microcolonies and intestinal colonization by Vibrio cholerae. Mol. Microbiol. 35: 896 910.
81. Klose, K. E.,, and J. J. Mekalanos. 1998. Distinct roles of an alternative sigma factor during both free-swimming and colonizing phases of the Vibrio cholerae pathogenic cycle. Mol. Microbiol. 28: 501 520.
82. Kolb, A.,, S. Busby,, H. Buc,, S. Garges,, and S. Adhya. 1993. Transcriptional regulation by cAMP and its receptor protein. Annu. Rev. Biochem. 62: 749 795.
83. Kovacikova, G.,, and K. Skorupski. 1999. A Vibrio cholerae LysR homolog, AphB, cooperates with AphA at the tcpPH promoter to activate expression of the ToxR virulence cascade. J. Bacteriol. 181: 4250 4256.
84. Kovacikova, G.,, and K. Skorupski. 2000. Differential activation of the tcpPH promoter by AphB determines biotype specificity of virulence gene expression in Vibrio cholerae. J. Bacteriol. 182: 3228 3238.
85. Kovacikova, G.,, and K. Skorupski. 2001. Overlapping binding sites for the virulence gene regulators AphA, AphB and cAMP-CRP at the Vibrio cholerae tcpPH promoter. Mol. Microbiol. 41: 393 407.
86. Kovacikova, G.,, and K. Skorupski. 2002a. Binding site requirements of the virulence gene regulator AphB: differential affinities for the Vibrio cholerae classical and El Tor tcpPH promoters. Mol. Microbiol. 44: 533 547.
87. Kovacikova, G.,, and K. Skorupski. 2002b. Regulation of virulence gene expression in Vibrio cholerae by quorum sensing: HapR functions at the aphA promoter. Mol. Microbiol. 46: 1135 1147.
88. Kovacikova, G.,, W. Lin,, and K. Skorupski. 2003. The virulence activator AphA links quorum sensing to pathogenesis and physiology in Vibrio cholerae by repressing the expression of a penicillin amidase gene on the small chromosome. J. Bacteriol. 185: 4825 4836.
89. Kovacikova, G.,, W. Lin,, and K. Skorupski. 2004. Vibrio cholerae AphA uses a novel mechanism for virulence gene activation that involves interaction with the LysR-type regulator AphB at the tcpPH promoter. Mol. Microbiol. 53: 129 142.
90. Kovacikova, G.,, W. Lin,, and K. Skorupski. 2005. Dual regulation of genes involved in acetoin biosynthesis and motility/biofilm formation by the virulence activator AphA and the acetate-responsive LysR-type regulator AlsR in Vibrio cholerae. Mol. Microbiol. 57: 420 433.
91. Kovacikova, G.,, W. Lin,, and K. Skorupski. 2010. The LysR-type virulence activator AphB regulates the expression of genes in Vibrio cholerae in response to low pH and anaerobiosis. J. Bacteriol. 192: 4181 4191.
92. Krasteva, P. V.,, J. C. N. Fong,, N. J. Shikuma,, S. Beyhan,, M. V. A. S. Navarro,, F. H. Yildiz,, and H. Sondermann. 2010. Vibrio cholerae VpsT regulates matrix production and motility by directly sensing cyclic di-GMP. Science 327: 866 868.
93. Krukonis, E. S.,, R. R. Yu,, and V. J. DiRita. 2000. The Vibrio cholerae ToxR/TcpP/ToxT virulence cascade: distinct roles for two membrane-localized transcriptional activators on a single promoter. Mol. Microbiol. 38: 67 84.
94. Krukonis, E. S.,, and V. J. DiRita. 2003. DNA binding and ToxR responsiveness by the wing domain of TcpP, an activator of virulence gene expression in Vibrio cholerae. Mol. Cell 12: 157 165.
95. LaRocque, R. C.,, J. B. Harris,, M. Dziejman,, X. Li,, A. I. Khan,, A. S. G. Faruque,, S. M. Faruque,, G. B. Nair,, E. T. Ryan,, F. Qadri,, J. J. Mekalanos,, and S. B. Calderwood. 2005. Transcriptional profiling of Vibrio cholerae recovered directly from patient specimens during early and late stages of human infection. Infect. Immun. 73: 4488 4493.
96. Lee, S. H.,, D. L. Hava,, M. K. Waldor,, and A. Camilli. 1999. Regulation and temporal expression patterns of Vibrio cholerae virulence genes during infection. Cell 99: 625 634.
97. Lee, S. H.,, S. M. Butler,, and A. Camilli. 2001. Selection for in vivo regulators of bacterial virulence. Proc. Natl. Acad. Sci. USA 98: 6889 6894.
98. Lenz, D. H.,, K. C. Mok,, B. N. Lilley,, R. V. Kulkarni,, N. S. Wingreen,, and B. L. Bassler. 2004. The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae. Cell 118: 69 82.
99. Li, C. C.,, J. A. Crawford,, V. J. DiRita,, and J. B. Kaper. 2000. Molecular cloning and transcriptional regulation of ompT, a ToxR-repressed gene in Vibrio cholerae. Mol. Microbiol. 35: 189 203.
100. Li, C. C.,, D. S. Merrell,, A. Camilli,, and J. B. Kaper. 2002. ToxR interferes with CRP-dependent transcriptional activation of ompT in Vibrio cholerae. Mol. Microbiol. 43: 1577 1589.
101. Lin, W.,, G. Kovacikova,, and K. Skorupski. 2005. Requirements for Vibrio cholerae HapR binding and transcriptional repression at the hapR promoter are distinct from those at the aphA promoter. J. Bacteriol. 187: 3013 3019.
102. Lin, W.,, G. Kovacikova,, and K. Skorupski. 2007. The quorum sensing regulator HapR downregulates the expression of the virulence gene transcription factor AphA in Vibrio cholerae by antagonizing Lrp- and VpsR-mediated activation. Mol. Microbiol. 64: 953 967.
103. Liu, X.,, S. Beyhan,, B. Lim,, R. G. Linington,, and F. H. Yildiz. 2010. Identification and characterization of a phosphodiesterase that inversely regulates motility and biofilm formation in Vibrio cholerae. J. Bacteriol. 192: 4541 4552.
104. Liu, Z.,, T. Miyashiro,, A. Tsou,, A. Hsiao,, M. Goulian,, and J. Zhu. 2008. Mucosal penetration primes Vibrio cholerae for host colonization by repressing quorum sensing. Proc. Natl. Acad. Sci. USA 105: 9769 9774.
105. Liu, Z.,, M. Yang,, G. L. Peterfreund,, A. M. Tsou,, N. Selamoglu,, F. Daldal,, Z. Zhong,, B. Kan,, and J. Zhu. 2011. Vibrio cholerae anaerobic induction of virulence gene expression is controlled by thiol-based switches of virulence regulator AphB. Proc. Natl. Acad. Sci. USA 108: 810 815.
106. Lowden, M. J.,, K. Skorupski,, M. Pellegrini,, M. G. Chiorazzo,, R. K. Taylor,, and J. F. Kull. 2010. Structure of Vibrio cholerae ToxT reveals a mechanism for fatty acid regulation of virulence genes. Proc. Natl. Acad. Sci. USA 107: 2860 2865.
107. Maddocks, S. E.,, and P. C. F. Oyston. 2008. Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. Microbiology 154: 3609 3623.
108. Makinoshima, H.,, and M. S. Glickman. 2006. Site-2 proteases in prokaryotes: regulated intramembrane proteolysis expands to microbial pathogenesis. Microbes Infect. 8: 1882 1888.
109. Mandlik, A.,, J. Livny,, W. P. Robins,, J. M. Ritchie,, J. J. Mekalanos,, and M. K. Waldor. 2011. RNA-seq-based monitoring of infection-linked changes in Vibrio cholerae gene expression. Cell Host Microbe 10: 165 174.
110. Marcus, E. A.,, A. P. Moshfegh,, G. Sachs,, and D. R. Scott. 2005. The periplasmic –-carbonic anhydrase activity of Helicobacter pylori is essential for acid acclimation. J. Bacteriol. 187: 729 738.
111. Martinez, R. M.,, M. N. Dharmasena,, T. J. Kirn,, and R. K. Taylor. 2009. Characterization of two outer membrane proteins, FlgO and FlgP, that influence Vibrio cholerae motility. J. Bacteriol. 191: 5669 5679.
112. Martinez-Hackert, E.,, and A. M. Stock. 1997. The DNA-binding domain of OmpR: crystal structures of a winged helix transcription factor. Structure 5: 109 124.
113. Martinez-Wilson, H. F.,, R. Tamayo,, A. D. Tischler,, D. W. Lazinski,, and A. Camilli. 2008. The Vibrio cholerae hybrid sensor kinase VieS contributes to motility and biofilm regulation by altering the cyclic diguanylate level. J. Bacteriol. 190: 6439 6447.
114. Mathur, J.,, and M. K. Waldor. 2004. The Vibrio cholerae ToxR-regulated porin OmpU confers resistance to antimicrobial peptides. Infect. Immun. 72: 3577 3583.
115. Mathur, J.,, B. M. Davis,, and M. K. Waldor. 2007. Antimicrobial peptides activate the Vibrio cholerae σ E regulon through an OmpU-dependent signalling pathway. Mol. Microbiol. 63: 848 858.
116. Matson, J. S.,, and V. J. DiRita. 2005. Degradation of the membrane-localized virulence activator TcpP by the YaeL protease in Vibrio cholerae. Proc. Natl. Acad. Sci. USA 102: 16403 16408.
117. McCarter, L. L. 2001. Polar flagellar motility of Vibrionaceae. Microbiol. Mol. Biol. Rev. 65: 445 462.
118. Megli, C. J.,, A. S. W. Yuen,, S. Kolappan,, M. R. Richardson,, M. N. Dharmasena,, S. J. Krebs,, R. K. Taylor,, and L. Craig. 2011. Crystal structure of the Vibrio cholerae colonization factor TcpF and identification of a functional immunogenic site. J. Mol. Biol 409: 146 158.
119. Meibom, K. L.,, X. B. Li,, A. T. Nielsen,, C.-Y. Wu,, S. Roseman,, and G. K. Schoolnik. 2004. The Vibrio cholerae chitin utilization program. Proc. Natl. Acad. Sci. USA 101: 2524 2529.
120. Merrell, D. S.,, S. M. Butler,, F. Qadri,, N. A. Dolganov,, A. Alam,, M. B. Cohen,, S. B. Calderwood,, G. K. Schoolnik,, and A. Camilli. 2002. Host-induced epidemic spread of the cholera bacterium. Nature 417: 642 645.
121. Merrell, D. S.,, and A. Camilli. 1999. The cadA gene of Vibrio cholerae is induced during infection and plays a role in acid tolerance. Mol. Microbiol. 34: 836 849.
122. Merrell, D. S.,, and A. Camilli. 2000. Regulation of Vibrio cholerae genes required for acid tolerance by a member of the “ToxR-like” family of transcriptional regulators. J. Bacteriol. 182: 5342 5350.
123. Merrell, D. S.,, C. Bailey,, J. B. Kaper,, and A. Camilli. 2001. The ToxR-mediated organic acid tolerance response of Vibrio cholerae requires OmpU. J. Bacteriol. 183: 2746 2754.
124. Miller, M. B.,, K. Skorupski,, D. H. Lenz,, R. K. Taylor,, and B. L. Bassler. 2002. Parallel quorum sensing systems converge to regulate virulence in Vibrio cholerae. Cell 110: 303 314.
125. Miller, V. L.,, R. K. Taylor,, and J. J. Mekalanos. 1987. Cholera toxin transcriptional activator ToxR is a transmembrane DNA binding protein. Cell 48: 271 279.
126. Miller, V. L.,, and J. J. Mekalanos. 1988. A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J. Bacteriol. 170: 2575 2583.
127. Miller, V. L.,, V. J. DiRita,, and J. J. Mekalanos. 1989. Identification of toxS, a regulatory gene whose product enhances ToxR-mediated activation of the cholera toxin promoter. J. Bacteriol. 171: 1288 1293.
128. Morgan, S. J.,, S. Felek,, S. Gadwal,, N. M. Koropatkin,, J. W. Perry,, A. B. Bryson,, and E. S. Krukonis. 2011. The two faces of ToxR: activator of ompU, co-regulator of toxT in Vibrio cholerae. Mol. Microbiol. 81: 113 128.
129. Morris, D. C.,, F. Peng,, J. R. Barker,, and K. E. Klose. 2008. Lipidation of an FlrC-dependent protein is required for enhanced intestinal colonization by Vibrio cholerae. J. Bacteriol. 190: 231 239.
130. Ng, W.-L.,, and B. L. Bassler. 2009. Bacterial quorum-sensing network architectures. Annu. Rev. Genet. 43: 197 222.
131. Nielsen, A. T.,, N. A. Dolganov,, G. Otto,, M. C. Miller,, C. Y. Wu,, and G. K. Schoolnik. 2006. RpoS controls the Vibrio cholerae mucosal escape response. PLoS Pathog. 2: e109.
132. Nielsen, A. T.,, N. A. Dolganov,, T. Rasmussen,, G. Otto,, M. C. Miller,, S. A. Felt,, S. Torreilles,, and G. K. Schoolnik. 2010. A bistable switch and anatomical site control Vibrio cholerae virulence gene expression in the intestine. PLoS Pathog. 6: e1001102.
133. Nye, M. B.,, J. D. Pfau,, K. Skorupski,, and R. K. Taylor. 2000. Vibrio cholerae H-NS silences virulence gene expression at multiple steps in the ToxR regulatory cascade. J. Bacteriol. 182: 4295 4303.
134. Ou, G.,, P. K. Rompikuntal,, A. Bitar,, B. Lindmark,, K. Vaitkevicius,, S. N. Wai,, and M.-L. Hammarstrom. 2009. Vibrio cholerae cytolysin causes an inflammatory response in human intestinal epithelial cells that is modulated by the PrtV protease. PloS One 4: e7806.
135. Peterson, K. M.,, and J. J. Mekalanos. 1988. Characterization of the Vibrio cholerae toxR regulon: identification of novel genes involved in intestinal colonization. Infect. Immun. 56: 2822 2829.
136. Pokutta, S.,, and W. I. Weis. 2007. Structure and mechanism of cadherins and catenins in cell-cell contacts. Annu. Rev. Cell Dev. Biol. 23: 237 261.
137. Porter, S. L.,, G. H. Wadhams,, and J. P. Armitage. 2011. Signal processing in complex chemotaxis pathways. Nat. Rev. Microbiol. 9: 153 165.
138. Pratt, J. T.,, A. M. Ismail,, and A. Camilli. 2010. PhoB regulates both environmental and virulence gene expression in Vibrio cholerae. Mol. Microbiol. 77: 1595 1605.
139. Pratt, J. T.,, E. McDonough,, and A. Camilli. 2009. PhoB regulates motility, biofilms and cyclic di-GMP in Vibrio cholerae. J.Bacteriol. 191: 6632 6642.
140. Prouty, M. G.,, N. E. Correa,, and K. E. Klose. 2001. The novel σ 54- and σ 28-dependent flagellar gene transcription hierarchy of Vibrio cholerae. Mol. Microbiol. 39: 1595 1609.
141. Prouty, M. G.,, C. R. Osorio,, and K. E. Klose. 2005. Characterization of functional domains of the Vibrio cholerae virulence regulator ToxT. Mol. Microbiol. 58: 1143 1156.V
142. Provenzano, D.,, and K. E. Klose. 2000. Altered expression of the ToxR-regulated porins OmpU and OmpT diminishes Vibrio cholerae bile resistance, virulence factor expression, and intestinal colonization. Proc. Natl. Acad. Sci. USA 97: 10220 10224.
143. Provenzano, D.,, D. A. Schuhmacher,, J. L. Barker,, and K. E. Klose. 2000. The virulence regulatory protein ToxR mediates enhanced bile resistance in Vibrio cholerae and other pathogenic Vibrio species. Infect. Immun. 68: 1491 1497.
144. Rao, N. N.,, and A. Torriani. 1990. Molecular aspects of phosphate transport in Escherichia coli. Mol. Microbiol. 4: 1083 1090.
145. Richard, A. L.,, J. H. Withey,, S. Beyhan,, F. Yildiz,, and V. J. DiRita. 2010. The Vibrio cholerae virulence regulatory cascade controls glucose uptake through activation of TarA, a small regulatory RNA. Mol. Microbiol. 78: 1171 1181.
146. Rutherford, S. T.,, J. C. van Kessel,, Y. Shao,, and B. L. Bassler. 2011. AphA and LuxR/HapR reciprocally control quorum sensing in vibrios. Genes Dev. 25: 397 408.
147. Ryan, R. P.,, Y. Fouhy,, J. F. Lucey,, L. C. Crossman,, S. Spiro,, Y.-W. He,, L.-H. Zhang,, S. Heeb,, M. Camara,, P. Williams,, and J. M. Dow. 2006. Cell-cell signaling in Xanthomonas campestris involves an HD-GYP domain protein that functions in cyclic di-GMP turnover. Proc. Natl. Acad. Sci. USA 103: 6712 6717.
148. Ryjenkov, D. A.,, R. Simm,, U. Romling,, and M. Gomelsky. 2006. The PilZ domain is a receptor for the second messenger c-di-GMP: the PilZ domain protein YcgR controls motility in enterobacteria. J. Biol. Chem. 281: 30310 30314.
149. Ryjenkov, D. A.,, M. Tarutina,, O. V. Moskvin,, and M. Gomelsky. 2005. Cyclic diguanylate is a ubiquitous signalling molecule in bacteria: insights into biochemistry of the GGDEF protein domain. J. Bacteriol. 187: 1792 1798.
150. Sanchez, J.,, and J. Holmgren. 2005. Virulence factors, pathogenesis and vaccine protection in cholera and ETEC diarrhea. Curr. Opin. Immunol. 17: 388 398.
151. Sanchez, J.,, and J. Holmgren. 2008. Cholera toxin structure, gene regulation and pathophysiological and immunological aspects. Cell. Mol. Life Sci. 65: 1347 1360.
152. Satchell, K. J. F. 2011. Structure and function of MARTX toxins and other large repetitive RTX proteins. Annu. Rev. Microbiol. 65: 71 90.
153. Schild, S.,, R. Tamayo,, E. J. Nelson,, F. Qadri,, S. B. Calderwood,, and A. Camilli. 2007. Genes induced late in infection increase fitness of Vibrio cholerae after release into the environment. Cell Host Microbe 2: 264 277.
154. Schmidt, A. J.,, D. A. Ryjenkov,, and M. Gomelsky. 2005. The ubiquitous protein domain EAL is a cyclic diguanylate-specific phosphodiesterase: enzymatically active and inactive EAL domains. J. Bacteriol. 187: 4774 4781.
155. Schuhmacher, D. A.,, and K. E. Klose. 1999. Environmental signals modulate ToxT-dependent virulence factor expression in Vibrio cholerae. J. Bacteriol. 181: 1508 1514.
156. Shakhnovich, E. A.,, D. T. Hung,, E. Pierson,, K. Lee,, and J. J. Mekalanos. 2007. Virstatin inhibits dimerization of the transcriptional activator ToxT. Proc. Natl. Acad. Sci. USA 104: 2372 2377.
157. Silva, A. J.,, G. J. Leitch,, A. Camilli,, and J. A. Benitez. 2006. Contribution of hemagglutinin/protease and motility to the pathogenesis of El Tor biotype cholera. Infect. Immun. 74: 2072 2079.
158. Skorupski, K.,, and R. K. Taylor. 1997. Cyclic AMP and its receptor protein negatively regulate the coordinate expression of cholera toxin and toxin-coregulated pilus in Vibrio cholerae. Proc. Natl. Acad. Sci. USA 94: 265 270.
159. Skorupski, K.,, and R. K. Taylor. 1999. A new level in the Vibrio cholerae ToxR virulence cascade: AphA is required for transcriptional activation of the tcpPH operon. Mol. Microbiol. 31: 763 771.
160. Srivastava, D.,, R. C. Harris,, and C. M. Waters. 2011. Integration of cyclic di-GMP and quorum sensing in the control of vpsT and aphA in Vibrio cholerae. J. Bacteriol. 193: 6331 6341.
161. Stonehouse, E.,, G. Kovacikova,, R. K. Taylor,, and K. Skorupski. 2008. Integration host factor positively regulates virulence gene expression in Vibrio cholerae. J. Bacteriol. 190: 4736 4748.
162. Stonehouse, E. A.,, R. R. Hulbert,, M. B. Nye,, K. Skorupski,, and R. K. Taylor. 2011. H-NS binding and repression of the ctx promoter in Vibrio cholerae. J. Bacteriol. 193: 979 988.
163. Syed, K. A.,, S. Beyhan,, N. Correa,, J. Queen,, J. Liu,, F. Peng,, K. J. F. Satchell,, \ Yildiz,, and K. E. Klose. 2009. The Vibrio cholerae flagellar regulatory hierarchy controls expression of virulence factors. J. Bacteriol. 191: 6555 6570.
164. Szabady, R. L.,, J. H. Yanta,, D. K. Halladin,, M. J. Schofield,, and R. A. Welch. 2011. TagA is a secreted protease of Vibrio cholerae that specifically cleaves mucin glycoproteins. Microbiology 157: 516 525.
165. Tamayo, R.,, A. D. Tischler,, and A. Camilli. 2005. The EAL domain protein VieA is a cyclic diguanylate phosphodiesterase. J. Biol. Chem. 280: 33324 33330.
166. Tamayo, R.,, B. Patimalla,, and A. Camilli. 2010. Growth in a biofilm induces a hyperinfectious phenotype in Vibrio cholerae. Infect. Immun. 78: 3560 3569.
167. Tamayo, R.,, S. Schild,, J. T. Pratt,, and A. Camilli. 2008. Role of cyclic di-GMP during El Tor biotype Vibrio cholerae infection: characterization of the in vivo-induced cyclic di-GMP phosphodiesterase CdpA. Infect. Immun. 76: 1617 1627.
168. Tamplin, M. L.,, A. L. Gauzens,, A. Huq,, D. A. Sack,, and R. R. Colwell. 1990. Attachment of Vibrio cholerae serogroup O1 to zooplankton and phytoplankton of Bangladesh waters. Appl. Environ. Microbiol. 56: 1977 1980.
169. Taylor, J. L.,, R. S. De Silva,, G. Kovacikova,, W. Lin,, R. K. Taylor,, K. Skorupski,, and F. J. Kull. 2012. The crystal structure of AphB, a virulence gene activator from Vibrio cholerae, reveals residues that influence its response to oxygen and pH. Mol. Microbiol. 83: 457 470.
170. Taylor, R. K.,, V. L. Miller,, D. B. Furlong,, and J. J. Mekalanos. 1987. Use of phoA gene fusions to identify a pilus colonization factor coordinately regulated with cholera toxin. Proc. Natl. Acad. Sci. USA 84: 2833 2837.
171. Tischler, A. D.,, and A. Camilli. 2004. Cyclic diguanylate (c-di-GMP) regulates Vibrio cholerae biofilm formation. Mol. Microbiol. 53: 857 869.
172. Tischler, A. D.,, and A. Camilli. 2005. Cyclic diguanylate regulates Vibrio cholerae virulence gene expression. Infect. Immun. 73: 5873 5882.
173. Tischler, A. D.,, S. H. Lee,, and A. Camilli. 2002. The Vibrio cholerae vieSAB locus encodes a pathway contributing to cholera toxin production. J. Bacteriol. 184: 4104 4113.
174. Vaitkevicius, K.,, B. Lindmark,, G. Ou,, T. Song,, C. Toma,, M. Iwanaga,, J. Zhu,, A. Andersson,, M.-L. Hammarstrom,, S. Tuck,, and S. N. Wai. 2006. A Vibrio cholerae protease needed for killing of Caenorhabditis elegans has a role in protection from natural predator grazing. Proc. Natl. Acad. Sci. USA 103: 9280 9285.
175. van Ulsen, P.,, M. Hillebrand,, L. Zulianello,, P. van de Putte,, and N. Goosen. 1996. Integration host factor alleviates the H-NS-mediated repression of the early promoter of bacteriophage Mu. Mol. Microbiol. 21: 567 578.
176. Waldor, M. K.,, and J. J. Mekalanos. 1996. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272: 1910 1914.
177. Waters, C. M.,, W. Lu,, J. D. Rabinowitz,, and B. L. Bassler. 2008. Quorum sensing controls biofilm formation in Vibrio cholerae through modulation of cyclic di-GMP levels and repression of vpsT. J. Bacteriol. 190: 2527 2536.
178. Withey, J. H.,, and V. J. DiRita. 2005a. Activation of both acfA and acfD transcription by Vibrio cholerae ToxT requires binding to two centrally located DNA sites in an inverted repeat conformation. Mol. Microbiol. 56: 1062 1077.
179. Withey, J. H.,, and V. J. DiRita. 2005b. Vibrio cholerae ToxT independently activates the divergently transcribed aldA and tagA genes. J. Bacteriol. 187: 7890 7900.
180. Withey, J. H.,, and V. J. DiRita. 2006. The toxbox: specific DNA sequence requirements for activation of Vibrio cholerae virulence genes by ToxT. Mol. Microbiol. 59: 1779 1789.
181. Yang, J.,, M. Tauschek,, and R. M. Robins-Browne. 2011. Control of bacterial virulence by AraC-like regulators that respond to chemical signals. Trends Microbiol. 19: 128 135.
182. Yang, M.,, E. M. Frey,, Z. Liu,, R. Bishar,, and J. Zhu. 2010. The virulence transcriptional activator AphA enhances biofilm formation by Vibrio cholerae by activating the expression of the biofilm regulator VpsT. Infect. Immun. 78: 697 703.
183. Yildiz, F. H.,, and G. K. Schoolnik. 1999. Vibrio cholerae O1 El Tor: identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance and biofilm formation. Proc. Natl. Acad. Sci. USA 96: 4028 4033.
184. Yildiz, F. H.,, N. A. Dolganov,, and G. K. Schoolnik. 2001. VpsR, a member of the response regulators of the two-component regulatory systems, is required for expression of vps biosynthesis genes and EPS ETr-associated phenotypes in Vibrio cholerae O1 El Tor. J. Bacteriol. 183: 1716 1726.
185. Yildiz, F. H.,, X. S. Liu,, A. Heydorn,, and G. K. Schoolnik. 2004. Molecular analysis of rugosity in a Vibrio cholerae O1 El Tor phase variant. Mol. Microbiol. 53: 497 515.
186. Yu, R. R.,, and V. J. DiRita. 1999. Analysis of an autoregulatory loop controlling ToxT, cholera toxin, and toxin-coregulated pilus production in Vibrio cholerae. J. Bacteriol. 181: 2584 2592.
187. Yu, R. R.,, and V. J. DiRita. 2002. Regulation of gene expression in Vibrio cholerae by ToxT involves both antirepression and RNA polymerase stimulation. Mol. Microbiol. 43: 119 134.
188. Zheng, J.,, O. S. Shin,, D. E. Cameron,, and J. J. Mekalanos. 2010. Quorum sensing and a global regulator TsrA control expression of type VI secretion and virulence in Vibrio cholerae. Proc. Natl. Acad. Sci. USA 107: 21128 21133.
189. Zhu, J.,, M. B. Miller,, R. E. Vance,, M. Dziejman,, B. L. Bassler,, and J. J. Mekalanos. 2002. Quorum sensing regulators control virulence gene expression in Vibrio cholerae. Proc. Natl. Acad. Sci. USA 99: 3129 3134.
190. Zhu, J.,, and J. J. Mekalanos. 2003. Quorum sensing-dependent biofilms enhance colonization in Vibrio cholerae. Dev. Cell 5: 647 656.

Tables

Generic image for table
Table 1

Environmental factors influencing virulence gene expression

Citation: Skorupski K, Taylor R. 2013. Toxin and Virulence Regulation in , p 241-261. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch12

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error