Chapter 13 : Virulence Gene Regulation in and Other Group Species

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Virulence Gene Regulation in and Other Group Species, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818524/9781555816766_Chap13-1.gif /docserver/preview/fulltext/10.1128/9781555818524/9781555816766_Chap13-2.gif


The best-studied members of the group, , , and sensu stricto, are pathogens with common and unique features that facilitate their ability to cause disease. As the etiological agent of anthrax, is the most renowned member of the group. Inhalation or ingestion of spores can result in a lethal hemorrhagic septicemia. Anthrax toxin represents an interesting variation on the classic A-B toxin model: one binding/translocating B component, protective antigen (PA), and two enzymatic A components, edema factor (EF) and lethal factor (LF). Opportunistic infections caused by and sensu stricto are relatively uncommon, but they can have serious consequences whether local or systemic. The chromosomes of , , and sensu stricto reveal striking sequence similarity and gene synteny, but virulence-associated plasmid content can allow facile discrimination of the three species. A large number of virulence factors have been established for the pathogenic group species. Anthrax toxin is the best-studied and arguably the most important virulence factor produced by . The entomopathogenesis of is dependent upon the production of characteristic insecticidal parasporal crystals called cryotoxins (Cry) and cytolysins (Cyt). , , and senso stricto secrete pore-forming toxins of the cholesterol-dependent cytolysin (CDC) family.

Citation: Dale J, Koehler T. 2013. Virulence Gene Regulation in and Other Group Species, p 262-280. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch13
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Models for AtxA and PlcR control of virulence gene expression. (A) gene activation and AtxA function in . Multiple signals, including growth phase, redox potential, temperature, and carbohydrate availability, impact the transcription of . The growth phase transition state regulator AbrB binds directly to the promoter region to repress transcription. Predicted functional domains of AtxA are the winged helix (WH) and helix-turn-helix (HTH) for DNA binding, PTS domains (PRD1 and PRD2) for regulation of activity, and EIIB for multimerization. In the presence of elevated CO2/bicarbonate, AtxA positively affects transcription of the anthrax toxin genes and the biosynthetic operon for synthesis of PDGA capsule. (B) gene activation and PlcR-PapR function in group members. Signals that impact transcription include nutritional status and cell density. The master response regulator Spo0A binds directly to the promoter to repress transcription. PlcR contains a DNA-binding domain (HTH) and tetratricopeptide repeats (TPRs) that regulate activity. PapR is exported by the SecA machinery, proteolytically processed to a heptapeptide, and imported into the cell by the OppABCDF transport system. Mature processed PapR associates with PlcR, enabling dimerization and regulation of activity. The PlcR-PapR complex autogenously controls the bicistronic gene cluster in addition to multiple genes encoding secreted toxins and degradative enzymes, cell wall-associated proteins, and cytoplasmic regulatory proteins. doi:10.1128/9781555818524.ch13f1

Citation: Dale J, Koehler T. 2013. Virulence Gene Regulation in and Other Group Species, p 262-280. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Adams, L. F.,, K. L. Brown,, and H. R. Whiteley. 1991. Molecular cloning and characterization of two genes encoding sigma factors that direct transcription from a Bacillus thuringiensis crystal protein gene promoter. J. Bacteriol. 173: 3846 3854.
2. Agaisse, H.,, M. Gominet,, O. A. Okstad,, A. B. Kolsto,, and D. Lereclus. 1999. PlcR is a pleiotropic regulator of extracellular virulence factor gene expression in Bacillus thuringiensis. Mol. Microbiol. 32: 1043 1053.
3. Agaisse, H.,, and D. Lereclus. 1995. How does Bacillus thuringiensis produce so much insecticidal crystal protein? J. Bacteriol. 177: 6027 6032.
4. Agaisse, H.,, and D. Lereclus. 1994. Structural and functional analysis of the promoter region involved in full expression of the cryIIIA toxin gene of Bacillus thuringiensis. Mol. Microbiol. 13: 97 107.
5. Agata, N.,, M. Mori,, M. Ohta,, S. Suwan,, I. Ohtani,, and M. Isobe. 1994. A novel dodecadepsipeptide, cereulide, isolated from Bacillus cereus causes vacuole formation in HEp-2 cells. FEMS Microbiol. Lett. 121: 31 34.
6. Agata, N.,, M. Ohta,, and M. Mori. 1996. Production of an emetic toxin, cereulide, is associated with a specific class of Bacillus cereus. Curr. Microbiol. 33: 67 69.
7. Agata, N.,, M. Ohta,, M. Mori,, and M. Isobe. 1995. A novel dodecadepsipeptide, cereulide, is an emetic toxin of Bacillus cereus. FEMS Microbiol. Lett. 129: 17 20.
8. Al-Abri, S. S.,, A. K. Al-Jardani,, M. S. Al-Hosni,, P. J. Kurup,, S. Al-Busaidi,, and N. J. Beeching. 2011. A hospital acquired outbreak of Bacillus cereus gastroenteritis, Oman. J. Infect. Public Health 4: 180 186.
9. Ash, C.,, and M. D. Collins. 1992. Comparative analysis of 23S ribosomal RNA gene sequences of Bacillus anthracis and emetic Bacillus cereus determined by PCR-direct sequencing. FEMS Microbiol. Lett. 73: 75 80.
10. Ash, C.,, J. A. Farrow,, M. Dorsch,, E. Stackebrandt,, and M. D. Collins. 1991. Comparative analysis of Bacillus anthracis, Bacillus cereus, and related species on the basis of reverse transcriptase sequencing of 16S rRNA. Int. J. Syst. Bacteriol. 41: 343 346.
11. Ashiuchi, M.,, C. Nawa,, T. Kamei,, J. J. Song,, S. P. Hong,, M. H. Sung,, K. Soda,, and H. Misono. 2001. Physiological and biochemical characteristics of poly gamma-glutamate synthetase complex of Bacillus subtilis. Eur. J. Biochem. 268: 5321 5328.
12. Ashiuchi, M.,, K. Shimanouchi,, H. Nakamura,, T. Kamei,, K. Soda,, C. Park,, M. H. Sung,, and H. Misono. 2004. Enzymatic synthesis of high-molecular-mass poly-gamma-glutamate and regulation of its stereochemistry. Appl. Environ. Microbiol. 70: 4249 4255.
13. Baldari, C. T.,, F. Tonello,, S. R. Paccani,, and C. Montecucco. 2006. Anthrax toxins: a paradigm of bacterial immune suppression. Trends Immunol. 27: 434 440.
14. Banks, D. J.,, S. C. Ward,, and K. A. Bradley. 2006. New insights into the functions of anthrax toxin. Expert Rev. Mol. Med. 8: 1 18.
15. Barnes, J. M. 1947. The development of anthrax following the administration of spores by inhalation. Br. J. Exp. Pathol. 28: 385 394.
16. Bartkus, J. M.,, and S. H. Leppla. 1989. Transcriptional regulation of the protective antigen gene of Bacillus anthracis. Infect. Immun. 57: 2295 2300.
17. Baum, J. A.,, and T. Malvar. 1995. Regulation of insecticidal crystal protein production in Bacillus thuringiensis. Mol. Microbiol. 18: 1 12.
18. Beecher, D. J.,, and J. D. Macmillan. 1991. Characterization of the components of hemolysin BL from Bacillus cereus. Infect. Immun. 59: 1778 1784.
19. Beecher, D. J.,, J. L. Schoeni,, and A. C. Wong. 1995. Enterotoxic activity of hemolysin BL from Bacillus cereus. Infect. Immun. 63: 4423 4428.
20. Bernheimer, A. W.,, and P. Grushoff. 1967. Cereolysin: production, purification and partial characterization. J. Gen. Microbiol. 46: 143 150.
21. Bishop, B. L.,, J. P. Lodolce,, L. E. Kolodziej,, D. L. Boone,, and W.J. Tang. 2010. The role of anthrolysin O in gut epithelial barrier disruption during Bacillus anthracis infection. Biochem. Biophys. Res. Commun. 394: 254 259.
22. Blaustein, R. O.,, T. M. Koehler,, R. J. Collier,, and A. Finkelstein. 1989. Anthrax toxin: channel-forming activity of protective antigen in planar phospholipid bilayers. Proc. Natl. Acad. Sci. USA 86: 2209 2213.
23. Bouillaut, L.,, S. Perchat,, S. Arold,, S. Zorrilla,, L. Slamti,, C. Henry,, M. Gohar,, N. Declerck,, and D. Lereclus. 2008. Molecular basis for group-specific activation of the virulence regulator PlcR by PapR heptapeptides. Nucleic Acids Res. 36: 3791 3801.
24. Bouillaut, L.,, N. Ramarao,, C. Buisson,, N. Gilois,, M. Gohar,, D. Lereclus,, and C. Nielsen-Leroux. 2005. FlhA influences Bacillus thuringiensis PlcR-regulated gene transcription, protein production, and virulence. Appl. Environ. Microbiol. 71: 8903 8910.
25. Bourdeau, R. W.,, E. Malito,, A. Chenal,, B. L. Bishop,, M. W. Musch,, M. L. Villereal,, E. B. Chang,, E. M. Mosser,, R. F. Rest,, and W. J. Tang. 2009. Cellular functions and X-ray structure of Anthrolysin O, a cholesterol-dependent cytolysin secreted by Bacillus anthracis. J. Biol. Chem. 284: 14645 14656.
26. Bourgogne, A.,, M. Drysdale,, S. G. Hilsenbeck,, S. N. Peterson,, and T. M. Koehler. 2003. Global effects of virulence gene regulators in a Bacillus anthracis strain with both virulence plasmids. Infect. Immun. 71: 2736 2743.
27. Bravo, A.,, H. Agaisse,, S. Salamitou,, and D. Lereclus. 1996. Analysis of cryIAa expression in sigE and sigK mutants of Bacillus thuringiensis. Mol. Gen. Genet. 250: 734 741.
28. Bravo, A.,, S. Likitvivatanavong,, S. S. Gill,, and M. Soberon. 2011. Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochem. Mol. Biol. 41: 423 431.
29. Brown, K. L.,, and H. R. Whiteley. 1988. Isolation of a Bacillus thuringiensis RNA polymerase capable of transcribing crystal protein genes. Proc. Natl. Acad. Sci. USA 85: 4166 4170.
30. Brown, K. L.,, and H. R. Whiteley. 1990. Isolation of the second Bacillus thuringiensis RNA polymerase that transcribes from a crystal protein gene promoter. J. Bacteriol. 172: 6682 6688.
31. Bruckner, V.,, J. Kovacs,, and G. Denes. 1953. Structure of poly-D-glutamic acid isolated from capsulated strains of B. anthracis. Nature 172: 508.
32. Brunsing, R. L.,, C. La Clair,, S. Tang,, C. Chiang,, L. E. Hancock,, M. Perego,, and J. A. Hoch. 2005. Characterization of sporulation histidine kinases of Bacillus anthracis. J. Bacteriol. 187: 6972 6981.
33. Cachat, E.,, M. Barker,, T. D. Read,, and F. G. Priest. 2008. A Bacillus thuringiensis strain producing a polyglutamate capsule resembling that of Bacillus anthracis. FEMS Microbiol. Lett. 285: 220 226.
34. Callegan, M. C.,, D. C. Cochran,, S. T. Kane,, M. S. Gilmore,, M. Gominet,, and D. Lereclus. 2002. Contribution of membrane-damaging toxins to Bacillus endophthalmitis pathogenesis. Infect. Immun. 70: 5381 5389.
35. Callegan, M. C.,, S. T. Kane,, D. C. Cochran,, M. S. Gilmore,, M. Gominet,, and D. Lereclus. 2003. Relationship of plcR-regulated factors to Bacillus endophthalmitis virulence. Infect. Immun. 71: 3116 3124.
36. Callegan, M. C.,, B. D. Novosad,, R. Ramirez,, E. Ghelardi,, and S. Senesi. 2006. Role of swarming migration in the pathogenesis of Bacillus endophthalmitis. Investig. Ophthalmol. Vis. Sci. 47: 4461 4467.
37. Candela, T.,, and A. Fouet. 2005. Bacillus anthracis CapD, belonging to the gamma-glutamyltranspeptidase family, is required for the covalent anchoring of capsule to peptidoglycan. Mol. Microbiol. 57: 717 726.
38. Candela, T.,, and A. Fouet. 2006. Poly-gamma-glutamate in bacteria. Mol. Microbiol. 60: 1091 1098.
39. Candela, T.,, M. Mock,, and A. Fouet. 2005. CapE, a 47-amino-acid peptide, is necessary for Bacillus anthracis polyglutamate capsule synthesis. J. Bacteriol. 187: 7765 7772.
40. Cataldi, A.,, A. Fouet,, and M. Mock. 1992. Regulation of pag gene expression in Bacillus anthracis: use of a pag-lacZ transcriptional fusion. FEMS Microbiol. Lett. 77: 89 93.
41. Chiang, C.,, C. Bongiorni,, and M. Perego. 2011. Glucose-dependent activation of Bacillus anthracis toxin gene expression and virulence requires the carbon catabolite protein CcpA. J. Bacteriol. 193: 52 62.
42. Chitlaru, T.,, O. Gat,, Y. Gozlan,, N. Ariel,, and A. Shafferman. 2006. Differential proteomic analysis of the Bacillus anthracis secretome: distinct plasmid and chromosome CO 2-dependent cross talk mechanisms modulate extracellular proteolytic activities. J. Bacteriol. 188: 3551 3571.
43. Chu, F.,, D. B. Kearns,, S. S. Branda,, R. Kolter,, and R. Losick. 2006. Targets of the master regulator of biofilm formation in Bacillus subtilis. Mol. Microbiol. 59: 1216 1228.V
44. Chu, F.,, D. B. Kearns,, A. McLoon,, Y. Chai,, R. Kolter,, and R. Losick. 2008. A novel regulatory protein governing biofilm formation in Bacillus subtilis. Mol. Microbiol. 68: 1117 1127.
45. Chung, M.-C.,, T. G. Popova,, B. A. Millis,, D. V. Mukherjee,, W. Zhou,, L. A. Liotta,, E. F. Petricoin,, V. Chandhoke,, C. Bailey,, and S. G. Popov. 2006. Secreted neutral metalloproteases of Bacillus anthracis as candidate pathogenic factors. J. Biol. Chem. 281: 31408 31418.
46. Chung, M. C.,, S. C. Jorgensen,, T. G. Popova,, C. L. Bailey,, and S. G. Popov. 2008. Neutrophil elastase and syndecan shedding contribute to antithrombin depletion in murine anthrax. FEMS Immunol. Med. Microbiol. 54: 309 318.
47. Chung, M. C.,, S. C. Jorgensen,, T. G. Popova,, J. H. Tonry,, C. L. Bailey,, and S. G. Popov. 2009. Activation of plasminogen activator inhibitor implicates protease InhA in the acute-phase response to Bacillus anthracis infection. J. Med. Microbiol. 58: 737 744.
48. Chung, M. C.,, S. C. Jorgensen,, J. H. Tonry,, F. Kashanchi,, C. Bailey,, and S. Popov. 2011. Secreted Bacillus anthracis proteases target the host fibrinolytic system. FEMS Immunol. Med. Microbiol. 62: 173 181.
49. Clavel, T.,, F. Carlin,, D. Lairon,, C. Nguyen-The,, and P. Schmitt. 2004. Survival of Bacillus cereus spores and vegetative cells in acid media simulating human stomach. J. Appl. Microbiol. 97: 214 219.
50. Cleret, A.,, A. Quesnel-Hellmann,, A. Vallon-Eberhard,, B. Verrier,, S. Jung,, D. Vidal,, J. Mathieu,, and J. N. Tournier. 2007. Lung dendritic cells rapidly mediate anthrax spore entry through the pulmonary route. J. Immunol. 178: 7994 8001.
51. Colpin, G. G.,, H. F. Guiot,, R. F. Simonis,, and F. E. Zwaan. 1981. Bacillus cereus meningitis in a patient under gnotobiotic care. Lancet ii: 694 695.
52. Cote, C. K.,, T. L. Dimezzo,, D. J. Banks,, B. France,, K. A. Bradley,, and S. L. Welkos. 2008. Early interactions between fully virulent Bacillus anthracis and macrophages that influence the balance between spore clearance and development of a lethal infection. Microbes Infect. 10: 613 619.
53. Cote, C. K.,, C. A. Rossi,, A. S. Kang,, P. R. Morrow,, J. S. Lee,, and S.L. Welkos. 2005. The detection of protective antigen (PA) associated with spores of Bacillus anthracis and the effects of anti-PA antibodies on spore germination and macrophage interactions. Microb. Pathog. 38: 209 225.
54. Craig, C. P.,, W. S. Lee,, and M. Ho. 1974. Letter: Bacillus cereus endocarditis in an addict. Ann. Intern. Med. 80: 418 419.
55. Crickmore, N. 2006. Beyond the spore—past and future developments of Bacillus thuringiensis as a biopesticide. J. Appl. Microbiol. 101: 616 619.
56. Dai, Z.,, and T. M. Koehler. 1997. Regulation of anthrax toxin activator gene ( atxA) expression in Bacillus anthracis: temperature, not CO 2/bicarbonate, affects AtxA synthesis. Infect. Immun. 65: 2576 2582.
57. Dai, Z.,, J. C. Sirard,, M. Mock,, and T. M. Koehler. 1995. The atxA gene product activates transcription of the anthrax toxin genes and is essential for virulence. Mol. Microbiol. 16: 1171 1181.
58. Damgaard, P. H.,, B. M. Hansen,, J. C. Pedersen,, and J. Eilenberg. 1997. Natural occurrence of Bacillus thuringiensis on cabbage foliage and in insects associated with cabbage crops. J. Appl. Microbiol. 82: 253 258.
59. Declerck, N.,, L. Bouillaut,, D. Chaix,, N. Rugani,, L. Slamti,, F. Hoh,, D. Lereclus,, and S. T. Arold. 2007. Structure of PlcR: insights into virulence regulation and evolution of quorum sensing in Gram-positive bacteria. Proc. Natl. Acad. Sci. USA 104: 18490 18495.
60. de Souza, M. T.,, M. M. Lecadet,, and D. Lereclus. 1993. Full expression of the cryIIIA toxin gene of Bacillus thuringiensis requires a distant upstream DNA sequence affecting transcription. J. Bacteriol. 175: 2952 2960.
61. Deutscher, J.,, C. Francke,, and P. W. Postma. 2006. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol. Mol. Biol. Rev. 70: 939 1031.
62. Dixon, T. C.,, M. Meselson,, J. Guillemin,, and P. C. Hanna. 1999. Anthrax. N. Engl. J. Med. 341: 815 826.V
63. Dohmae, S.,, T. Okubo,, W. Higuchi,, T. Takano,, H. Isobe,, T. Baranovich,, S. Kobayashi,, M. Uchiyama,, Y. Tanabe,, M. Itoh,, and T. Yamamoto. 2008. Bacillus cereus nosocomial infection from reused towels in Japan. J. Hosp. Infect. 69: 361 367.
64. Dong, Y. H.,, A. R. Gusti,, Q. Zhang,, J. L. Xu,, and L. H. Zhang. 2002. Identification of quorum-quenching N-acyl homoserine lactonases from Bacillus species. Appl. Environ. Microbiol. 68: 1754 1759.
65. Donovan, W. P.,, Y. Tan,, and A. C. Slaney. 1997. Cloning of the nprA gene for neutral protease A of Bacillus thuringiensis and effect of in vivo deletion of nprA on insecticidal crystal protein. Appl. Environ. Microbiol. 63: 2311 2317.
66. Drobniewski, F. A. 1993. Bacillus cereus and related species. Clin. Microbiol. Rev. 6: 324 338.
67. Drysdale, M.,, A. Bourgogne,, S. G. Hilsenbeck,, and T. M. Koehler. 2004. atxA controls Bacillus anthracis capsule synthesis via acpA and a newly discovered regulator, acpB. J. Bacteriol. 186: 307 315.
68. Drysdale, M.,, A. Bourgogne,, and T. M. Koehler. 2005a. Transcriptional analysis of the Bacillus anthracis capsule regulators. J. Bacteriol. 187: 5108 5114.
69. Drysdale, M.,, S. Heninger,, J. Hutt,, Y. Chen,, C. R. Lyons,, and T.M. Koehler. 2005b. Capsule synthesis by Bacillus anthracis is required for dissemination in murine inhalation anthrax. EMBO J. 24: 221 227.V
70. Duesbery, N. S.,, C. P. Webb,, S. H. Leppla,, V. M. Gordon,, K. R. Klimpel,, T. D. Copeland,, N. G. Ahn,, M. K. Oskarsson,, K. Fukasawa,, K. D. Paull,, and G. F. Vande Woude. 1998. Proteolytic inactivation of MAP-kinase-kinase by anthrax lethal factor. Science 280: 734 737.
71. Duport, C.,, S. Thomassin,, G. Bourel,, and P. Schmitt. 2004. Anaerobiosis and low specific growth rates enhance hemolysin BL production by Bacillus cereus F4430/73. Arch. Microbiol. 182: 90 95.
72. Duport, C.,, A. Zigha,, E. Rosenfeld,, and P. Schmitt. 2006. Control of enterotoxin gene expression in Bacillus cereus F4430/73 involves the redox-sensitive ResDE signal transduction system. J.Bacteriol. 188: 6640 6651.
73. Ebrahimi, C. M.,, J. W. Kern,, T. R. Sheen,, M. A. Ebrahimi-Fardooee,, N. M. van Sorge,, O. Schneewind,, and K. S. Doran. 2009. Penetration of the blood-brain barrier by Bacillus anthracis requires the pXO1-encoded BslA protein. J. Bacteriol. 191: 7165 7173.
74. Ehling-Schulz, M.,, M. Fricker,, H. Grallert,, P. Rieck,, M. Wagner,, and S. Scherer. 2006a. Cereulide synthetase gene cluster from emetic Bacillus cereus: structure and location on a mega virulence plasmid related to Bacillus anthracis toxin plasmid pXO1. BMC Microbiol. 6: 20.
75. Ehling-Schulz, M.,, M. H. Guinebretiere,, A. Monthan,, O. Berge,, M. Fricker,, and B. Svensson. 2006b. Toxin gene profiling of enterotoxic and emetic Bacillus cereus. FEMS Microbiol. Lett. 260: 232 240.
76. Ehling-Schulz, M.,, M. Fricker,, and S. Scherer. 2004. Bacillus cereus, the causative agent of an emetic type of food-borne illness. Mol. Nutr. Food Res. 48: 479 487.
77. Ehling-Schulz, M.,, B. Svensson,, M. H. Guinebretiere,, T. Lindback,, M. Andersson,, A. Schulz,, M. Fricker,, A. Christiansson,, P. E. Granum,, E. Martlbauer,, C. Nguyen-The,, M. Salkinoja-Salonen,, and S. Scherer. 2005a. Emetic toxin formation of Bacillus cereus is restricted to a single evolutionary lineage of closely related strains. Microbiology 151: 183 197.
78. Ehling-Schulz, M.,, N. Vukov,, A. Schulz,, R. Shaheen,, M. Andersson,, E. Martlbauer,, and S. Scherer. 2005b. Identification and partial characterization of the nonribosomal peptide synthetase gene responsible for cereulide production in emetic Bacillus cereus. Appl. Environ. Microbiol. 71: 105 113.
79. Esbelin, J.,, J. Armengaud,, A. Zigha,, and C. Duport. 2009. ResDE-dependent regulation of enterotoxin gene expression in Bacillus cereus: evidence for multiple modes of binding for ResD and interaction with Fnr. J. Bacteriol. 191: 4419 4426.
80. Esbelin, J.,, Y. Jouanneau,, J. Armengaud,, and C. Duport. 2008. ApoFnr binds as a monomer to promoters regulating the expression of enterotoxin genes of Bacillus cereus. J. Bacteriol. 190: 4242 4251.
81. Estruch, J. J.,, G. W. Warren,, M. A. Mullins,, G. J. Nye,, J. A. Craig,, and M. G. Koziel. 1996. Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proc. Natl. Acad. Sci. USA 93: 5389 5394.
82. Fagerlund, A.,, T. Lindback,, and P. E. Granum. 2010. Bacillus cereus cytotoxins Hbl, Nhe and CytK are secreted via the Sec translocation pathway. BMC Microbiol. 10: 304.
83. Fagerlund, A.,, T. Lindback,, A. K. Storset,, P. E. Granum,, and S. P. Hardy. 2008. Bacillus cereus Nhe is a pore-forming toxin with structural and functional properties similar to the ClyA (HlyE, SheA) family of haemolysins, able to induce osmotic lysis in epithelia. Microbiology 154: 693 704.
84. Fedhila, S.,, T. Msadek,, P. Nel,, and D. Lereclus. 2002. Distinct clpP genes control specific adaptive responses in Bacillus thuringiensis. J. Bacteriol. 184: 5554 5562.
85. Finlay, W. J.,, N. A. Logan,, and A. D. Sutherland. 2000. Bacillus cereus produces most emetic toxin at lower temperatures. Lett. Appl. Microbiol. 31: 385 389.
86. Flores-Diaz, M.,, and A. Alape-Giron. 2003. Role of Clostridium perfringens phospholipase C in the pathogenesis of gas gangrene. Toxicon 42: 979 986.
87. Fouet, A.,, and M. Mock. 1996. Differential influence of the two Bacillus anthracis plasmids on regulation of virulence gene expression. Infect. Immun. 64: 4928 4932.
88. Friedlander, A. M. 1986. Macrophages are sensitive to anthrax lethal toxin through an acid-dependent process. J. Biol. Chem. 261: 7123 7126.
89. Fujita, Y.,, Y. Miwa,, A. Galinier,, and J. Deutscher. 1995. Specific recognition of the Bacillus subtilis gnt cis-acting catabolite-responsive element by a protein complex formed between CcpA and seryl-phosphorylated HPr. Mol. Microbiol. 17: 953 960.
90. Gekara, N. O.,, K. Westphal,, B. Ma,, M. Rohde,, L. Groebe,, and S. Weiss. 2007. The multiple mechanisms of Ca 2+ signalling by listeriolysin O, the cholesterol-dependent cytolysin of Listeria monocytogenes. Cell. Microbiol. 9: 2008 2021.
91. Ghelardi, E.,, F. Celandroni,, S. Salvetti,, M. Ceragioli,, D. J. Beecher,, S. Senesi,, and A. C. Wong. 2007. Swarming behavior of and hemolysin BL secretion by Bacillus cereus. Appl. Environ. Microbiol. 73: 4089 4093.
92. Gilbert, R. J. 2010. Cholesterol-dependent cytolysins. Adv. Exp. Med. Biol. 677: 56 66.
93. Glatz, B. A.,, W. M. Spira,, and J. M. Goepfert. 1974. Alteration of vascular permeability in rabbits by culture filtrates of Bacillus cereus and related species. Infect. Immun. 10: 299 303.
94. Glomski, I. J.,, F. Dumetz,, G. Jouvion,, M. R. Huerre,, M. Mock,, and P. L. Goossens. 2008. Inhaled non-capsulated Bacillus anthracis in A/J mice: nasopharynx and alveolar space as dual portals of entry, delayed dissemination, and specific organ targeting. Microbes Infect. 10: 1398 1404.
95. Gohar, M.,, K. Faegri,, S. Perchat,, S. Ravnum,, O. A. Okstad,, M. Gominet,, A. B. Kolsto,, and D. Lereclus. 2008. The PlcR virulence regulon of Bacillus cereus. PLoS One 3: e2793.
96. Gohar, M.,, O. A. Okstad,, N. Gilois,, V. Sanchis,, A. B. Kolsto,, and D. Lereclus. 2002. Two-dimensional electrophoresis analysis of the extracellular proteome of Bacillus cereus reveals the importance of the PlcR regulon. Proteomics 2: 784 791.
97. Goldfine, H.,, T. Bannam,, N. C. Johnston,, and W. R. Zuckert. 1998. Bacterial phospholipases and intracellular growth: the two distinct phospholipases C of Listeria monocytogenes. Symp. Ser. Soc. Appl. Microbiol. 27: 7S 14S.V
98. Gominet, M.,, L. Slamti,, N. Gilois,, M. Rose,, and D. Lereclus. 2001. Oligopeptide permease is required for expression of the Bacillus thuringiensis plcR regulon and for virulence. Mol. Microbiol. 40: 963 975.
99. Gonzalez, J. M., Jr.,, B. J. Brown,, and B. C. Carlton. 1982. Transfer of Bacillus thuringiensis plasmids coding for delta-endotoxin among strains of B. thuringiensis and B. cereus. Proc. Natl. Acad. Sci. USA 79: 6951 6955.
100. Grandvalet, C.,, M. Gominet,, and D. Lereclus. 2001. Identification of genes involved in the activation of the Bacillus thuringiensis inhA metalloprotease gene at the onset of sporulation. Microbiology 147: 1805 1813.
101. Granum, P. E.,, and T. Lund. 1997. Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Lett. 157: 223 228.
102. Granum, P. E.,, K. O’Sullivan,, and T. Lund. 1999. The sequence of the non-haemolytic enterotoxin operon from Bacillus cereus. FEMS Microbiol. Lett. 177: 225 229.
103. Grass, G.,, A. Schierhorn,, E. Sorkau,, H. Muller,, P. Rucknagel,, D. H. Nies,, and B. Fricke. 2004. Camelysin is a novel surface metalloproteinase from Bacillus cereus. Infect. Immun. 72: 219 228.
104. Green, B. D.,, L. Battisti,, T. M. Koehler,, C. B. Thorne,, and B. E. Ivins. 1985. Demonstration of a capsule plasmid in Bacillus anthracis. Infect. Immun. 49: 291 297.
105. Guidi-Rontani, C.,, M. Levy,, H. Ohayon,, and M. Mock. 2001. Fate of germinated Bacillus anthracis spores in primary murine macrophages. Mol. Microbiol. 42: 931 938.
106. Guidi-Rontani, C.,, M. Weber-Levy,, E. Labruyere,, and M. Mock. 1999. Germination of Bacillus anthracis spores within alveolar macrophages. Mol. Microbiol. 31: 9 17.
107. Guignot, J.,, M. Mock,, and A. Fouet. 1997. AtxA activates the transcription of genes harbored by both Bacillus anthracis virulence plasmids. FEMS Microbiol. Lett. 147: 203 207.
108. Guillemet, E.,, C. Cadot,, S. L. Tran,, M. H. Guinebretiere,, D. Lereclus,, and N. Ramarao. 2010. The InhA metalloproteases of Bacillus cereus contribute concomitantly to virulence. J.Bacteriol. 192: 286 294.
109. Hadjifrangiskou, M.,, and T. M. Koehler. 2008. Intrinsic curvature associated with the coordinately regulated anthrax toxin gene promoters. Microbiology 154: 2501 2512.
110. Hammerstrom, T. G.,, J. H. Roh,, E. P. Nikonowicz,, and T. M. Koehler. 2011. Bacillus anthracis virulence regulator AtxA: oligomeric state, function and CO 2-signalling. Mol. Microbiol. 82: 634 647.
111. Heffernan, B. J.,, B. Thomason,, A. Herring-Palmer,, and P. Hanna. 2007. Bacillus anthracis anthrolysin O and three phospholipases C are functionally redundant in a murine model of inhalation anthrax. FEMS Microbiol. Lett. 271: 98 105.
112. Heffernan, B. J.,, B. Thomason,, A. Herring-Palmer,, L. Shaughnessy,, R. McDonald,, N. Fisher,, G. B. Huffnagle,, and P. Hanna. 2006. Bacillus anthracis phospholipases C facilitate macrophage-associated growth and contribute to virulence in a murine model of inhalation anthrax. Infect. Immun. 74: 3756 3764.
113. Heinrichs, J. H.,, D. J. Beecher,, J. D. MacMillan,, and B. A. Zilinskas. 1993. Molecular cloning and characterization of the hblA gene encoding the B component of hemolysin BL from Bacillus cereus. J. Bacteriol. 175: 6760 6766.
114. Heninger, S.,, M. Drysdale,, J. Lovchik,, J. Hutt,, M. F. Lipscomb,, T.M. Koehler,, and C. R. Lyons. 2006. Toxin-deficient mutants of Bacillus anthracis are lethal in a murine model for pulmonary anthrax. Infect. Immun. 74: 6067 6074.
115. Hernandez, E.,, F. Ramisse,, J. P. Ducoureau,, T. Cruel,, and J. D. Cavallo. 1998. Bacillus thuringiensis subsp. konkukian (serotype H34) superinfection: case report and experimental evidence of pathogenicity in immunosuppressed mice. J. Clin. Microbiol. 36: 2138 2139.
116. Hoffmaster, A. R.,, K. K. Hill,, J. E. Gee,, C. K. Marston,, B. K. De,, T. Popovic,, D. Sue,, P. P. Wilkins,, S. B. Avashia,, R. Drumgoole,, C.H. Helma,, L. O. Ticknor,, R. T. Okinaka,, and P. J. Jackson. 2006. Characterization of Bacillus cereus isolates associated with fatal pneumonias: strains are closely related to Bacillus anthracis and harbor B. anthracis virulence genes. J. Clin. Microbiol. 44: 3352 3360.
117. Hoffmaster, A. R.,, and T. M. Koehler. 1997. The anthrax toxin activator gene atxA is associated with CO 2-enhanced non-toxin gene expression in Bacillus anthracis. Infect. Immun. 65: 3091 3099.
118. Hoffmaster, A. R.,, and T. M. Koehler. 1999a. Autogenous regulation of the Bacillus anthracis pag operon. J. Bacteriol. 181: 4485 4492.
119. Hoffmaster, A. R.,, and T. M. Koehler. 1999b. Control of virulence gene expression in Bacillus anthracis. J. Appl. Microbiol. 87: 279 281.
120. Hoffmaster, A. R.,, J. Ravel,, D. A. Rasko,, G. D. Chapman,, M. D. Chute,, C. K. Marston,, B. K. De,, C. T. Sacchi,, C. Fitzgerald,, L.W. Mayer,, M. C. Maiden,, F. G. Priest,, M. Barker,, L. Jiang,, R. Z. Cer,, J. Rilstone,, S. N. Peterson,, R. S. Weyant,, D. R. Galloway,, T.D. Read,, T. Popovic,, and C. M. Fraser. 2004. Identification of anthrax toxin genes in a Bacillus cereus associated with an illness resembling inhalation anthrax. Proc. Natl. Acad. Sci. USA 101: 8449 8454.
121. Hofte, H.,, and H. R. Whiteley. 1989. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol. Rev. 53: 242 255.
122. Horii, T.,, S. Notake,, K. Tamai,, H. Yanagisawa,, and P. Brennan. 2011. Bacillus cereus from blood cultures: virulence genes, antimicrobial susceptibility and risk factors for blood stream infection. FEMS Immun. Med. Microbiol. 63: 202 209.
123. Hu, H.,, Q. Sa,, T. M. Koehler,, A. I. Aronson,, and D. Zhou. 2006. Inactivation of Bacillus anthracis spores in murine primary macrophages. Cell. Microbiol. 8: 1634 1642.
124. Ikezawa, H.,, M. Mori,, and R. Taguchi. 1980. Studies on sphingomyelinase of Bacillus cereus: hydrolytic and hemolytic actions on erythrocyte membranes. Arch. Biochem. Biophys. 199: 572 578.
125. Jensen, G. B.,, B. M. Hansen,, J. Eilenberg,, and J. Mahillon. 2003. The hidden lifestyles of Bacillus cereus and relatives. Environ. Microbiol. 5: 631 640.
126. Kastrup, C. J.,, J. Q. Boedicker,, A. P. Pomerantsev,, M. Moayeri,, Y. Bian,, R. R. Pompano,, T. R. Kline,, P. Sylvestre,, F. Shen,, S. H. Leppla,, W. J. Tang,, and R. F. Ismagilov. 2008. Spatial localization of bacteria controls coagulation of human blood by ‘quorum acting.’ Nat. Chem. Biol. 4: 742 750.
127. Keppie, J.,, H. Smith,, and P. W. Harris-Smith. 1953. The chemical basis of the virulence of Bacillus anthracis. II. Some biological properties of bacterial products. Br. J. Exp. Pathol. 34: 486 496.
128. Kern, J.,, and O. Schneewind. 2010. BslA, the S-layer adhesin of B.anthracis, is a virulence factor for anthrax pathogenesis. Mol. Microbiol. 75: 324 332.
129. Kern, J. W.,, and O. Schneewind. 2008. BslA, a pXO1-encoded adhesin of Bacillus anthracis. Mol. Microbiol. 68: 504 515.
130. Klee, S. R.,, M. Ozel,, B. Appel,, C. Boesch,, H. Ellerbrok,, D. Jacob,, G. Holland,, F. H. Leendertz,, G. Pauli,, R. Grunow,, and H. Nattermann. 2006. Characterization of Bacillus anthracis-like bacteria isolated from wild great apes from Côte d’Ivoire and Cameroon. J. Bacteriol. 188: 5333 5344.
131. Klichko, V. I.,, J. Miller,, A. Wu,, S. G. Popov,, and K. Alibek. 2003. Anaerobic induction of Bacillus anthracis hemolytic activity. Biochem. Biophys. Res. Commun. 303: 855 862.
132. Koehler, T. M., 2000. Bacillus anthracis, p. 519 528. In V. A. Fischetti (ed.), Gram-Positive Pathogens. American Society for Microbiology, Washington, DC.
133. Koehler, T. M. 2002. Bacillus anthracis genetics and virulence gene regulation. Curr. Top. Microbiol. Immunol. 271: 143 164.
134. Koehler, T. M. 2009. Bacillus anthracis physiology and genetics. Mol. Aspects Med. 30: 386 396.
135. Koehler, T. M.,, Z. Dai,, and M. Kaufman-Yarbray. 1994. Regulation of the Bacillus anthracis protective antigen gene: CO 2 and a trans-acting element activate transcription from one of two promoters. J. Bacteriol. 176: 586 595.
136. Kolsto, A. B.,, N. J. Tourasse,, and O. A. Okstad. 2009. What sets Bacillus anthracis apart from other Bacillus species? Annu. Rev. Microbiol. 63: 451 476.
137. Kotiranta, A.,, K. Lounatmaa,, and M. Haapasalo. 2000. Epidemiology and pathogenesis of Bacillus cereus infections. Microbes Infect. 2: 189 198.
138. Krantz, B. A.,, R. A. Melnyk,, S. Zhang,, S. J. Juris,, D. B. Lacy,, Z. Wu,, A. Finkelstein,, and R. J. Collier. 2005. A phenylalanine clamp catalyzes protein translocation through the anthrax toxin pore. Science 309: 777 781.
139. Kroten, M. A.,, M. Bartoszewicz,, and I. Swiecicka. 2010. Cereulide and valinomycin, two important natural dodecadepsipeptides with ionophoretic activities. Pol. J. Microbiol. 59: 3 10.
140. Kuroki, R.,, K. Kawakami,, L. Qin,, C. Kaji,, K. Watanabe,, Y. Kimura,, C. Ishiguro,, S. Tanimura,, Y. Tsuchiya,, I. Hamaguchi,, M. Sakakura,, S. Sakabe,, K. Tsuji,, M. Inoue,, and H. Watanabe. 2009. Nosocomial bacteremia caused by biofilm-forming Bacillus cereus and Bacillus thuringiensis. Intern. Med. 48: 791 796.
141. Leppla, S. H. 1982. Anthrax toxin edema factor: a bacterial adenylate cyclase that increases cyclic AMP concentrations of eukaryotic cells. Proc. Natl. Acad. Sci. USA 79: 3162 3166.
142. Lereclus, D.,, H. Agaisse,, M. Gominet,, and J. Chaufaux. 1995. Overproduction of encapsulated insecticidal crystal proteins in a Bacillus thuringiensis spo0A mutant. Nat. Biotechnol. 13: 67 71.
143. Lereclus, D.,, H. Agaisse,, M. Gominet,, S. Salamitou,, and V. Sanchis. 1996. Identification of a Bacillus thuringiensis gene that positively regulates transcription of the phosphatidylinositol-specific phospholipase C gene at the onset of the stationary phase. J.Bacteriol. 178: 2749 2756.
144. Lereclus, D.,, H. Agaisse,, C. Grandvalet,, S. Salamitou,, and M. Gominet. 2000. Regulation of toxin and virulence gene transcription in Bacillus thuringiensis. Int. J. Med. Microbiol. 290: 295 299.
145. Lindback, T.,, A. Fagerlund,, M. S. Rodland,, and P. E. Granum. 2004. Characterization of the Bacillus cereus Nhe enterotoxin. Microbiology 150: 3959 3967.
146. Lindback, T.,, O. A. Okstad,, A. L. Rishovd,, and A. B. Kolsto. 1999. Insertional inactivation of hblC encoding the L2 component of Bacillus cereus ATCC 14579 haemolysin BL strongly reduces enterotoxigenic activity, but not the haemolytic activity against human erythrocytes. Microbiology 145: 3139 3146.
147. Lucking, G.,, M. K. Dommel,, S. Scherer,, A. Fouet,, and M. Ehling-Schulz. 2009. Cereulide synthesis in emetic Bacillus cereus is controlled by the transition state regulator AbrB, but not by the virulence regulator PlcR. Microbiology 155: 922 931.
148. Lund, T.,, M. L. De Buyser,, and P. E. Granum. 2000. A new cytotoxin from Bacillus cereus that may cause necrotic enteritis. Mol. Microbiol. 38: 254 261.
149. Lund, T.,, and P. E. Granum. 1996. Characterisation of a non-haemolytic enterotoxin complex from Bacillus cereus isolated after a foodborne outbreak. FEMS Microbiol. Lett. 141: 151 156.
150. Mahler, H.,, A. Pasi,, J. M. Kramer,, P. Schulte,, A. C. Scoging,, W. Bar,, and S. Krahenbuhl. 1997. Fulminant liver failure in association with the emetic toxin of Bacillus cereus. N. Engl. J. Med. 336: 1142 1148.
151. Makino, S.,, C. Sasakawa,, I. Uchida,, N. Terakado,, and M. Yoshikawa. 1988. Cloning and CO 2-dependent expression of the genetic region for encapsulation from Bacillus anthracis. Mol. Microbiol. 2: 371 376.
152. Makino, S.,, I. Uchida,, N. Terakado,, C. Sasakawa,, and M. Yoshikawa. 1989a. Molecular characterization and protein analysis of the cap region, which is essential for encapsulation in Bacillus anthracis. J. Bacteriol. 171: 722 730.
153. Makino, Y.,, S. Negoro,, I. Urabe,, and H. Okada. 1989b. Stability-increasing mutants of glucose dehydrogenase from Bacillus megaterium IWG3. J. Biol. Chem. 264: 6381 6385.
154. Malvar, T.,, and J. A. Baum. 1994. Tn 5401 disruption of the spo0F gene, identified by direct chromosomal sequencing, results in CryIIIA overproduction in Bacillus thuringiensis. J. Bacteriol. 176: 4750 4753.
155. Mandic-Mulec, I.,, N. Gaur,, U. Bai,, and I. Smith. 1992. Sin, a stage-specific repressor of cellular differentiation. J. Bacteriol. 174: 3561 3569.
156. Mignot, T.,, M. Mock,, and A. Fouet. 2003. A plasmid-encoded regulator couples the synthesis of toxins and surface structures in Bacillus anthracis. Mol. Microbiol. 47: 917 927.
157. Mignot, T.,, M. Mock,, D. Robichon,, A. Landier,, D. Lereclus,, and A. Fouet. 2001. The incompatibility between the PlcR- and AtxA-controlled regulons may have selected a nonsense mutation in Bacillus anthracis. Mol. Microbiol. 42: 1189 1198.
158. Mikesell, P.,, B. E. Ivins,, J. D. Ristroph,, and T. M. Dreier. 1983. Evidence for plasmid-mediated toxin production in Bacillus anthracis. Infect. Immun. 39: 371 376.
159. Mikkola, R.,, N. E. Saris,, P. A. Grigoriev,, M. A. Andersson,, and M.S. Salkinoja-Salonen. 1999. Ionophoretic properties and mitochondrial effects of cereulide: the emetic toxin of B. cereus. Eur. J. Biochem. 263: 112 117.
160. Miller, C. J.,, J. L. Elliott,, and R. J. Collier. 1999. Anthrax protective antigen: prepore-to-pore conversion. Biochemistry 38: 10432 10441.
161. Miwa, Y.,, A. Nakata,, A. Ogiwara,, M. Yamamoto,, and Y. Fujita. 2000. Evaluation and characterization of catabolite-responsive elements ( cre) of Bacillus subtilis. Nucleic Acids Res. 28: 1206 1210.
162. Mock, M.,, and A. Fouet. 2001. Anthrax. Annu. Rev. Microbiol. 55: 647 671.
163. Moravek, M.,, R. Dietrich,, C. Buerk,, V. Broussolle,, M. H. Guinebretiere,, P. E. Granum,, C. Nguyen-The,, and E. Martlbauer. 2006. Determination of the toxic potential of Bacillus cereus isolates by quantitative enterotoxin analyses. FEMS Microbiol. Lett. 257: 293 298.
164. Mosser, E. M.,, and R. F. Rest. 2006. The Bacillus anthracis cholesterol-dependent cytolysin, Anthrolysin O, kills human neutrophils, monocytes and macrophages. BMC Microbiol. 6: 56.
165. Mukherjee, D. V.,, J. H. Tonry,, K. S. Kim,, N. Ramarao,, T. G. Popova,, C. Bailey,, S. Popov,, and M. C. Chung. 2011. Bacillus anthracis protease InhA increases blood-brain barrier permeability and contributes to cerebral hemorrhages. PLoS One 6: e17921.
166. Nakano, M. M.,, and P. Zuber. 1998. Anaerobic growth of a “strict aerobe” ( Bacillus subtilis). Annu. Rev. Microbiol. 52: 165 190.
167. Nakouzi, A.,, J. Rivera,, R. F. Rest,, and A. Casadevall. 2008. Passive administration of monoclonal antibodies to anthrolysin O prolong survival in mice lethally infected with Bacillus anthracis. BMC Microbiol. 8: 159.
168. Oda, M.,, M. Takahashi,, T. Matsuno,, K. Uoo,, M. Nagahama,, and J. Sakurai. 2010. Hemolysis induced by Bacillus cereus sphingomyelinase. Biochim. Biophys. Acta 1798: 1073 1080.
169. Oh, S. Y.,, J. M. Budzik,, G. Garufi,, and O. Schneewind. 2011. Two capsular polysaccharides enable Bacillus cereus G9241 to cause anthrax-like disease. Mol. Microbiol. 80: 455 470.
170. Okinaka, R.,, K. Cloud,, O. Hampton,, A. Hoffmaster,, K. Hill,, P. Keim,, T. Koehler,, G. Lamke,, S. Kumano,, D. Manter,, Y. Martinez,, D. Ricke,, R. Svensson,, and P. Jackson. 1999a. Sequence, assembly and analysis of pX01 and pX02. J. Appl. Microbiol. 87: 261 262.
171. Okinaka, R. T.,, K. Cloud,, O. Hampton,, A. R. Hoffmaster,, K. K. Hill,, P. Keim,, T. M. Koehler,, G. Lamke,, S. Kumano,, J. Mahillon,, D. Manter,, Y. Martinez,, D. Ricke,, R. Svensson,, and P. J. Jackson. 1999b. Sequence and organization of pXO1, the large Bacillus anthracis plasmid harboring the anthrax toxin genes. J. Bacteriol. 181: 6509 6515.
172. Okstad, O. A.,, M. Gominet,, B. Purnelle,, M. Rose,, D. Lereclus,, and A. B. Kolsto. 1999. Sequence analysis of three Bacillus cereus loci carrying PIcR-regulated genes encoding degradative enzymes and enterotoxin. Microbiology 145( Pt. 11): 3129 3138.
173. Ovodov, Y. S. 2006. Capsular antigens of bacteria. Capsular antigens as the basis of vaccines against pathogenic bacteria. Biochemistry 71: 955 961.
174. Perchat, S.,, T. Dubois,, S. Zouhir,, M. Gominet,, S. Poncet,, C. Lemy,, M. Aumont-Nicaise,, J. Deutscher,, M. Gohar,, S. Nessler,, and D. Lereclus. 2011. A cell-cell communication system regulates protease production during sporulation in bacteria of the Bacillus cereus group. Mol. Microbiol. 82: 619 633.
175. Pflughoeft, K. J.,, P. Sumby,, and T. M. Koehler. 2011. Bacillus anthracis sin locus and regulation of secreted proteases. J. Bacteriol. 193: 631 639.
176. Pomerantsev, A. P.,, K. V. Kalnin,, M. Osorio,, and S. H. Leppla. 2003. Phosphatidylcholine-specific phospholipase C and sphingomyelinase activities in bacteria of the Bacillus cereus group. Infect. Immun. 71: 6591 6606.
177. Pomerantsev, A. P.,, O. M. Pomerantseva,, A. S. Camp,, R. Mukkamala,, S. Goldman,, and S. H. Leppla. 2009. PapR peptide maturation: role of the NprB protease in Bacillus cereus 569 PlcR/PapR global gene regulation. FEMS Immunol. Med. Microbiol. 55: 361 377.
178. Ramarao, N.,, and D. Lereclus. 2006. Adhesion and cytotoxicity of Bacillus cereus and Bacillus thuringiensis to epithelial cells are FlhA and PlcR dependent, respectively. Microbes Infect. 8: 1483 1491.
179. Ramarao, N.,, and D. Lereclus. 2005. The InhA1 metalloprotease allows spores of the B. cereus group to escape macrophages. Cell. Microbiol. 7: 1357 1364.
180. Rasko, D. A.,, M. R. Altherr,, C. S. Han,, and J. Ravel. 2005. Genomics of the Bacillus cereus group of organisms. FEMS Microbiol. Rev. 29: 303 329.
181. Ratnayake-Lecamwasam, M.,, P. Serror,, K. W. Wong,, and A. L. Sonenshein. 2001. Bacillus subtilis CodY represses early-stationary-phase genes by sensing GTP levels. Genes Dev. 15: 1093 1103.
182. Raymond, B.,, P. R. Johnston,, C. Nielsen-LeRoux,, D. Lereclus,, and N. Crickmore. 2010. Bacillus thuringiensis: an impotent pathogen? Trends Microbiol. 18: 189 194.
183. Record, B. R.,, and R. G. Wallis. 1956. Physico-chemical examination of polyglutamic acid from Bacillus anthracis grown in vivo. Biochem. J. 63: 443 447.
184. Ribot, W. J.,, R. G. Panchal,, K. C. Brittingham,, G. Ruthel,, T. A. Kenny,, D. Lane,, B. Curry,, T. A. Hoover,, A. M. Friedlander,, and S. Bavari. 2006. Anthrax lethal toxin impairs innate immune functions of alveolar macrophages and facilitates Bacillus anthracis survival. Infect. Immun. 74: 5029 5034.
185. Richter, S.,, V. J. Anderson,, G. Garufi,, L. Lu,, J. M. Budzik,, A. Joachimiak,, C. He,, O. Schneewind,, and D. Missiakas. 2009. Capsule anchoring in Bacillus anthracis occurs by a transpeptidation reaction that is inhibited by capsidin. Mol. Microbiol. 71: 404 420.
186. Roh, J. Y.,, J. Y. Choi,, M. S. Li,, B. R. Jin,, and Y. H. Je. 2007. Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. J. Microbiol. Biotechnol. 17: 547 559.
187. Ross, C. L.,, and T. M. Koehler. 2006. plcR papR-independent expression of anthrolysin O by Bacillus anthracis. J. Bacteriol. 188: 7823 7829.
188. Ross, J. M. 1957. The pathogenesis of anthrax following the administration of spores by the respiratory route. J. Pathol. Bacteriol. 73: 485 494.
189. Russell, B. H.,, R. Vasan,, D. R. Keene,, T. M. Koehler,, and Y. Xu. 2008. Potential dissemination of Bacillus anthracis utilizing human lung epithelial cells. Cell. Microbiol. 10: 945 957.
190. Russell, B. H.,, R. Vasan,, D. R. Keene,, and Y. Xu. 2007. Bacillus anthracis internalization by human fibroblasts and epithelial cells. Cell. Microbiol. 9: 1262 1274.
191. Saile, E.,, and T. M. Koehler. 2002. Control of anthrax toxin gene expression by the transition state regulator abrB. J. Bacteriol. 184: 370 380.
192. Salamitou, S.,, H. Agaisse,, A. Bravo,, and D. Lereclus. 1996. Genetic analysis of cryIIIA gene expression in Bacillus thuringiensis. Microbiology 142: 2049 2055.
193. Salamitou, S.,, F. Ramisse,, M. Brehelin,, D. Bourguet,, N. Gilois,, M. Gominet,, E. Hernandez,, and D. Lereclus. 2000. The plcR regulon is involved in the opportunistic properties of Bacillus thuringiensis and Bacillus cereus in mice and insects. Microbiology 146: 2825 2832.
194. Schindler, D.,, and H. Echols. 1981. Retroregulation of the int gene of bacteriophage lambda: control of translation completion. Proc. Natl. Acad. Sci. USA 78: 4475 4479.
195. Schmiel, D. H.,, and V. L. Miller. 1999. Bacterial phospholipases and pathogenesis. Microbes Infect. 1: 1103 1112.
196. Schnepf, E.,, N. Crickmore,, J. Van Rie,, D. Lereclus,, J. Baum,, J. Feitelson,, D. R. Zeigler,, and D. H. Dean. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62: 775 806.
197. Schoeni, J. L.,, and A. C. Wong. 2005. Bacillus cereus food poisoning and its toxins. J. Food Prot. 68: 636 648.
198. Shannon, J. G.,, C. L. Ross,, T. M. Koehler,, and R. F. Rest. 2003. Characterization of anthrolysin O, the Bacillus anthracis cholesterol-dependent cytolysin. Infect. Immun. 71: 3183 3189.
199. Shimono, N.,, J. Hayashi,, H. Matsumoto,, N. Miyake,, Y. Uchida,, S. Shimoda,, N. Furusyo,, and K. Akashi. 26 October 2011. Vigorous cleaning and adequate ventilation are necessary to control an outbreak in a neonatal intensive care unit. J. Infect. Chemother. doi:10.1007/s10156-011-0326-y.
200. Shinagawa, K.,, Y. Ueno,, D. Hu,, S. Ueda,, and S. Sugii. 1996. Mouse lethal activity of a HEp-2 vacuolation factor, cereulide, produced by Bacillus cereus isolated from vomiting-type food poisoning. J.Vet. Med. Sci. 58: 1027 1029.
201. Silo-Suh, L. A.,, B. J. Lethbridge,, S. J. Raffel,, H. He,, J. Clardy,, and J. Handelsman. 1994. Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Appl. Environ. Microbiol. 60: 2023 2030.
202. Sirard, J. C.,, C. Guidi-Rontani,, A. Fouet,, and M. Mock. 2000. Characterization of a plasmid region involved in Bacillus anthracis toxin production and pathogenesis. Int. J. Med. Microbiol. 290: 313 316.
203. Sirard, J. C.,, M. Mock,, and A. Fouet. 1994. The three Bacillus anthracis toxin genes are coordinately regulated by bicarbonate and temperature. J. Bacteriol. 176: 5188 5192.
204. Slamti, L.,, and D. Lereclus. 2002. A cell-cell signaling peptide activates the PlcR virulence regulon in bacteria of the Bacillus cereus group. EMBO J. 21: 4550 4559.
205. Slamti, L.,, and D. Lereclus. 2005. Specificity and polymorphism of the PlcR-PapR quorum-sensing system in the Bacillus cereus group. J. Bacteriol. 187: 1182 1187.
206. Slamti, L.,, S. Perchat,, M. Gominet,, G. Vilas-Boas,, A. Fouet,, M. Mock,, V. Sanchis,, J. Chaufaux,, M. Gohar,, and D. Lereclus. 2004. Distinct mutations in PlcR explain why some strains of the Bacillus cereus group are nonhemolytic. J. Bacteriol. 186: 3531 3538.
207. Sonenshein, A. L. 2005. CodY, a global regulator of stationary phase and virulence in Gram-positive bacteria. Curr. Opin. Microbiol. 8: 203 207.
208. Spira, W. M.,, and J. M. Goepfert. 1972. Bacillus cereus-induced fluid accumulation in rabbit ileal loops. Appl. Microbiol. 24: 341 348.
209. Stenfors Arnesen, L. P.,, A. Fagerlund,, and P. E. Granum. 2008. From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Rev. 32: 579 606.
210. Strauch, M. A.,, P. Ballar,, A. J. Rowshan,, and K. L. Zoller. 2005. The DNA-binding specificity of the Bacillus anthracis AbrB protein. Microbiology 151: 1751 1759.
211. Stulke, J.,, and W. Hillen. 2000. Regulation of carbon catabolism in Bacillus species. Annu. Rev. Microbiol. 54: 849 880.
212. Sue, D.,, A. R. Hoffmaster,, T. Popovic,, and P. P. Wilkins. 2006. Capsule production in Bacillus cereus strains associated with severe pneumonia. J. Clin. Microbiol. 44: 3426 3428.
213. Thoren, K. L.,, and B. A. Krantz. 2011. The unfolding story of anthrax toxin translocation. Mol. Microbiol. 80: 588 595.
214. Thorsen, L.,, B. M. Hansen,, K. F. Nielsen,, N. B. Hendriksen,, R.K. Phipps,, and B. B. Budde. 2006. Characterization of emetic Bacillus weihenstephanensis, a new cereulide-producing bacterium. Appl. Environ. Microbiol. 72: 5118 5121.
215. Titball, R. W. 1998. Bacterial phospholipases. Symp. Ser. Soc. Appl. Microbiol. 27: 127S 137S.
216. Tournier, J. N.,, A. Quesnel-Hellmann,, A. Cleret,, and D. R. Vidal. 2007. Contribution of toxins to the pathogenesis of inhalational anthrax. Cell. Microbiol. 9: 555 565.
217. Tsvetanova, B.,, A. C. Wilson,, C. Bongiorni,, C. Chiang,, J. A. Hoch,, and M. Perego. 2007. Opposing effects of histidine phosphorylation regulate the AtxA virulence transcription factor in Bacillus anthracis. Mol. Microbiol. 63: 644 655.
218. Turk, B. E. 2007. Manipulation of host signalling pathways by anthrax toxins. Biochem. J. 402: 405 417.
219. Uchida, I.,, J. M. Hornung,, C. B. Thorne,, K. R. Klimpel,, and S.H. Leppla. 1993. Cloning and characterization of a gene whose product is a trans-activator of anthrax toxin synthesis. J.Bacteriol. 175: 5329 5338.
220. Uchida, I.,, S. Makino,, T. Sekizaki,, and N. Terakado. 1997. Cross-talk to the genes for Bacillus anthracis capsule synthesis by atxA, the gene encoding the trans-activator of anthrax toxin synthesis. Mol. Microbiol. 23: 1229 1240.
221. vand er Voort, M.,, O. P. Kuipers,, G. Buist,, W. M. de Vos,, and T. Abee. 2008. Assessment of CcpA-mediated catabolite control of gene expression in Bacillus cereus ATCC 14579. BMC Microbiol. 8: 62.
222. van Schaik, W.,, A. Chateau,, M. A. Dillies,, J. Y. Coppee,, A. L. Sonenshein,, and A. Fouet. 2009. The global regulator CodY regulates toxin gene expression in Bacillus anthracis and is required for full virulence. Infect. Immun. 77: 4437 4445.
223. Vassileva, M.,, K. Torii,, M. Oshimoto,, A. Okamoto,, N. Agata,, K. Yamada,, T. Hasegawa,, and M. Ohta. 2007. A new phylogenetic cluster of cereulide-producing Bacillus cereus strains. J. Clin. Microbiol. 45: 1274 1277.
224. Vietri, N. J.,, R. Marrero,, T. A. Hoover,, and S. L. Welkos. 1995. Identification and characterization of a trans-activator involved in the regulation of encapsulation by Bacillus anthracis. Gene 152: 1 9.
225. Warner, J. B.,, and J. S. Lolkema. 2003. CcpA-dependent carbon catabolite repression in bacteria. Microbiol. Mol. Biol. Rev. 67: 475 490.
226. Welkos, S.,, A. Friedlander,, S. Weeks,, S. Little,, and I. Mendelson. 2002. In-vitro characterization of the phagocytosis and fate of anthrax spores in macrophage and the effects of anti-PA antibody. J. Med. Microbiol. 51: 821 831.
227. Wilson, A. C.,, J. A. Hoch,, and M. Perego. 2009. Two small c-type cytochromes affect virulence gene expression in Bacillus anthracis. Mol. Microbiol. 72: 109 123.
228. Wilson, M. K.,, J. M. Vergis,, F. Alem,, J. R. Palmer,, A. M. Keane-Myers,, T. N. Brahmbhatt,, C. L. Ventura,, and A. D. O’Brien. 2011. Bacillus cereus G9241 makes anthrax toxin and capsule like highly virulent B. anthracis Ames but behaves like attenuated toxigenic nonencapsulated B. anthracis Sterne in rabbits and mice. Infect. Immun. 79: 3012 3019.
229. Wong, H. C.,, and S. Chang. 1986. Identification of a positive retroregulator that stabilizes mRNAs in bacteria. Proc. Natl. Acad. Sci. USA 83: 3233 3237.
230. Wong, H. C.,, H. E. Schnepf,, and H. R. Whiteley. 1983. Transcriptional and translational start sites for the Bacillus thuringiensis crystal protein gene. J. Biol. Chem. 258: 1960 1967.
231. Young, J. A.,, and R. J. Collier. 2007. Anthrax toxin: receptor binding, internalization, pore formation, and translocation. Annu. Rev. Biochem. 76: 243 265.
232. Zhang, M. Y.,, A. Lovgren,, M. G. Low,, and R. Landen. 1993. Characterization of an avirulent pleiotropic mutant of the insect pathogen Bacillus thuringiensis: reduced expression of flagellin and phospholipases. Infect. Immun. 61: 4947 4954.
233. Zhou, Y.,, Y. L. Choi,, M. Sun,, and Z. Yu. 2008. Novel roles of Bacillus thuringiensis to control plant diseases. Appl. Microbiol. Biotechnol. 80: 563 572.
234. Zigha, A.,, E. Rosenfeld,, P. Schmitt,, and C. Duport. 2007. The redox regulator Fnr is required for fermentative growth and enterotoxin synthesis in Bacillus cereus F4430/73. J. Bacteriol. 189: 2813 2824.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error