1887

Chapter 14 : Regulation of Extracellular Toxin Production in

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Regulation of Extracellular Toxin Production in , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818524/9781555816766_Chap14-1.gif /docserver/preview/fulltext/10.1128/9781555818524/9781555816766_Chap14-2.gif

Abstract:

is a gram-positive, spore-forming anaerobic rod that is widespread in the environment and is commonly isolated from the gastrointestinal tract of humans and animals, as well as from soil and sewage. This chapter provides an overview of the regulatory systems and mechanisms involved in the control of toxin production in . Two-component signal transduction systems represent one of the most widespread mechanisms by which bacteria sense and respond to a diverse range of changes in both environmental stimuli and bacterial cell density. Genetic studies have shown that disruption of either or resulted in an altered toxin production profile. Although VirSR was first identified as a positive regulator of extracellular toxin production, it is now considered a bifunctional system, as it has been demonstrated to positively and negatively regulate the expression of many genes at the transcriptional level. The maintenance of the correct helical phasing, the correct spacing between the VirR boxes, and the correct distance between the VirR boxes and the -35 region were shown to be critical for optimal transcriptional activation. Genomic analysis has predicted a number of small regulatory RNAs (sRNAs) in the genomes of isolates. In the gas gangrene strains, 13 and ATCC 13124, 193 and 181 sRNAs have been predicted, respectively, whereas 131 sRNA were predicted in the food poisoning isolate, SM101.

Citation: Cheung J, Low L, Hiscox T, Rood J. 2013. Regulation of Extracellular Toxin Production in , p 281-294. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch14
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Regulation of gene expression by the VirSR two-component signal transduction system. The VirS sensor histidine kinase (shown in pink) autophosphorylates upon detection of an external signal. Phosphorylated VirS then donates the phosphoryl group to its cognate response regulator, VirR (shown in blue). Phosphorylated VirR directly regulates the expression of , , , , and in strain 13, in EHE-NE18, and presumably and in ATCC 13124 and in SM101. VirSR indirectly regulates the expression of the indicated genes through the VR-RNA, VirT, and VirU sRNAs. Positive regulation is denoted by the green arrows and plus symbols, while negative regulation is shown by the red lines and minus symbols. The VirX sRNA positively regulates the expression the , , and genes in a VirSRindependent manner. doi:10.1128/9781555818524.ch14f1

Citation: Cheung J, Low L, Hiscox T, Rood J. 2013. Regulation of Extracellular Toxin Production in , p 281-294. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

VirR boxes in the genome. VirR boxes are written in blue and are boxed. The genes found downstream are indicated adjacent to the relevant VirR boxes. The putative −35 and −10 sequences are underlined and shown in pink and green, respectively. doi:10.1128/9781555818524.ch14f2

Citation: Cheung J, Low L, Hiscox T, Rood J. 2013. Regulation of Extracellular Toxin Production in , p 281-294. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Processing of mRNA by VR-RNA. (A) Potential base-pairing between the 5′′UTR of mRNA and the 3′′region of VR-RNA. The numbers indicate the nucleotides relative to the ATG start, where A is +1. The triangles represent the processing sites on the mRNA. (B) Predicted structures of the unprocessed and processed 5′′UTR of mRNA from the transcription start site to the AUG start codon (underlined). The predicted Δ values (in kilocalories per mole) are indicated above each structure. The ribosome binding sequences (SD) are shown in bold. Panels are reprinted from ( ) with the permission of the authors and the publisher. doi:10.1128/9781555818524.ch14f3

Citation: Cheung J, Low L, Hiscox T, Rood J. 2013. Regulation of Extracellular Toxin Production in , p 281-294. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818524.chap14
1. Abe, K.,, N. Obana,, and K. Nakamura. 2010. Effects of depletion of RNA-binding protein Tex on the expression of toxin genes in Clostridium perfringens. Biosci. Biotechnol. Biochem. 74: 1564 1571.
2. Andre, G.,, E. Haudecoeur,, M. Monot,, K. Ohtani,, T. Shimizu,, B. Dupuy,, and I. Martin-Verstraete. 2010. Global regulation of gene expression in response to cysteine availability in Clostridium perfringens. BMC Microbiol. 10: 234.
3. Awad, M. M.,, A. E. Bryant,, D. L. Stevens,, and J. I. Rood. 1995. Virulence studies on chromosomal α-toxin and θ-toxin mutants constructed by allelic exchange provide genetic evidence for the essential role of –-toxin in Clostridium perfringens-mediated gas gangrene. Mol. Microbiol. 15: 191 202.
4. Awad, M. M.,, D. M. Ellemor,, R. L. Boyd,, J. J. Emmins,, and J. I. Rood. 2001. Synergistic effects of alpha-toxin and perfringolysin O in Clostridium perfringens-mediated gas gangrene. Infect. Immun. 69: 7904 7910.
5. Banu, S.,, K. Ohtani,, H. Yaguchi,, T. Swe,, S. T. Cole,, H. Hayashi,, and T. Shimizu. 2000. Identification of novel VirR/VirS-regulated genes in Clostridium perfringens. Mol. Microbiol. 35: 854 864.
6. Ba-Thein, W.,, M. Lyristis,, K. Ohtani,, I. T. Nisbet,, H. Hayashi,, J. I. Rood,, and T. Shimizu. 1996. The virR/virS locus regulates the transcription of genes encoding extracellular toxin production in Clostridium perfringens. J. Bacteriol. 178: 2514 2520.
7. Beier, D.,, and R. Gross. 2006. Regulation of bacterial virulence by two-component systems. Curr. Opin. Microbiol. 9: 143 152.
8. Bourret, R. B.,, and R. E. Silversmith. 2010. Two-component signal transduction. Curr. Opin. Microbiol. 13: 113 115.
9. Bronner, S.,, H. Monteil,, and G. Prevost. 2004. Regulation of virulence determinants in Staphylococcus aureus: complexity and applications. FEMS Microbiol. Rev. 28: 183 200.
10. Brynestad, S.,, and P. E. Granum. 2002. Clostridium perfringens and foodborne infections. Int. J. Food Microbiol. 74: 195 202.
11. Calva, E.,, and R. Oropeza. 2006. Two-component signal transduction systems, environmental signals, and virulence. Microb. Ecol. 51: 166 176.
12. Canard, B.,, T. Garnier,, B. Saint-Joanis,, and S. T. Cole. 1994. Molecular genetic analysis of the nagH gene encoding a hyaluronidase of Clostridium perfringens. Mol. Gen. Genet. 243: 215 224.
13. Casino, P.,, V. Rubio,, and A. Marina. 2010. The mechanism of signal transduction by two-component systems. Curr. Opin. Struct. Biol. 20: 763 771.
14. Chen, Y.,, D. C. Indurthi,, S. W. Jones,, and E. T. Papoutsakis. 2011. Small RNAs in the genus Clostridium. mBio 2: e00340 00310.
15. Cheung, J. K.,, M. M. Awad,, S. McGowan,, and J. I. Rood. 2009. Functional analysis of the VirSR phosphorelay from Clostridium perfringens. PLoS One 4: e5849.
16. Cheung, J. K.,, B. Dupuy,, D. S. Deveson,, and J. I. Rood. 2004. The spatial organization of the VirR boxes is critical for VirR-mediated expression of the perfringolysin O gene, pfoA, from Clostridium perfringens. J. Bacteriol. 186: 3321 3330.
17. Cheung, J. K.,, A. L. Keyburn,, G. P. Carter,, A. L. Lanckriet,, F. Van Immerseel,, R. J. Moore,, and J. I. Rood. 2010. The VirSR two-component signal transduction system regulates NetB toxin production in Clostridium perfringens. Infect. Immun. 78: 3064 3072.
18. Cheung, J. K.,, and J. I. Rood. 2000a. Glutamate residues in the putative transmembrane region are required for the function of the VirS sensor histidine kinase from Clostridium perfringens. Microbiology 146( Pt. 2): 517 525.
19. Cheung, J. K.,, and J. I. Rood. 2000b. The VirR response regulator from Clostridium perfringens binds independently to two imperfect direct repeats located upstream of the pfoA promoter. J. Bacteriol. 182: 57 66.
20. Chiarezza, M.,, D. Lyras,, S. J. Pidot,, M. Flores-Diaz,, M. M. Awad,, C. L. Kennedy,, L. M. Cordner,, T. Phumoonna,, R. Poon,, M. L. Hughes,, J. J. Emmins,, A. Alape-Giron,, and J. I. Rood. 2009. The NanI and NanJ sialidases of Clostridium perfringens are not essential for virulence. Infect. Immun. 77: 4421 4428.
21. Czeczulin, J. R.,, P. C. Hanna,, and B. A. McClane. 1993. Cloning, nucleotide sequencing, and expression of the Clostridium perfringens enterotoxin gene in Escherichia coli. Infect. Immun. 61: 3429 3439.
22. Duncan, C. L. 1973. Time of enterotoxin formation and release during sporulation of Clostridium perfringens type A. J. Bacteriol. 113: 932 936.
23. Duncan, C. L.,, G. J. King,, and W. R. Frieben. 1973. A paracrystalline inclusion formed during sporulation of enterotoxin-producing strains of Clostridium perfringens type A. J. Bacteriol. 114: 845 859.
24. Fernandez-Miyakawa, M. E.,, D. J. Fisher,, R. Poon,, S. Sayeed,, V. Adams,, J. I. Rood,, B. A. McClane,, and F. A. Uzal. 2007. Both epsilon-toxin and beta-toxin are important for the lethal properties of Clostridium perfringens type B isolates in the mouse intravenous injection model. Infect. Immun. 75: 1443 1452.
25. Fernandez Miyakawa, M. E.,, and F. A. Uzal. 2003. The early effects of Clostridium perfringens type D epsilon toxin in ligated intestinal loops of goats and sheep. Vet. Res. Commun. 27: 231 241.
26. Fisher, D. J.,, M. E. Fernandez-Miyakawa,, S. Sayeed,, R. Poon,, V. Adams,, J. I. Rood,, F. A. Uzal,, and B. A. McClane. 2006. Dissecting the contributions of Clostridium perfringens type C toxins to lethality in the mouse intravenous injection model. Infect. Immun. 74: 5200 5210.
27. Frohlich, K. S.,, and J. Vogel. 2009. Activation of gene expression by small RNA. Curr. Opin.Microbiol. 12: 674 682.
28. Fuchs, T. M.,, H. Deppisch,, V. Scarlato,, and R. Gross. 1996. A new gene locus of Bordetella pertussis defines a novel family of prokaryotic transcriptional accessory proteins. J. Bacteriol. 178: 4445 4452.
29. Galloway, W. R.,, J. T. Hodgkinson,, S. D. Bowden,, M. Welch,, and D. R. Spring. 2011. Quorum sensing in Gram-negative bacteria: small-molecule modulation of AHL and AI-2 quorum sensing pathways. Chem. Rev. 111: 28 67.
30. Galperin, M. Y. 2010. Diversity of structure and function of response regulator output domains. Curr. Opin. Microbiol. 13: 150 159.
31. Gibert, M.,, C. Jolivert-Reynaud,, and M. R. Popoff. 1997. Beta2 toxin, a novel toxin produced by Clostridium perfringens. Gene 203: 65 73.
32. Gotoh, Y.,, Y. Eguchi,, T. Watanabe,, S. Okamoto,, A. Doi,, and R. Utsumi. 2010. Two-component signal transduction as potential drug targets in pathogenic bacteria. Curr. Opin. Microbiol. 13: 232 239.
33. Gottesman, S. 2005. Micros for microbes: non-coding regulatory RNAs in bacteria. Trends Genet. 21: 399 404.
34. Harry, K. H.,, R. Zhou,, L. Kroos,, and S. B. Melville. 2009. Sporulation and enterotoxin (CPE) synthesis are controlled by the sporulation-specific sigma factors SigE and SigK in Clostridium perfringens. J. Bacteriol. 191: 2728 2742.
35. Hassan, S.,, K. Ohtani,, R. Wang,, Y. Yuan,, Y. Wang,, Y. Yamaguchi,, and T. Shimizu. 2010. Transcriptional regulation of hemO encoding heme oxygenase in Clostridium perfringens. J. Microbiol. 48: 96 101.
36. Higashi, Y.,, M. Chazono,, K. Inoue,, Y. Yanagase,, and T. Amano. 1973. Complementation of theta-toxinogenicity between mutants of two groups of Clostridium perfringens. Biken J. 16: 1 9.
37. Hiscox, T. J.,, A. Chakravorty,, J. M. Choo,, K. Ohtani,, T. Shimizu,, J. K. Cheung,, and J. I. Rood. 2011. Regulation of virulence by the RevR response regulator in Clostridium perfringens. Infect. Immun. 79: 2145 2153.
38. Huang, I. H.,, M. Waters,, R. R. Grau,, and M. R. Sarker. 2004. Disruption of the gene ( spo0A) encoding sporulation transcription factor blocks endospore formation and enterotoxin production in enterotoxigenic Clostridium perfringens type A. FEMS Microbiol. Lett. 233: 233 240.
39. Hynes, W. L.,, and S. L. Walton. 2000. Hyaluronidases of Gram-positive bacteria. FEMS Microbiol. Lett. 183: 201 207.
40. Imagawa, T.,, and Y. Higashi. 1992. An activity which restores theta toxin activity in some theta toxin-deficient mutants of Clostridium perfringens. Microbiol. Immunol. 36: 523 527.
41. Imagawa, T.,, T. Tatsuki,, Y. Higashi,, and T. Amano. 1981. Complementation characteristics of newly isolated mutants from two groups of strains of Clostridium perfringens. Biken J. 24: 13 21.
42. Janzon, L.,, S. Lofdahl,, and S. Arvidson. 1989. Identification and nucleotide sequence of the delta-lysin gene, hld, adjacent to the accessory gene regulator ( agr) of Staphylococcus aureus. Mol. Gen. Genet. 219: 480 485.
43. Ji, G.,, R. C. Beavis,, and R. P. Novick. 1995. Cell density control of staphylococcal virulence mediated by an octapeptide pheromone. Proc. Natl. Acad. Sci. USA 92: 12055 12059.
44. Johnson, S.,, and D. N. Gerding,. 1997. Enterotoxemic infections, p. 117 140. In J. I. Rood,, B. A. McClane,, J. G. Songer,, and R. W. Titball (ed.), The Clostridia: Molecular Biology and Pathogenesis. Academic Press, San Diego, CA.
45. Kawsar, H. I.,, K. Ohtani,, K. Okumura,, H. Hayashi,, and T. Shimizu. 2004. Organization and transcriptional regulation of myo-inositol operon in Clostridium perfringens. FEMS Microbiol. Lett. 235: 289 295.
46. Keyburn, A. L.,, T. L. Bannam,, J. Moore,, and J. I. Rood. 2010. NetB, a pore-forming toxin from necrotic enteritis strains of Clostridium perfringens. Toxins 2: 1913 1927.
47. Keyburn, A. L.,, J. D. Boyce,, P. Vaz,, T. L. Bannam,, M. E. Ford,, D. Parker,, A. Di Rubbo,, J. I. Rood,, and R. J. Moore. 2008. NetB, a new toxin that is associated with avian necrotic enteritis caused by Clostridium perfringens. PLoS Pathog. 4: e26.
48. Lawerence, G. W., 1997. The pathogenesis of enteritis necroticans, p. 197 207. In J. I. Rood,, B. A. McClane,, J. G. Songer,, and R. W. Titball (ed.), The Clostridia: Molecular Biology and Pathogenesis. Academic Press, San Diego, CA.
49. Li, J.,, J. Chen,, J. E. Vidal,, and B. A. McClane. 2011. The Agr-like quorum-sensing system regulates sporulation and production of enterotoxin and beta2 toxin by Clostridium perfringens type A non-food-borne human gastrointestinal disease strain F5603. Infect. Immun. 79: 2451 2459.
50. Li, J.,, and B. A. McClane. 2010. Evaluating the involvement of alternative sigma factors SigF and SigG in Clostridium perfringens sporulation and enterotoxin synthesis. Infect. Immun. 78: 4286 4293.
51. Liu, J. M.,, and A. Camilli. 2010. A broadening world of bacterial small RNAs. Curr. Opin. Microbiol. 13: 18 23.
52. Loffler, A.,, and R. Labbe. 1986. Characterization of a parasporal inclusion body from sporulating, enterotoxin-positive Clostridium perfringens type A. J. Bacteriol. 165: 542 548.
53. Lyristis, M.,, A. E. Bryant,, J. Sloan,, M. M. Awad,, I. T. Nisbet,, D. L. Stevens,, and J. I. Rood. 1994. Identification and molecular analysis of a locus that regulates extracellular toxin production in Clostridium perfringens. Mol. Microbiol. 12: 761 777.
54. Ma, M.,, J. Vidal,, J. Saputo,, B. A. McClane,, and F. Uzal. 2011. The VirS/VirR two-component system regulates the anaerobic cytotoxicity, intestinal pathogenicity, and enterotoxemic lethality of Clostridium perfringens type C isolate CN3685. mBio 2: e00338 00310.
55. McClane, B. A., 2005. Clostridial enterotoxins, p. 385 406. In P. Dürre (ed.), Handbook on Clostridia. CRC Press, Boca Raton, FL.
56. McGowan, S.,, I. S. Lucet,, J. K. Cheung,, M. M. Awad,, J. C. Whisstock,, and J. I. Rood. 2002. The FxRxHrS motif: a conserved region essential for DNA binding of the VirR response regulator from Clostridium perfringens. J. Mol. Biol. 322: 997 1011.
57. McGowan, S.,, J. R. O'Connor,, J. K. Cheung,, and J. I. Rood. 2003. The SKHR motif is required for biological function of the VirR response regulator from Clostridium perfringens. J. Bacteriol. 185: 6205 6208.
58. Myers, G. S.,, D. A. Rasko,, J. K. Cheung,, J. Ravel,, R. Seshadri,, R. T. DeBoy,, Q. Ren,, J. Varga,, M. M. Awad,, L. M. Brinkac,, S. C. Daugherty,, D. H. Haft,, R. J. Dodson,, R. Madupu,, W. C. Nelson,, M. J. Rosovitz,, S. A. Sullivan,, H. Khouri,, G. I. Dimitrov,, K. L. Watkins,, S. Mulligan,, J. Benton,, D. Radune,, D. J. Fisher,, H. S. Atkins,, T. Hiscox,, B. H. Jost,, S. J. Billington,, J. G. Songer,, B.A. McClane,, R. W. Titball,, J. I. Rood,, S. B. Melville,, and I. T. Paulsen. 2006. Skewed genomic variability in strains of the toxigenic bacterial pathogen, Clostridium perfringens. Genome Res. 16: 1031 1040.
59. Nikolskaya, A. N.,, and M. Y. Galperin. 2002. A novel type of conserved DNA-binding domain in the transcriptional regulators of the AlgR/AgrA/LytR family. Nucleic Acids Res. 30: 2453 2459.
60. Novick, R. P. 2003. Autoinduction and signal transduction in the regulation of staphylococcal virulence. Mol. Microbiol. 48: 1429 1449.
61. Novick, R. P.,, S. J. Projan,, J. Kornblum,, H. F. Ross,, G. Ji,, B. Kreiswirth,, F. Vandenesch,, and S. Moghazeh. 1995. The agr P2 operon: an autocatalytic sensory transduction system in Staphylococcus aureus. Mol. Gen. Genet. 248: 446 458.
62. Novick, R. P.,, H. F. Ross,, S. J. Projan,, J. Kornblum,, B. Kreiswirth,, and S. Moghazeh. 1993. Synthesis of staphylococcal virulence factors is controlled by a regulatory RNA molecule. EMBO J. 12: 3967 3975.
63. Obana, N.,, and K. Nakamura. 2011. A novel toxin regulator, the CPE1446-CPE1447 protein heteromeric complex, controls toxin genes in Clostridium perfringens. J. Bacteriol. 193: 4417 4424.
64. Obana, N.,, Y. Shirahama,, K. Abe,, and K. Nakamura. 2010. Stabilization of Clostridium perfringens collagenase mRNA by VR-RNA-dependent cleavage in 5– leader sequence. Mol. Microbiol. 77: 1416 1428.
65. Ohtani, K.,, S. K. Bhowmik,, H. Hayashi,, and T. Shimizu. 2002a. Identification of a novel locus that regulates expression of toxin genes in Clostridium perfringens. FEMS Microbiol. Lett. 209: 113 118.
66. Ohtani, K.,, H. Hayashi,, and T. Shimizu. 2002b. The luxS gene is involved in cell-cell signalling for toxin production in Clostridium perfringens. Mol. Microbiol. 44: 171 179.
67. Ohtani, K.,, H. Hirakawa,, K. Tashiro,, S. Yoshizawa,, S. Kuhara,, and T. Shimizu. 2010. Identification of a two-component VirR/VirS regulon in Clostridium perfringens. Anaerobe 16: 258 264.
68. Ohtani, K.,, H. I. Kawsar,, K. Okumura,, H. Hayashi,, and T. Shimizu. 2003. The VirR/VirS regulatory cascade affects transcription of plasmid-encoded putative virulence genes in Clostridium perfringens strain 13. FEMS Microbiol. Lett. 222: 137 141.
69. Ohtani, K.,, H. Takamura,, H. Yaguchi,, H. Hayashi,, and T. Shimizu. 2000. Genetic analysis of the ycgJ-metB-cysK-ygaG operon negatively regulated by the VirR/VirS system in Clostridium perfringens. Microbiol. Immunol. 44: 525 528.
70. Ohtani, K.,, Y. Yuan,, S. Hassan,, R. Wang,, Y. Wang,, and T. Shimizu. 2009. Virulence gene regulation by the agr system in Clostridium perfringens. J. Bacteriol. 191: 3919 3927.
71. Okumura, K.,, H. I. Kawsar,, T. Shimizu,, T. Ohta,, and H. Hayashi. 2005. Identification and characterization of a cell-wall anchored DNase gene in Clostridium perfringens. FEMS Microbiol. Lett. 242: 281 285.
72. Okumura, K.,, K. Ohtani,, H. Hayashi,, and T. Shimizu. 2008. Characterization of genes regulated directly by the VirR/VirS system in Clostridium perfringens. J. Bacteriol. 190: 7719 7727.
73. Otto, M. 2004. Quorum-sensing control in staphylococci—a target for antimicrobial drug therapy? FEMS Microbiol. Lett. 241: 135 141.
74. Petit, L.,, M. Gibert,, and M. R. Popoff. 1999. Clostridium perfringens: toxinotype and genotype. Trends Microbiol. 7: 104 110.
75. Popoff, M. R.,, and P. Bouvet. 2009. Clostridial toxins. Future Microbiol. 4: 1021 1064.
76. Rood, J. I. 1998. Virulence genes of Clostridium perfringens. Annu. Rev. Microbiol. 52: 333 360.
77. Rood, J. I.,, and S. T. Cole. 1991. Molecular genetics and pathogenesis of Clostridium perfringens. Microbiol. Rev. 55: 621 648.
78. Sarker, M. R.,, R. J. Carman,, and B. A. McClane. 1999. Inactivation of the gene ( cpe) encoding Clostridium perfringens enterotoxin eliminates the ability of two cpe-positive C. perfringens type A human gastrointestinal disease isolates to affect rabbit ileal loops. Mol. Microbiol. 33: 946 958.
79. Sayeed, S.,, M. E. Fernandez-Miyakawa,, D. J. Fisher,, V. Adams,, R. Poon,, J. I. Rood,, F. A. Uzal,, and B. A. McClane. 2005. Epsilon-toxin is required for most Clostridium perfringens type D vegetative culture supernatants to cause lethality in the mouse intravenous injection model. Infect. Immun. 73: 7413 7421.
80. Sayeed, S.,, F. A. Uzal,, D. J. Fisher,, J. Saputo,, J. E. Vidal,, Y. Chen,, P. Gupta,, J. I. Rood,, and B. A. McClane. 2008. Beta toxin is essential for the intestinal virulence of Clostridium perfringens type C disease isolate CN3685 in a rabbit ileal loop model. Mol. Microbiol. 67: 15 30.
81. Shimizu, T.,, W. Ba-Thein,, M. Tamaki,, and H. Hayashi. 1994. The virR gene, a member of a class of two-component response regulators, regulates the production of perfringolysin O, collagenase, and hemagglutinin in Clostridium perfringens. J. Bacteriol. 176: 1616 1623.
82. Shimizu, T.,, K. Ohtani,, H. Hirakawa,, K. Ohshima,, A. Yamashita,, T. Shiba,, N. Ogasawara,, M. Hattori,, S. Kuhara,, and H. Hayashi. 2002a. Complete genome sequence of Clostridium perfringens, an anaerobic flesh-eater. Proc. Natl. Acad. Sci. USA 99: 996 1001.
83. Shimizu, T.,, K. Shima,, K. Yoshino,, K. Yonezawa,, and H. Hayashi. 2002b. Proteome and transcriptome analysis of the virulence genes regulated by the VirR/VirS system in Clostridium perfringens. J. Bacteriol. 184: 2587 2594.
84. Shimizu, T.,, H. Yaguchi,, K. Ohtani,, S. Banu,, and H. Hayashi. 2002c. Clostridial VirR/VirS regulon involves a regulatory RNA molecule for expression of toxins. Mol. Microbiol. 43: 257 265.
85. Sidote, D. J.,, C. M. Barbieri,, T. Wu,, and A. M. Stock. 2008. Structure of the Staphylococcus aureus AgrA LytTR domain bound to DNA reveals a beta fold with an unusual mode of binding. Structure 16: 727 735.
86. Skjelkvale, R.,, and T. Uemura. 1977. Experimental diarrhoea in human volunteers following oral administration of Clostridium perfringens enterotoxin. J. Appl. Bacteriol. 43: 281 286.
87. Songer, J. G. 2010. Clostridia as agents of zoonotic disease. Vet. Microbiol. 140: 399 404.
88. Songer, J. G., 1997. Clostridial diseases of animals, p. 153 182. In J. I. Rood,, B. A. McClane,, J. G. Songer,, and R. W. Titball (ed.), The Clostridia: Molecular Biology and Pathogenesis. Academic Press, San Diego, CA.
89. Songer, J. G. 1996. Clostridial enteric diseases of domestic animals. Clin. Microbiol. Rev. 9: 216 234.
90. Songer, J. G.,, and D. W. Miskimmins. 2004. Clostridium perfringens type E enteritis in calves: two cases and a brief review of the literature. Anaerobe 10: 239 242.
91. Songer, J. G.,, and F. A. Uzal. 2005. Clostridial enteric infections in pigs. J. Vet. Diagn. Investig. 17: 528 536.
92. Stevens, D. L.,, R. K. Tweten,, M. M. Awad,, J. I. Rood,, and A. E. Bryant. 1997. Clostridial gas gangrene: evidence that alpha and theta toxins differentially modulate the immune response and induce acute tissue necrosis. J. Infect. Dis. 176: 189 195.
93. Timbermont, L.,, F. Haesebrouck,, R. Ducatelle,, and F. Van Immerseel. 2011. Necrotic enteritis in broilers: an updated review on the pathogenesis. Avian Pathol. 40: 341 347.
94. Titball, R. W. 2005. Gas gangrene: an open and closed case. Microbiology 151: 2821 2828.
95. Tsuge, H.,, M. Nagahama,, M. Oda,, S. Iwamoto,, H. Utsunomiya,, V. E. Marquez,, N. Katunuma,, M. Nishizawa,, and J. Sakurai. 2008. Structural basis of actin recognition and arginine ADP-ribosylation by Clostridium perfringens iota-toxin. Proc. Natl. Acad. Sci. USA 105: 7399 7404.
96. Uzal, F.,, and B. A. McClane. 2011. Recent progress in understanding the pathogenesis of Clostridium perfringens type C infections. Vet. Microbiol. 153: 37 43.
97. Uzal, F. A.,, J. Saputo,, S. Sayeed,, J. E. Vidal,, D. J. Fisher,, R. Poon,, V. Adams,, M. E. Fernandez-Miyakawa,, J. I. Rood,, and B. A. McClane. 2009. Development and application of new mouse models to study the pathogenesis of Clostridium perfringens type C enterotoxemias. Infect. Immun. 77: 5291 5299.
98. Uzal, F. A.,, and J. G. Songer. 2008. Diagnosis of Clostridium perfringens intestinal infections in sheep and goats. J. Vet. Diagn. Investig. 20: 253 265.
99. Vandenesch, F.,, J. Kornblum,, and R. P. Novick. 1991. A temporal signal, independent of agr, is required for hla but not spa transcription in Staphylococcus aureus. J. Bacteriol. 173: 6313 6320.
100. Van Immerseel, F.,, J. I. Rood,, R. J. Moore,, and R. W. Titball. 2009. Rethinking our understanding of the pathogenesis of necrotic enteritis in chickens. Trends Microbiol. 17: 32 36.
101. Varga, J.,, V. L. Stirewalt,, and S. B. Melville. 2004. The CcpA protein is necessary for efficient sporulation and enterotoxin gene ( cpe) regulation in Clostridium perfringens. J. Bacteriol. 186: 5221 5229.
102. Vidal, J. E.,, J. Chen,, J. Li,, and B. A. McClane. 2009a. Use of an EZ-Tn 5-based random mutagenesis system to identify a novel toxin regulatory locus in Clostridium perfringens strain 13. PLoS One 4: e6232.
103. Vidal, J. E.,, K. Ohtani,, T. Shimizu,, and B. A. McClane. 2009b. Contact with enterocyte-like Caco-2 cells induces rapid upregulation of toxin production by Clostridium perfringens type C isolates. Cell. Microbiol. 11: 1306 1328.
104. Vidal, J. E.,, B. A. McClane,, J. Saputo,, J. Parker,, and F. A. Uzal. 2008. Effects of Clostridium perfringens beta-toxin on the rabbit small intestine and colon. Infect. Immun. 76: 4396 4404.
105. Waters, L. S.,, and G. Storz. 2009. Regulatory RNAs in bacteria. Cell 136: 615 628.
106. Wolz, C.,, P. Pohlmann-Dietze,, A. Steinhuber,, Y. T. Chien,, A. Manna,, W. van Wamel,, and A. Cheung. 2000. Agr-independent regulation of fibronectin-binding protein(s) by the regulatory locus sar in Staphylococcus aureus. Mol. Microbiol. 36: 230 243.
107. Xavier, K. B.,, and B. L. Bassler. 2003. LuxS quorum sensing: more than just a numbers game. Curr. Opin. Microbiol. 6: 191 197.
108. Yuan, Y.,, K. Ohtani,, S. Yoshizawa,, and T. Shimizu. 21 September 2011. Complex transcriptional regulation of citrate metabolism in Clostridium perfringens. Anaerobe 18: 48 54. [Epub ahead of print.]
109. Zhao, Y.,, and S. B. Melville. 1998. Identification and characterization of sporulation-dependent promoters upstream of the enterotoxin gene ( cpe) of Clostridium perfringens. J. Bacteriol. 180: 136 142.

Tables

Generic image for table
Table 1

Toxins produced and diseases caused by toxinotypes

Citation: Cheung J, Low L, Hiscox T, Rood J. 2013. Regulation of Extracellular Toxin Production in , p 281-294. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch14

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error