Chapter 24 : Regulation of Envelope Stress Responses by

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Regulation of Envelope Stress Responses by , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818524/9781555816766_Chap24-1.gif /docserver/preview/fulltext/10.1128/9781555818524/9781555816766_Chap24-2.gif


This chapter discusses some of the stressors likely to target the cell envelope of during infection, and the corresponding regulatory elements expressed by the bacterium to counteract this stress. Phylogenetically, is a member of the phylum Actinobacteria, which also includes several notable human pathogens, including species of the genera , , , and . is a facultative intracellular pathogen, and its host range is restricted to humans. The bacterium is not normally found free within the environment, so its continued survival within the human population requires that it be transmitted directly from an infected individual with active disease to one that is susceptible to infection. Posttranslational phosphorylation of proteins was traditionally thought to be limited to eukaryotic cells. However, the discovery of two-component signal transduction systems (TCSSs) in bacteria shifted this paradigm to include phosphorylation of prokaryotic SKs on a conserved histidine residue and phosphorelay to a conserved aspartic acid residue on the cognate RRs. There is mounting evidence that PknB, and perhaps other STPKs, may also play an important regulatory role in the response of to environmental stress by directly regulating the activity of anti-sigma factors. A large body of work has helped to shape the current model of how senses cell envelope damage, including the regulatory mechanisms by which the bacterium responds to these stimuli.

Citation: Bretl D, Zahrt T. 2013. Regulation of Envelope Stress Responses by , p 465-489. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch24
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

(A) The mycobacterial cell envelope is composed of four main compartments. The first is a typical bacterial plasma membrane (PM). Exterior to the PM is the cell wall, composed of several biomolecular moieties, including PG, AG, and mycolic acids (MA). Noncovalently attached to MA and other lipids of the cell wall layer is the OM. Finally, the entire cell is surrounded by a loosely associated capsule-like structure (CAP) composed primarily of proteins and carbohydrates. Lipids making up the MA layer are depicted as different lengths and colors to illustrate the variety of long-chain fatty acids found in the mycobacterial cell envelope. The image is not to scale. (B) Cryo-electron micrograph of the cell envelope. The PM and OM are visible and enclose an area of different electron density that is presumed to contain PG, AG, and MA. This image is modified from that taken by Hoffmann et al. ( ) and is used with permission from the National Academy of Sciences. doi:10.1128/9781555818524.ch24f1

Citation: Bretl D, Zahrt T. 2013. Regulation of Envelope Stress Responses by , p 465-489. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

is exposed to a variety of environmental stressors found both outside and inside the host. M. tuberculosis is exposed to alterations in temperature, UV radiation, and desiccation during transmission from an infected individual to a susceptible host. Following inhalation and deposition in lung tissues, the bacterium encounters host alveolar surfactant proteins and cationic peptides which may perturb the bacterial cell envelope. Macrophages that ingest the tubercle bacillus generate bactericidal products, including ROI and RNI. Finally, M. tuberculosis establishes persistent infection within granulomatous structures generated following an adaptive host immune response. Within this environment, the bacterium must adapt to a variety of potentially adverse conditions, including altered nutrients, elevated levels of NO, toxic fatty acids, and low oxygen concentrations. doi:10.1128/9781555818524.ch24f2

Citation: Bretl D, Zahrt T. 2013. Regulation of Envelope Stress Responses by , p 465-489. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Cell envelope stress response network of . Cell envelope stress that generates PG fragments is sensed by PknB via its PASTA domains. Activation of PknB results in phosphorylation of other STPKs, including PknA and several determinants involved in PG synthesis, cell division, and mycolic acid production. Additionally, PknB and other STPKs phosphorylate EmbR, leading to increased expression of the embCAB operon and increased AG synthesis. PknB phosphorylation of the SigE anti-sigma factor, RseA, results in RseA degradation by the ClpC1P2 protease complex. Dissociated SigE directs upregulation of several genes, including , , 2, and . Cell envelope damage is also sensed by the extracytoplasmic domain of MprB. Activation of MprB leads to phosphorelay to MprA, and phosphorylated MprA directs transcription of , , and several other genes. Finally, ClgR directs expression of the genes encoding the ClpC1P2 protease, as well as Ppk1, which is responsible for generation of polyphosphate molecules that can be utilized by MprB to alternatively phosphorylate MprA. doi:10.1128/9781555818524.ch24f3

Citation: Bretl D, Zahrt T. 2013. Regulation of Envelope Stress Responses by , p 465-489. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

PknA and PknB phosphorylate several proteins involved in biosynthesis or maintenance of the cell envelope. PknA phosphorylates MurD and FtsZ, while PknB phosphorylates PbpA, Rv0020c, and PapA5. Both kinases have been shown to phosphorylate Wag31, GlmU, and FipA. PknA and PknB also phosphorylate all of the enzymes of the core mycolic acid synthesis machinery. Phosphorylation of these enzymes is generally inhibitory, with the exception of KasB (stimulatory) and Pks13 (unknown). It is important to note that the substrates shown in this figure are not an exhaustive list, and other substrates having functions not directly related to cell envelope maintenance exist. Furthermore, other STPKs not shown are able to phosphorylate several of these substrates. Finally, the phosphorylation of the kinase substrates and the kinases themselves is reversible via dephosphorylation by PstP, the serine-threonine phosphatase (not shown). doi:10.1128/9781555818524.ch24f4

Citation: Bretl D, Zahrt T. 2013. Regulation of Envelope Stress Responses by , p 465-489. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Adams, D. W.,, and J. Errington. 2009. Bacterial cell division: assembly, maintenance and disassembly of the Z ring. Nat. Rev. Microbiol. 7: 642 653.
2. Alba, B. M.,, H. J. Zhong,, J. C. Pelayo,, and C. A. Gross. 2001. degS ( hhoB) is an essential Escherichia coli gene whose indispensable function is to provide sigma (E) activity. Mol. Microbiol. 40: 1323 1333.
3. Alexander, K. A.,, P. N. Laver,, A. L. Michel,, M. Williams,, P. D. van Helden,, R. M. Warren,, and N. C. Gey van Pittius. 2010 Novel Mycobacterium tuberculosis complex pathogen, M. mungi. Emerg. Infect. Dis. 16: 1296 1299.
4. Alonso, S.,, K. Pethe,, D. G. Russell,, and G. E. Purdy. 2007. Lysosomal killing of Mycobacterium mediated by ubiquitin-derived peptides is enhanced by autophagy. Proc. Natl. Acad. Sci. USA 104: 6031 6036.
5. Ando, M.,, T. Yoshimatsu,, C. Ko,, P. J. Converse,, and W. R. Bishai. 2003. Deletion of Mycobacterium tuberculosis sigma factor E results in delayed time to death with bacterial persistence in the lungs of aerosol-infected mice. Infect. Immun. 71: 7170 7172.
6. Armstrong, J. A.,, and P. D. Hart. 1971. Response of cultured macrophages to Mycobacterium tuberculosis, with observations on fusion of lysosomes with phagosomes. J. Exp. Med. 134: 713 740.
7. Ashitani, J.,, H. Mukae,, T. Hiratsuka,, M. Nakazato,, K. Kumamoto,, and S. Matsukura. 2002. Elevated levels of alpha-defensins in plasma and BAL fluid of patients with active pulmonary tuberculosis. Chest 121: 519 526.
8. Av-Gay, Y.,, S. Jamil,, and S. J. Drews. 1999. Expression and characterization of the Mycobacterium tuberculosis serine/threonine protein kinase PknB. Infect. Immun. 67: 5676 5682.
9. Bach, H.,, D. Wong,, and Y. Av-Gay. 2009. Mycobacterium tuberculosis PtkA is a novel protein tyrosine kinase whose substrate is PtpA. Biochem. J. 420: 155 160.
10. Barik, S.,, K. Sureka,, P. Mukherjee,, J. Basu,, and M. Kundu. 2010. RseA, the SigE specific anti-sigma factor of Mycobacterium tuberculosis, is inactivated by phosphorylation-dependent ClpC1P2 proteolysis. Mol. Microbiol. 75: 592 606.
11. Barry, C. E., III. 2001. Interpreting cell wall ‘virulence factors’ of Mycobacterium tuberculosis. Trends Microbiol. 9: 237 241.
12. Barthe, P.,, G. V. Mukamolova,, C. Roumestand,, and M. Cohen-Gonsaud. 2010. The structure of PknB extracellular PASTA domain from Mycobacterium tuberculosis suggests a ligand-dependent kinase activation. Structure 18: 606 615.
13. Beggs, M. L.,, M. D. Cave,, and K. D. Eisenach. 1996. Isolation and sequence of a Mycobacterium tuberculosis sigma factor. Gene 174: 285 287.
14. Belanger, A. E.,, G. S. Besra,, M. E. Ford,, K. Mikusova,, J. T. Belisle,, P. J. Brennan,, and J. M. Inamine 1996. The embAB genes of Mycobacterium avium encode an arabinosyl transferase involved in cell wall arabinan biosynthesis that is the target for the antimycobacterial drug ethambutol. Proc. Natl. Acad. Sci. USA 93: 11919 11924.
15. Betts, J. C.,, P. T. Lukey,, L. C. Robb,, R. A. McAdam,, and K. Duncan. 2002. Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol. Microbiol. 43: 717 731.
16. Boitel, B.,, M. Ortiz-Lombardia,, R. Duran,, F. Pompeo,, S. T. Cole,, C. Cervenansky,, and P. M. Alzari. 2003. PknB kinase activity is regulated by phosphorylation in two Thr residues and dephosphorylation by PstP, the cognate phospho-Ser/Thr phosphatase, in Mycobacterium tuberculosis. Mol. Microbiol. 49: 1493 1508.
17. Brennan, P. J.,, and H. Nikaido. 1995. The envelope of mycobacteria. Annu. Rev. Biochem. 64: 29 63.
18. Brosch, R.,, S. V. Gordon,, M. Marmiesse,, P. Brodin,, C. Buchrieser,, K. Eiglmeier,, T. Garnier,, C. Gutierrez,, G. Hewinson,, K. Kremer,, L. M. Parsons,, A. S. Pym,, S. Samper,, D. van Soolingen,, and S. T. Cole. 2002. A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc. Natl. Acad. Sci. USA 99: 3684 3689.
19. Buelow, D. R.,, and T. L. Raivio. 2005. Cpx signal transduction is influenced by a conserved N-terminal domain in the novel inhibitor CpxP and the periplasmic protease DegP. J. Bacteriol. 187: 6622 6630.
20. Canova, M. J.,, R. Veyron-Churlet,, I. Zanella-Cleon,, M. Cohen-Gonsaud,, A. J. Cozzone,, M. Becchi,, L. Kremer,, and V. Molle. 2008. The Mycobacterium tuberculosis serine/threonine kinase PknL phosphorylates Rv2175c: mass spectrometric profiling of the activation loop phosphorylation sites and their role in the recruitment of Rv2175c. Proteomics 8: 521 533.
21. Chaba, R.,, M. Raje,, and P. K. Chakraborti. 2002. Evidence that a eukaryotic-type serine/threonine protein kinase from Mycobacterium tuberculosis regulates morphological changes associated with cell division. Eur. J. Biochem. 269: 1078 1085.
22. Chao, J. D.,, K. G. Papavinasasundaram,, X. Zheng,, A. Chavez-Steenbock,, X. Wang,, G. Q. Lee,, and Y. Av-Gay. 2010. Convergence of Ser/Thr and two-component signaling to coordinate expression of the dormancy regulon in Mycobacterium tuberculosis. J. Biol. Chem. 285: 29239 29246.
23. Chen, P.,, R. E. Ruiz,, Q. Li,, R. F. Silver,, and W. R. Bishai. 2000. Construction and characterization of a Mycobacterium tuberculosis mutant lacking the alternate sigma factor gene, sigF. Infect. Immun. 68: 5575 5580.
24. Chopra, P.,, B. Singh,, R. Singh,, R. Vohra,, A. Koul,, L. S. Meena,, H. Koduri,, M. Ghildiyal,, P. Deol,, T. K. Das,, A. K. Tyagi,, and Y. Singh. 2003. Phosphoprotein phosphatase of Mycobacterium tuberculosis dephosphorylates serine-threonine kinases PknA and PknB. Biochem. Biophys. Res. Commun. 311: 112 120.
25. Cole, S. T.,, R. Brosch,, J. Parkhill,, T. Garnier,, C. Churcher,, D. Harris,, S. V. Gordon,, K. Eiglmeier,, S. Gas,, C. E. Barry III,, F. Tekaia,, K. Badcock,, D. Basham,, D. Brown,, T. Chillingworth,, R. Connor,, R. Davies,, K. Devlin,, T. Feltwell,, S. Gentles,, N. Hamlin,, S. Holroyd,, T. Hornsby,, K. Jagels,, A. Krogh,, J. McLean,, S. Moule,, L. Murphy,, K. Oliver,, J. Osborne,, M. A. Quail,, M. A. Rajandream,, J. Rogers,, S. Rutter,, K. Seeger,, J. Skelton,, R. Squares,, S. Squares,, J. E. Sulston,, K. Taylor,, S. Whitehead,, and B. G. Barrell. 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393: 537 544.
26. Converse, P. J.,, P. C. Karakousis,, L. G. Klinkenberg,, A. K. Kesavan,, L. H. Ly,, S. S. Allen,, J. H. Grosset,, S. K. Jain,, G. Lamichhane,, Y. C. Manabe,, D. N. McMurray,, E. L. Nuermberger,, and W. R. Bishai. 2009. Role of the dosR-dosS two-component regulatory system in Mycobacterium tuberculosis virulence in three animal models. Infect. Immun. 77: 1230 1237.
27. Cousins, D. V.,, R. Bastida,, A. Cataldi,, V. Quse,, S. Redrobe,, S. Dow,, P. Duignan,, A. Murray,, C. Dupont,, N. Ahmed,, D. M. Collins,, W. R. Butler,, D. Dawson,, D. Rodriguez,, J. Loureiro,, M. I. Romano,, A. Alito,, M. Zumarraga,, and A. Bernardelli. 2003. Tuberculosis in seals caused by a novel member of the Mycobacterium tuberculosis complex: Mycobacterium pinnipedii sp. nov. Int. J. Syst. Evol. Microbiol. 53: 1305 1314.
28. Cowley, S.,, M. Ko,, N. Pick,, R. Chow,, K. J. Downing,, B. G. Gordhan,, J. C. Betts,, V. Mizrahi,, D. A. Smith,, R. W. Stokes,, and Y. Av-Gay. 2004. The Mycobacterium tuberculosis protein serine/threonine kinase PknG is linked to cellular glutamate/glutamine levels and is important for growth in vivo. Mol. Microbiol. 52: 1691 1702.
29. Cywes, C.,, H. C. Hoppe,, M. Daffe,, and M. R. Ehlers. 1997. Nonopsonic binding of Mycobacterium tuberculosis to complement receptor type 3 is mediated by capsular polysaccharides and is strain dependent. Infect. Immun. 65: 4258 4266.
30. Daffe, M.,, and G. Etienne. 1999. The capsule of Mycobacterium tuberculosis and its implications for pathogenicity. Tuber. Lung Dis. 79: 153 169.
31. Dainese, E.,, S. Rodrigue,, G. Delogu,, R. Provvedi,, L. Laflamme,, R. Brzezinski,, G. Fadda,, I. Smith,, L. Gaudreau,, G. Palu,, and R. Manganelli. 2006. Posttranslational regulation of Mycobacterium tuberculosis extracytoplasmic-function sigma factor sigma L and roles in virulence and in global regulation of gene expression. Infect. Immun. 74: 2457 2461.
32. Dasgupta, A.,, P. Datta,, M. Kundu,, and J. Basu. 2006. The serine/threonine kinase PknB of Mycobacterium tuberculosis phosphorylates PBPA, a penicillin-binding protein required for cell division. Microbiology 152: 493 504.
33. Datta, P.,, A. Dasgupta,, A. K. Singh,, P. Mukherjee,, M. Kundu,, and J. Basu. 2006. Interaction between FtsW and penicillin-binding protein 3 (PBP3) directs PBP3 to mid-cell, controls cell septation and mediates the formation of a trimeric complex involving FtsZ, FtsW and PBP3 in mycobacteria. Mol. Microbiol. 62: 1655 1673.
34. Davis, J. M.,, and L. Ramakrishnan. 2009. The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell 136: 37 49.
35. Desjardins, M.,, J. E. Celis,, G. van Meer,, H. Dieplinger,, A. Jahraus,, G. Griffiths,, and L. A. Huber. 1994. Molecular characterization of phagosomes. J. Biol. Chem. 269: 32194 32200.
36. Diaz, G. A.,, and L. G. Wayne. 1974. Isolation and characterization of catalase produced by Mycobacterium tuberculosis. Am. Rev. Respir. Dis. 110: 312 319.
37. Dona, V.,, S. Rodrigue,, E. Dainese,, G. Palu,, L. Gaudreau,, R. Manganelli,, and R. Provvedi. 2008. Evidence of complex transcriptional, translational, and posttranslational regulation of the extracytoplasmic function sigma factor σ E in Mycobacterium tuberculosis. J. Bacteriol. 190: 5963 5971.
38. Doukhan, L.,, M. Predich,, G. Nair,, O. Dussurget,, I. Mandic-Mulec,, S. T. Cole,, D. R. Smith,, and I. Smith. 1995. Genomic organization of the mycobacterial sigma gene cluster. Gene 165: 67 70.
39. Dover, L. G.,, L. J. Alderwick,, A. K. Brown,, K. Futterer,, and G. S. Besra. 2007. Regulation of cell wall synthesis and growth. Curr. Mol. Med. 7: 247 276.
40. Downing, J. F.,, R. Pasula,, J. R. Wright,, H. L. Twigg III,, and W. J. Martin II. 1995. Surfactant protein A promotes attachment of Mycobacterium tuberculosis to alveolar macrophages during infection with human immunodeficiency virus. Proc. Natl. Acad. Sci. USA 92: 4848 4852.
41. Duran, R.,, A. Villarino,, M. Bellinzoni,, A. Wehenkel,, P. Fernandez,, B. Boitel,, S. T. Cole,, P. M. Alzari,, and C. Cervenansky. 2005. Conserved autophosphorylation pattern in activation loops and juxtamembrane regions of Mycobacterium tuberculosis Ser/Thr protein kinases. Biochem. Biophys. Res. Commun. 333: 858 867.
42. Dziadek, J.,, M. V. Madiraju,, S. A. Rutherford,, M. A. Atkinson,, and M. Rajagopalan. 2002. Physiological consequences associated with overproduction of Mycobacterium tuberculosis FtsZ in mycobacterial hosts. Microbiology 148: 961 971.
43. Dziadek, J.,, S. A. Rutherford,, M. V. Madiraju,, M. A. Atkinson,, and M. Rajagopalan. 2003. Conditional expression of Mycobacterium smegmatis ftsZ, an essential cell division gene. Microbiology 149: 1593 1603.
44. Estorninho, M.,, H. Smith,, J. Thole,, J. Harders-Westerveen,, A. Kierzek,, R. E. Butler,, O. Neyrolles,, and G. R. Stewart. 2010. ClgR regulation of chaperone and protease systems is essential for Mycobacterium tuberculosis parasitism of the macrophage. Microbiology 156: 3445 3455.
45. Farn, J.,, and M. Roberts. 2004. Effect of inactivation of the HtrA-like serine protease DegQ on the virulence of Salmonella enterica serovar Typhimurium in mice. Infect. Immun. 72: 7357 7359.
46. Ferguson, J. S.,, D. R. Voelker,, J. A. Ufnar,, A. J. Dawson,, and L. S. Schlesinger. 2002. Surfactant protein D inhibition of human macrophage uptake of Mycobacterium tuberculosis is independent of bacterial agglutination. J. Immunol. 168: 1309 1314.
47. Fernandez, P.,, B. Saint-Joanis,, N. Barilone,, M. Jackson,, B. Gicquel,, S. T. Cole,, and P. M. Alzari. 2006. The Ser/Thr protein kinase PknB is essential for sustaining mycobacterial growth. J. Bacteriol. 188: 7778 7784.
48. Flannagan, R. S.,, D. Aubert,, C. Kooi,, P. A. Sokol,, and M. A. Valvano. 2007. Burkholderia cenocepacia requires a periplasmic HtrA protease for growth under thermal and osmotic stress and for survival in vivo. Infect. Immun. 75: 1679 1689.
49. Flärdh, K. 2003. Essential role of DivIVA in polar growth and morphogenesis in Streptomyces coelicolor A3(2). Mol. Microbiol. 49: 1523 1536.
50. Fontan, P. A.,, V. Aris,, M. E. Alvarez,, S. Ghanny,, J. Cheng,, P. Soteropoulos,, A. Trevani,, R. Pine,, and I. Smith. 2008. Mycobacterium tuberculosis sigma factor E regulon modulates the host inflammatory response. J. Infect. Dis. 198: 877 885.
51. Fontan, P. A.,, M. I. Voskuil,, M. Gomez,, D. Tan,, M. Pardini,, R. Manganelli,, L. Fattorini,, G. K. Schoolnik,, and I. Smith. 2009. The Mycobacterium tuberculosis sigma factor o B is required for full response to cell envelope stress and hypoxia in vitro, but it is dispensable for in vivo growth. J. Bacteriol. 191: 5628 5633.
52. Gagliardi, M. C.,, A. Lemassu,, R. Teloni,, S. Mariotti,, V. Sargentini,, M. Pardini,, M. Daffe,, and R. Nisini 2007. Cell wall-associated alpha-glucan is instrumental for Mycobacterium tuberculosis to block CD1 molecule expression and disable the function of dendritic cell derived from infected monocyte. Cell. Microbiol. 9: 2081 2092.
53. Geiman, D. E.,, D. Kaushal,, C. Ko,, S. Tyagi,, Y. C. Manabe,, B. G. Schroeder,, R. D. Fleischmann,, N. E. Morrison,, P. J. Converse,, P. Chen,, and W. R. Bishai. 2004. Attenuation of late-stage disease in mice infected by the Mycobacterium tuberculosis mutant lacking the SigF alternate sigma factor and identification of SigF-dependent genes by microarray analysis. Infect. Immun. 72: 1733 1745.
54. Giacomini, E.,, A. Sotolongo,, E. Iona,, M. Severa,, M. E. Remoli,, V. Gafa,, R. Lande,, L. Fattorini,, I. Smith,, R. Manganelli,, and E. M. Coccia. 2006. Infection of human dendritic cells with a Mycobacterium tuberculosis sigE mutant stimulates production of high levels of interleukin-10 but low levels of CXCL10: impact on the T-cell response. Infect. Immun. 74: 3296 3304.
55. Glover, R. T.,, J. Kriakov,, S. J. Garforth,, A. D. Baughn,, and W. R. Jacobs, Jr. 2007. The two-component regulatory system senX3- regX3 regulates phosphate-dependent gene expression in Mycobacterium smegmatis. J. Bacteriol. 189: 5495 5503.
56. Gomez, M.,, L. Doukhan,, G. Nair,, and I. Smith. 1998. sigA is an essential gene in Mycobacterium smegmatis. Mol. Microbiol. 29: 617 628.
57. Gonzalo Asensio, J.,, C. Maia,, N. L. Ferrer,, N. Barilone,, F. Laval,, C. Y. Soto,, N. Winter,, M. Daffe,, B. Gicquel,, C. Martin,, and M. Jackson. 2006. The virulence-associated two-component PhoP-PhoR system controls the biosynthesis of polyketide-derived lipids in Mycobacterium tuberculosis. J. Biol. Chem. 281: 1313 1316.
58. Graham, J. E.,, and J. E. Clark-Curtiss. 1999. Identification of Mycobacterium tuberculosis RNAs synthesized in response to phagocytosis by human macrophages by selective capture of transcribed sequences (SCOTS). Proc. Natl. Acad. Sci. USA 96: 11554 11559.
59. Greenstein, A. E.,, J. A. MacGurn,, C. E. Baer,, A. M. Falick,, J. S. Cox,, and T. Alber. 2007 M. tuberculosis Ser/Thr protein kinase D phosphorylates an anti-anti-sigma factor homolog. PLoS Pathog. 3: e49.
60. Gruber, T. M.,, and C. A. Gross. 2003. Multiple sigma subunits and the partitioning of bacterial transcription space. Annu. Rev. Microbiol. 57: 441 466.
61. Grundner, C.,, L. M. Gay,, and T. Alber 2005. Mycobacterium tuberculosis serine/threonine kinases PknB, PknD, PknE, and PknF phosphorylate multiple FHA domains. Protein Sci. 14: 1918 1921.
62. Gupta, M.,, A. Sajid,, G. Arora,, V. Tandon,, and Y. Singh. 2009. Forkhead-associated domain-containing protein Rv0019c and polyketide-associated protein PapA5, from substrates of serine/threonine protein kinase PknB to interacting proteins of Mycobacterium tuberculosis. J. Biol. Chem. 284: 34723 34734.
63. Hahn, M. Y.,, S. Raman,, M. Anaya,, and R. N. Husson. 2005. The Mycobacterium tuberculosis extracytoplasmic-function sigma factor SigL regulates polyketide synthases and secreted or membrane proteins and is required for virulence. J. Bacteriol. 187: 7062 7071.
64. Hall-Stoodley, L.,, G. Watts,, J. E. Crowther,, A. Balagopal,, J. B. Torrelles,, J. Robison-Cox,, R. F. Bargatze,, A. G. Harmsen,, E. C. Crouch,, and L. S. Schlesinger. 2006. Mycobacterium tuberculosis binding to human surfactant proteins A and D, fibronectin, and small airway epithelial cells under shear conditions. Infect. Immun. 74: 3587 3596.
65. Haydel, S. E.,, and J. E. Clark-Curtiss. 2004. Global expression analysis of two-component system regulator genes during Mycobacterium tuberculosis growth in human macrophages. FEMS Microbiol. Lett. 236: 341 347.
66. He, H.,, R. Hovey,, J. Kane,, V. Singh,, and T. C. Zahrt. 2006. MprAB is a stress-responsive two-component system that directly regulates expression of sigma factors SigB and SigE in Mycobacterium tuberculosis. J. Bacteriol. 188: 2134 2143.
67. He, H.,, and T. C. Zahrt. 2005. Identification and characterization of a regulatory sequence recognized by Mycobacterium tuberculosis persistence regulator MprA. J. Bacteriol. 187: 202 212.
68. Henriques, A. O.,, P. Glaser,, P. J. Piggot,, and C. P. Moran, Jr. 1998. Control of cell shape and elongation by the rodA gene in Bacillus subtilis. Mol. Microbiol. 28: 235 247.
69. Hernandez Pando, R.,, L. D. Aguilar,, I. Smith,, and R. Manganelli. 2010. Immunogenicity and protection induced by a Mycobacterium tuberculosis sigE mutant in a BALB/c mouse model of progressive pulmonary tuberculosis. Infect. Immun. 78: 3168 3176.
70. Hoffmann, C.,, A. Leis,, M. Niederweis,, J. M. Plitzko,, and H. Engelhardt. 2008. Disclosure of the mycobacterial outer membrane: cryo-electron tomography and vitreous sections reveal the lipid bilayer structure. Proc. Natl. Acad. Sci. USA 105: 3963 3967.
71. Hu, Y.,, and A. R. Coates. 1999. Transcription of two sigma 70 homologue genes, sigA and sigB, in stationary-phase Mycobacterium tuberculosis. J. Bacteriol. 181: 469 476.
72. Jang, J.,, A. Stella,, F. Boudou,, F. Levillain,, E. Darthuy,, J. Vaubourgeix,, C. Wang,, F. Bardou,, G. Puzo,, M. Gilleron,, O. Burlet-Schiltz,, B. Monsarrat,, P. Brodin,, B. Gicquel,, and O. Neyrolles. 2010. Functional characterization of the Mycobacterium tuberculosis serine/threonine kinase PknJ. Microbiology 156: 1619 1631.
73. Jani, C.,, H. Eoh,, J. J. Lee,, K. Hamasha,, M. B. Sahana,, J. S. Han,, S. Nyayapathy,, J. Y. Lee,, J. W. Suh,, S. H. Lee,, S. J. Rehse,, D. C. Crick,, and C. M. Kang. 2010 Regulation of polar peptidoglycan biosynthesis by Wag31 phosphorylation in mycobacteria. BMC Microbiol. 10: 327.
74. Jensen-Cain, D. M.,, and F. D. Quinn. 2001. Differential expression of sigE by Mycobacterium tuberculosis during intracellular growth. Microb. Pathog. 30: 271 278.
75. Joly, N.,, C. Engl,, G. Jovanovic,, M. Huvet,, T. Toni,, X. Sheng,, M. P. Stumpf,, and M. Buck. 2010. Managing membrane stress: the phage shock protein (Psp) response, from molecular mechanisms to physiology. FEMS Microbiol. Rev. 34: 797 827.
76. Jones, G.,, and P. Dyson. 2006 Evolution of transmembrane protein kinases implicated in coordinating remodeling of gram-positive peptidoglycan: inside versus outside. J. Bacteriol. 188: 7470 7476.
77. Kang, C. M.,, D. W. Abbott,, S. T. Park,, C. C. Dascher,, L. C. Cantley,, and R. N. Husson. 2005. The Mycobacterium tuberculosis serine/threonine kinases PknA and PknB: substrate identification and regulation of cell shape. Genes Dev. 19: 1692 1704.
78. Kang, C. M.,, S. Nyayapathy,, J. Y. Lee,, J. W. Suh,, and R. N. Husson. 2008. Wag31, a homologue of the cell division protein DivIVA, regulates growth, morphology and polar cell wall synthesis in mycobacteria. Microbiology 154: 725 735.
79. Karakousis, P. C.,, T. Yoshimatsu,, G. Lamichhane,, S. C. Woolwine,, E. L. Nuermberger,, J. Grosset,, and W. R. Bishai. 2004. Dormancy phenotype displayed by extracellular Mycobacterium tuberculosis within artificial granulomas in mice. J. Exp. Med. 200: 647 657.
80. Kaur, D.,, M. E. Guerin,, H. Skovierova,, P. J. Brennan,, and M. Jackson. 2009. Chapter 2: biogenesis of the cell wall and other glycoconjugates of Mycobacterium tuberculosis. Adv. Appl. Microbiol. 69: 23 78.
81. Keep, N. H.,, J. M. Ward,, M. Cohen-Gonsaud,, and B. Henderson. 2006. Wake up! Peptidoglycan lysis and bacterial non-growth states. Trends Microbiol. 14: 271 276.
82. Khan, S.,, S. N. Nagarajan,, A. Parikh,, S. Samantaray,, A. Singh,, D. Kumar,, R. P. Roy,, A. Bhatt,, and V. K. Nandicoori. 2010. Phosphorylation of enoyl-acyl carrier protein reductase InhA impacts mycobacterial growth and survival. J. Biol. Chem. 285: 37860 37871.
83. Kim, D. Y.,, and K. K. Kim. 2005. Structure and function of HtrA family proteins, the key players in protein quality control. J. Biochem. Mol. Biol. 38: 266 274.
84. Koch, R. 1884. 2 Die Aetiologie der Tuberkulose. Mitt Kaiser Gesundh. 1884: 1 88.
85. Koul, A.,, A. Choidas,, A. K. Tyagi,, K. Drlica,, Y. Singh,, and A. Ullrich. 2001. Serine/threonine protein kinases PknF and PknG of Mycobacterium tuberculosis: characterization and localization. Microbiology 147: 2307 2314.
86. Kumar, A.,, J. S. Deshane,, D. K. Crossman,, S. Bolisetty,, B. S. Yan,, I. Kramnik,, A. Agarwal,, and A. J. Steyn. 2008. Heme oxygenase-1-derived carbon monoxide induces the Mycobacterium tuberculosis dormancy regulon. J. Biol. Chem. 283: 18032 18039.
87. Kumar, P.,, D. Kumar,, A. Parikh,, D. Rananaware,, M. Gupta,, Y. Singh,, and V. K. Nandicoori. 2009. The Mycobacterium tuberculosis protein kinase K modulates activation of transcription from the promoter of mycobacterial monooxygenase operon through phosphorylation of the transcriptional regulator VirS. J. Biol. Chem. 284: 11090 11099.
88. Kusunose, E.,, K. Ichihara,, Y. Noda,, and M. Kusunose. 1976. Superoxide dismutase from Mycobacterium tuberculosis. J. Biochem. 80: 1343 1352.
89. Lee, J. H.,, P. C. Karakousis,, and W. R. Bishai. 2008. Roles of SigB and SigF in the Mycobacterium tuberculosis sigma factor network. J. Bacteriol. 190: 699 707.
90. Lehrer, R. I.,, A. K. Lichtenstein,, and T. Ganz. 1993. Defensins: antimicrobial and cytotoxic peptides of mammalian cells. Annu. Rev. Immunol. 11: 105 128.
91. Leyten, E. M.,, M. Y. Lin,, K. L. Franken,, A. H. Friggen,, C. Prins,, K. E. van Meijgaarden,, M. I. Voskuil,, K. Weldingh,, P. Andersen,, G. K. Schoolnik,, S. M. Arend,, T. H. Ottenhoff,, and M. R. Klein. 2006. Human T-cell responses to 25 novel antigens encoded by genes of the dormancy regulon of Mycobacterium tuberculosis. Microbes Infect. 8: 2052 2060.
92. Liu, P. T.,, S. Stenger,, H. Li,, L. Wenzel,, B. H. Tan,, S. R. Krutzik,, M. T. Ochoa,, J. Schauber,, K. Wu,, C. Meinken,, D. L. Kamen,, M. Wagner,, R. Bals,, A. Steinmeyer,, U. Zugel,, R. L. Gallo,, D. Eisenberg,, M. Hewison,, B. W. Hollis,, J. S. Adams,, B. R. Bloom,, and R. L. Modlin. 2006. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 311: 1770 1773.
93. Lombana, T. N.,, N. Echols,, M. C. Good,, N. D. Thomsen,, H. L. Ng,, A. E. Greenstein,, A. M. Falick,, D. S. King,, and T. Alber. 2010. Allosteric activation mechanism of the Mycobacterium tuberculosis receptor Ser/Thr protein kinase, PknB. Structure 18: 1667 1677.
94. Luetkemeyer, A. F.,, D. V. Havlir,, and J. S. Currier. 2010. Complications of HIV disease and antiretroviral treatment. Top. HIV Med. 18: 57 65.
95. MacMicking, J.,, Q. W. Xie,, and C. Nathan. 1997. Nitric oxide and macrophage function. Annu. Rev. Immunol. 15: 323 350.
96. Manganelli, R.,, E. Dubnau,, S. Tyagi,, F. R. Kramer,, and I. Smith. 1999. Differential expression of 10 sigma factor genes in Mycobacterium tuberculosis. Mol. Microbiol. 31: 715 724.
97. Manganelli, R.,, L. Fattorini,, D. Tan,, E. Iona,, G. Orefici,, G. Altavilla,, P. Cusatelli,, and I. Smith. 2004. The extra cytoplasmic function sigma factor σ E is essential for Mycobacterium tuberculosis virulence in mice. Infect. Immun. 72: 3038 3041.
98. Manganelli, R.,, and R. Provvedi. 2010. An integrated regulatory network including two positive feedback loops to modulate the activity of σ E in mycobacteria. Mol. Microbiol. 75: 538 542.
99. Manganelli, R.,, M. I. Voskuil,, G. K. Schoolnik,, E. Dubnau,, M. Gomez,, and I. Smith. 2002. Role of the extracytoplasmic-function sigma factor σ H in Mycobacterium tuberculosis global gene expression. Mol. Microbiol. 45: 365 374.
100. Manganelli, R.,, M. I. Voskuil,, G. K. Schoolnik,, and I. Smith. 2001. The Mycobacterium tuberculosis ECF sigma factor o E: role in global gene expression and survival in macrophages. Mol. Microbiol. 41: 423 437.
101. Matsuhashi, M. 1966. [Biosynthesis in the bacterial cell wall]. Tanpakushitsu Kakusan Koso 11: 875 886.
102. Mehra, S.,, and D. Kaushal. 2009. Functional genomics reveals extended roles of the Mycobacterium tuberculosis stress response factor o H. J. Bacteriol. 191: 3965 3980.
103. Mieczkowski, C.,, A. T. Iavarone,, and T. Alber. 2008. Auto-activation mechanism of the Mycobacterium tuberculosis PknB receptor Ser/Thr kinase. EMBO J. 27: 3186 3197.
104. Mir, M.,, J. Asong,, X. Li,, J. Cardot,, G. J. Boons,, and R. N. Husson. 2011. The extracytoplasmic domain of the Mycobacterium tuberculosis Ser/Thr kinase PknB binds specific muropeptides and is required for PknB localization. PLoS Pathog. 7: e1002182.
105. Mohamedmohaideen, N. N.,, S. K. Palaninathan,, P. M. Morin,, B. J. Williams,, M. Braunstein,, S. E. Tichy,, J. Locker,, D. H. Russell,, W. R. Jacobs,, and J. C. Sacchettini. 2008. Structure and function of the virulence-associated high-temperature requirement A of Mycobacterium tuberculosis. Biochemistry 47: 6092 6102.
106. Molle, V.,, A. K. Brown,, G. S. Besra,, A. J. Cozzone,, and L. Kremer. 2006a. The condensing activities of the Mycobacterium tuberculosis type II fatty acid synthase are differentially regulated by phosphorylation. J. Biol. Chem. 281: 30094 30103.
107. Molle, V.,, I. Zanella-Cleon,, J. P. Robin,, S. Mallejac,, A. J. Cozzone,, and M. Becchi. 2006b. Characterization of the phosphorylation sites of Mycobacterium tuberculosis serine/threonine protein kinases, PknA, PknD, PknE, and PknH by mass spectrometry. Proteomics 6: 3754 3766.
108. Molle, V.,, C. Girard-Blanc,, L. Kremer,, P. Doublet,, A. J. Cozzone,, and J. F. Prost. 2003a. Protein PknE, a novel transmembrane eukaryotic-like serine/threonine kinase from Mycobacterium tuberculosis. Biochem. Biophys. Res. Commun. 308: 820 825.
109. Molle, V.,, L. Kremer,, C. Girard-Blanc,, G. S. Besra,, A. J. Cozzone,, and J. F. Prost. 2003b. An FHA phosphoprotein recognition domain mediates protein EmbR phosphorylation by PknH, a Ser/Thr protein kinase from Mycobacterium tuberculosis. Biochemistry 42: 15300 15309.
110. Molle, V.,, G. Gulten,, C. Vilcheze,, R. Veyron-Churlet,, I. Zanella-Cleon,, J. C. Sacchettini,, W. R. Jacobs, Jr.,, and L. Kremer. 2010. Phosphorylation of InhA inhibits mycolic acid biosynthesis and growth of Mycobacterium tuberculosis. Mol. Microbiol. 78: 1591 1605.
111. Mukamolova, G. V.,, O. A. Turapov,, D. I. Young,, A. S. Kaprelyants,, D. B. Kell,, and M. Young. 2002. A family of autocrine growth factors in Mycobacterium tuberculosis. Mol. Microbiol. 46: 623 635.
112. Mukherjee, P.,, K. Sureka,, P. Datta,, T. Hossain,, S. Barik,, K. P. Das,, M. Kundu,, and J. Basu. 2009. Novel role of Wag31 in protection of mycobacteria under oxidative stress. Mol. Microbiol. 73: 103 119.
113. Mukherjee, R.,, and D. Chatterji. 2005. Evaluation of the role of sigma B in Mycobacterium smegmatis. Biochem. Biophys. Res. Commun. 338: 964 972.
114. Mukherjee, R.,, M. Gomez,, N. Jayaraman,, I. Smith,, and D. Chatterji. 2005. Hyperglycosylation of glycopeptidolipid of Mycobacterium smegmatis under nutrient starvation: structural studies. Microbiology 151: 2385 2392.
115. Narayan, A.,, P. Sachdeva,, K. Sharma,, A. K. Saini,, A. K. Tyagi,, and Y. Singh. 2007. Serine threonine protein kinases of mycobacterial genus: phylogeny to function. Physiol. Genomics 29: 66 75.
116. Nguyen, L.,, N. Scherr,, J. Gatfield,, A. Walburger,, J. Pieters,, and C. J. Thompson. 2007. Antigen 84, an effector of pleiomorphism in Mycobacterium smegmatis. J. Bacteriol. 189: 7896 7910.
117. Ohara, N.,, M. Naito,, C. Miyazaki,, S. Matsumoto,, Y. Tabira,, and T. Yamada. 1997. HrpA, a new ribosome-associated protein which appears in heat-stressed Mycobacterium bovis bacillus Calmette-Guerin. J. Bacteriol. 179: 6495 6498.
118. Ortalo-Magne, A.,, A. Lemassu,, M. A. Laneelle,, F. Bardou,, G. Silve,, P. Gounon,, G. Marchal,, and M. Daffe. 1996. Identification of the surface-exposed lipids on the cell envelopes of Mycobacterium tuberculosis and other mycobacterial species. J. Bacteriol. 178: 456 461.
119. Ortiz-Lombardia, M.,, F. Pompeo,, B. Boitel,, and P. M. Alzari. 2003. Crystal structure of the catalytic domain of the PknB serine/threonine kinase from Mycobacterium tuberculosis. J. Biol. Chem. 278: 13094 13100.
120. Ouellet, H.,, Y. Ouellet,, C. Richard,, M. Labarre,, B. Wittenberg,, J. Wittenberg,, and M. Guertin. 2002. Truncated hemoglobin HbN protects Mycobacterium bovis from nitric oxide. Proc. Natl. Acad. Sci. USA 99: 5902 5907.
121. Pang, X.,, and S. T. Howard. 2007. Regulation of the alpha-crystallin gene acr2 by the MprAB two-component system of Mycobacterium tuberculosis. J. Bacteriol. 189: 6213 6221.
122. Pang, X.,, P. Vu,, T. F. Byrd,, S. Ghanny,, P. Soteropoulos,, G. V. Mukamolova,, S. Wu,, B. Samten,, and S. T. Howard. 2007. Evidence for complex interactions of stress-associated regulons in an mprAB deletion mutant of Mycobacterium tuberculosis. Microbiology 153: 1229 1242.
123. Parikh, A.,, S. K. Verma,, S. Khan,, B. Prakash,, and V. K. Nandicoori. 2009. PknB-mediated phosphorylation of a novel substrate, N-acetylglucosamine-1-phosphate uridyltransferase, modulates its acetyltransferase activity. J. Mol. Biol. 386: 451 464.
124. Parish, T.,, D. A. Smith,, S. Kendall,, N. Casali,, G. J. Bancroft,, and N. G. Stoker. 2003. Deletion of two-component regulatory systems increases the virulence of Mycobacterium tuberculosis. Infect. Immun. 71: 1134 1140.
125. Park, H. D.,, K. M. Guinn,, M. I. Harrell,, R. Liao,, M. I. Voskuil,, M. Tompa,, G. K. Schoolnik,, and D. R. Sherman. 2003. Rv3133c/dosR is a transcription factor that mediates the hypoxic response of Mycobacterium tuberculosis. Mol. Microbiol. 48: 833 843.
126. Park, S. T.,, C. M. Kang,, and R. N. Husson. 2008. Regulation of the SigH stress response regulon by an essential protein kinase in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 105: 13105 13110.
127. Pasula, R.,, J. F. Downing,, J. R. Wright,, D. L. Kachel,, T. E. Davis, Jr.,, and W. J. Martin II. 1997. Surfactant protein A (SP-A) mediates attachment of Mycobacterium tuberculosis to murine alveolar macrophages. Am. J. Respir. Cell Mol. Biol. 17: 209 217.
128. Pathania, R.,, N. K. Navani,, A. M. Gardner,, P. R. Gardner,, and K. L. Dikshit. 2002. Nitric oxide scavenging and detoxification by the Mycobacterium tuberculosis haemoglobin, HbN in Escherichia coli. Mol. Microbiol. 45: 1303 1314.
129. Perez, E.,, S. Samper,, Y. Bordas,, C. Guilhot,, B. Gicquel,, and C. Martin. 2001. An essential role for phoP in Mycobacterium tuberculosis virulence. Mol. Microbiol. 41: 179 187.
130. Portevin, D.,, C. De Sousa-D’Auria,, C. Houssin,, C. Grimaldi,, M. Chami,, M. Daffe,, and C. Guilhot. 2004. A polyketide synthase catalyzes the last condensation step of mycolic acid biosynthesis in mycobacteria and related organisms. Proc. Natl. Acad. Sci. USA 101: 314 319.
131. Pratt, R. F. 2008. Substrate specificity of bacterial DD-peptidases (penicillin-binding proteins). Cell. Mol. Life Sci. 65: 2138 2155.
132. Prisic, S.,, S. Dankwa,, D. Schwartz,, M. F. Chou,, J. W. Locasale,, C. M. Kang,, G. Bemis,, G. M. Church,, H. Steen,, and R. N. Husson. 2010. Extensive phosphorylation with overlapping specificity by Mycobacterium tuberculosis serine/threonine protein kinases. Proc. Natl. Acad. Sci. USA 107: 7521 7526.
133. Pucci, M. J.,, J. A. Thanassi,, L. F. Discotto,, R. E. Kessler,, and T. J. Dougherty. 1997. Identification and characterization of cell wall-cell division gene clusters in pathogenic gram-positive cocci. J. Bacteriol. 179: 5632 5635.
134. Pullen, K. E.,, H. L. Ng,, P. Y. Sung,, M. C. Good,, S. M. Smith,, and T. Alber. 2004. An alternate conformation and a third metal in PstP/Ppp, the M. tuberculosis PP2C-family Ser/Thr protein phosphatase. Structure 12: 1947 1954.
135. Raman, S.,, X. Puyang,, T. Y. Cheng,, D. C. Young,, D. B. Moody,, and R. N. Husson. 2006. Mycobacterium tuberculosis SigM positively regulates Esx secreted protein and nonribosomal peptide synthetase genes and down regulates virulence-associated surface lipid synthesis. J. Bacteriol. 188: 8460 8468.
136. Raman, S.,, T. Song,, X. Puyang,, S. Bardarov,, W. R. Jacobs, Jr.,, and R. N. Husson. 2001. The alternative sigma factor SigH regulates major components of oxidative and heat stress responses in Mycobacterium tuberculosis. J. Bacteriol. 183: 6119 6125.
137. Rastogi, N.,, E. Legrand,, and C. Sola. 2001. The mycobacteria: an introduction to nomenclature and pathogenesis. Rev. Sci. Tech. 20: 21 54.
138. Reed, M. B.,, V. K. Pichler,, F. McIntosh,, A. Mattia,, A. Fallow,, S. Masala,, P. Domenech,, A. Zwerling,, L. Thibert,, D. Menzies,, K. Schwartzman,, and M. A. Behr. 2009. Major Mycobacterium tuberculosis lineages associate with patient country of origin. J. Clin. Microbiol. 47: 1119 1128.
139. Rickman, L.,, J. W. Saldanha,, D. M. Hunt,, D. N. Hoar,, M. J. Colston,, J. B. Millar,, and R. S. Buxton. 2004. A two-component signal transduction system with a PAS domain-containing sensor is required for virulence of Mycobacterium tuberculosis in mice. Biochem. Biophys. Res. Commun. 314: 259 267.
140. Rodrigue, S.,, R. Provvedi,, P. E. Jacques,, L. Gaudreau,, and R. Manganelli. 2006. The sigma factors of Mycobacterium tuberculosis. FEMS Microbiol. Rev. 30: 926 941.
141. Russell, D. G.,, H. C. Mwandumba,, and E. E. Rhoades. 2002. Mycobacterium and the coat of many lipids. J. Cell Biol. 158: 421 426.
142. Russell, D. G.,, B. C. VanderVen,, W. Lee,, R. B. Abramovitch,, M. J. Kim,, S. Homolka,, S. Niemann,, and K. H. Rohde. 2010. Mycobacterium tuberculosis wears what it eats. Cell Host Microbe 8: 68 76.
143. Sacco, E.,, A. S. Covarrubias,, H. M. O’Hare,, P. Carroll,, N. Eynard,, T. A. Jones,, T. Parish,, M. Daffe,, K. Backbro,, and A. Quemard. 2007. The missing piece of the type II fatty acid synthase system from Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 104: 14628 14633.
144. Sajid, A.,, G. Arora,, M. Gupta,, S. Upadhyay,, V. K. Nandicoori,, and Y. Singh. 2011. Phosphorylation of Mycobacterium tuberculosis Ser/Thr phosphatase by PknA and PknB. PLoS One 6:e17871.
145. Sassetti, C. M.,, D. H. Boyd,, and E. J. Rubin. 2001. Comprehensive identification of conditionally essential genes in mycobacteria. Proc. Natl. Acad. Sci. USA 98: 12712 12717.
146. Schnappinger, D.,, S. Ehrt,, M. I. Voskuil,, Y. Liu,, J. A. Mangan,, I. M. Monahan,, G. Dolganov,, B. Efron,, P. D. Butcher,, C. Nathan,, and G. K. Schoolnik. 2003. Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J. Exp. Med. 198: 693 704.
147. Shah, I. M.,, M. H. Laaberki,, D. L. Popham,, and J. Dworkin. 2008. A eukaryotic-like Ser/Thr kinase signals bacteria to exit dormancy in response to peptidoglycan fragments. Cell 135: 486 496.
148. Sharma, K.,, M. Gupta,, A. Krupa,, N. Srinivasan,, and Y. Singh. 2006. EmbR, a regulatory protein with ATPase activity, is a substrate of multiple serine/threonine kinases and phosphatase in Mycobacterium tuberculosis. FEBS J. 273: 2711 2721.
149. Sherrid, A. M.,, T. R. Rustad,, G. A. Cangelosi,, and D. R. Sherman. 2010. Characterization of a Clp protease gene regulator and the reaeration response in Mycobacterium tuberculosis. PLoS One 5: e11622.
150. Singh, A.,, Y. Singh,, R. Pine,, L. Shi,, R. Chandra,, and K. Drlica. 2006. Protein kinase I of Mycobacterium tuberculosis: cellular localization and expression during infection of macrophage-like cells. Tuberculosis (Edinburgh) 86: 28 33.
151. Slama, N.,, J. Leiba,, N. Eynard,, M. Daffe,, L. Kremer,, A. Quemard,, and V. Molle. 2011. Negative regulation by Ser/Thr phosphorylation of HadAB and HadBC dehydratases from Mycobacterium tuberculosis type II fatty acid synthase system. Biochem. Biophys. Res. Commun. 412: 401 406.
152. Sonawane, A.,, J. C. Santos,, B. B. Mishra,, P. Jena,, C. Progida,, O. E. Sorensen,, R. Gallo,, R. Appelberg,, and G. Griffiths. 2011. Cathelicidin is involved in the intracellular killing of mycobacteria in macrophages. Cell. Microbiol. 13: 1601 1617.
153. Song, T.,, S. L. Dove,, K. H. Lee,, and R. N. Husson. 2003. RshA, an anti-sigma factor that regulates the activity of the mycobacterial stress response sigma factor SigH. Mol. Microbiol. 50: 949 959.
154. Song, T.,, S. E. Song,, S. Raman,, M. Anaya,, and R. N. Husson. 2008. Critical role of a single position in the ­35 element for promoter recognition by Mycobacterium tuberculosis SigE and SigH. J. Bacteriol. 190: 2227 2230.
155. Stack, H. M.,, R. D. Sleator,, M. Bowers,, C. Hill,, and C. G. Gahan. 2005. Role for HtrA in stress induction and virulence potential in Listeria monocytogenes. Appl. Environ. Microbiol. 71: 4241 4247.
156. Stewart, G. R.,, S. M. Newton,, K. A. Wilkinson,, I. R. Humphreys,, H. N. Murphy,, B. D. Robertson,, R. J. Wilkinson,, and D. B. Young. 2005. The stress-responsive chaperone alpha-crystallin 2 is required for pathogenesis of Mycobacterium tuberculosis. Mol. Microbiol. 55: 1127 1137.
157. Stewart, G. R.,, L. Wernisch,, R. Stabler,, J. A. Mangan,, J. Hinds,, K. G. Laing,, D. B. Young,, and P. D. Butcher. 2002. Dissection of the heat-shock response in Mycobacterium tuberculosis using mutants and microarrays. Microbiology 148: 3129 3138.
158. Stokes, R. W.,, R. Norris-Jones,, D. E. Brooks,, T. J. Beveridge,, D. Doxsee,, and L. M. Thorson. 2004. The glycan-rich outer layer of the cell wall of Mycobacterium tuberculosis acts as an antiphagocytic capsule limiting the association of the bacterium with macrophages. Infect. Immun. 72: 5676 5686.
159. Sturgill-Koszycki, S.,, P. H. Schlesinger,, P. Chakraborty,, P. L. Haddix,, H. L. Collins,, A. K. Fok,, R. D. Allen,, S. L. Gluck,, J. Heuser,, and D. G. Russell. 1994. Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science 263: 678 681.
160. Sureka, K.,, S. Dey,, P. Datta,, A. K. Singh,, A. Dasgupta,, S. Rodrigue,, J. Basu,, and M. Kundu. 2007. Polyphosphate kinase is involved in stress-induced mprAB-sigE-rel signalling in mycobacteria. Mol. Microbiol. 65: 261 276.
161. Sureka, K.,, T. Hossain,, P. Mukherjee,, P. Chatterjee,, P. Datta,, M. Kundu,, and J. Basu. 2010. Novel role of phosphorylation-dependent interaction between FtsZ and FipA in mycobacterial cell division. PLoS One 5:e8590.
162. Tabira, Y.,, N. Ohara,, and T. Yamada. 2000. Identification and characterization of the ribosome-associated protein, HrpA, of Bacillus Calmette-Guerin. Microb. Pathog. 29: 213 222.
163. Talaat, A. M.,, R. Lyons,, S. T. Howard,, and S. A. Johnston. 2004. The temporal expression profile of Mycobacterium tuberculosis infection in mice. Proc. Natl. Acad. Sci. USA 101: 4602 4607.
164. Talaat, A. M.,, S. K. Ward,, C. W. Wu,, E. Rondon,, C. Tavano,, J. P. Bannantine,, R. Lyons,, and S. A. Johnston. 2007. Mycobacterial bacilli are metabolically active during chronic tuberculosis in murine lungs: insights from genome-wide transcriptional profiling. J. Bacteriol. 189: 4265 4274.
165. Territo, M. C.,, T. Ganz,, M. E. Selsted,, and R. Lehrer. 1989. Monocyte-chemotactic activity of defensins from human neutrophils. J. Clin. Investig. 84: 2017 2020.
166. Thakur, M.,, R. Chaba,, A. K. Mondal,, and P. K. Chakraborti. 2008. Interdomain interaction reconstitutes the functionality of PknA, a eukaryotic type Ser/Thr kinase from Mycobacterium tuberculosis. J. Biol. Chem. 283: 8023 8033.
167. Thakur, M.,, and P. K. Chakraborti. 2008. Ability of PknA, a mycobacterial eukaryotic-type serine/threonine kinase, to transphosphorylate MurD, a ligase involved in the process of peptidoglycan biosynthesis. Biochem. J. 415: 27 33.
168. Thakur, M.,, and P. K. Chakraborti. 2006. GTPase activity of mycobacterial FtsZ is impaired due to its transphosphorylation by the eukaryotic-type Ser/Thr kinase, PknA. J. Biol. Chem. 281: 40107 40113.
169. Tiemersma, E. W.,, M. J. van der Werf,, M. W. Borgdorff,, B. G. Williams,, and N. J. Nagelkerke. 2011. Natural history of tuberculosis: duration and fatality of untreated pulmonary tuberculosis in HIV negative patients: a systematic review. PLoS One 6: e17601.
170. Traag, B. A.,, A. Driks,, P. Stragier,, W. Bitter,, G. Broussard,, G. Hatfull,, F. Chu,, K. N. Adams,, L. Ramakrishnan,, and R. Losick. 2010. Do mycobacteria produce endospores? Proc. Natl. Acad. Sci. USA 107: 878 881.
171. Trivedi, O. A.,, P. Arora,, A. Vats,, M. Z. Ansari,, R. Tickoo,, V. Sridharan,, D. Mohanty,, and R. S. Gokhale. 2005. Dissecting the mechanism and assembly of a complex virulence mycobacterial lipid. Mol. Cell 17: 631 643.
172. Vergne, I.,, J. Chua,, S. B. Singh,, and V. Deretic. 2004. Cell biology of Mycobacterium tuberculosis phagosome. Annu. Rev. Cell Dev. Biol. 20: 367 394.
173. Veyron-Churlet, R.,, V. Molle,, R. C. Taylor,, A. K. Brown,, G. S. Besra,, I. Zanella-Cleon,, K. Futterer,, and L. Kremer. 2009. The Mycobacterium tuberculosis beta-ketoacyl-acyl carrier protein synthase III activity is inhibited by phosphorylation on a single threonine residue. J. Biol. Chem. 284: 6414 6424.
174. Veyron-Churlet, R.,, I. Zanella-Cleon,, M. Cohen-Gonsaud,, V. Molle,, and L. Kremer. 2010. Phosphorylation of the Mycobacterium tuberculosis beta-ketoacyl-acyl carrier protein reductase MabA regulates mycolic acid biosynthesis. J. Biol. Chem. 285: 12714 12725.
175. Via, L. E.,, R. Curcic,, M. H. Mudd,, S. Dhandayuthapani,, R. J. Ulmer,, and V. Deretic. 1996. Elements of signal transduction in Mycobacterium tuberculosis: in vitro phosphorylation and in vivo expression of the response regulator MtrA. J. Bacteriol. 178: 3314 3321.
176. Voskuil, M. I.,, D. Schnappinger,, K. C. Visconti,, M. I. Harrell,, G. M. Dolganov,, D. R. Sherman,, and G. K. Schoolnik. 2003. Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program. J. Exp. Med. 198: 705 713.
177. Walters, S. B.,, E. Dubnau,, I. Kolesnikova,, F. Laval,, M. Daffe,, and I. Smith. 2006. The Mycobacterium tuberculosis PhoPR two-component system regulates genes essential for virulence and complex lipid biosynthesis. Mol. Microbiol. 60: 312 330.
178. Wang, Z.,, U. Schwab,, E. Rhoades,, P. R. Chess,, D. G. Russell,, and R. H. Notter. 2008. Peripheral cell wall lipids of Mycobacterium tuberculosis are inhibitory to surfactant function. Tuberculosis (Edinburgh) 88: 178 186.
179. Wayne, L. G. 1994. Dormancy of Mycobacterium tuberculosis and latency of disease. Eur. J. Clin. Microbiol. Infect. Dis. 13: 908 914.
180. Wayne, L. G.,, and L. G. Hayes. 1996. An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect. Immun. 64: 2062 2069.
181. Welin, A.,, J. Raffetseder,, D. Eklund,, O. Stendahl,, and M. Lerm. 2011. Importance of phagosomal functionality for growth restriction of Mycobacterium tuberculosis in primary human macrophages. J. Innate Immun. 3: 508 518.
182. White, M. J.,, H. He,, R. M. Penoske,, S. S. Twining,, and T. C. Zahrt. 2010. PepD participates in the mycobacterial stress response mediated through MprAB and SigE. J. Bacteriol. 192: 1498 1510.
183. White, M. J.,, J. P. Savaryn,, D. J. Bretl,, H. He,, R. M. Penoske,, S. S. Terhune,, and T. C. Zahrt. 2011. The HtrA-like serine protease PepD interacts with and modulates the Mycobacterium tuberculosis 35-kDa antigen outer envelope protein. PLoS One 6: e18175.
184. Wilkinson, K. A.,, G. R. Stewart,, S. M. Newton,, H. M. Vordermeier,, J. R. Wain,, H. N. Murphy,, K. Horner,, D. B. Young,, and R. J.Wilkinson. 2005. Infection biology of a novel alpha-crystallin of Mycobacterium tuberculosis: Acr2. J. Immunol. 174: 4237 4243.
185. Williams, D. L.,, T. L. Pittman,, M. Deshotel,, S. Oby-Robinson,, I. Smith,, and R. Husson. 2007. Molecular basis of the defective heat stress response in Mycobacterium leprae. J. Bacteriol. 189: 8818 8827.
186. World HealtOrganization. 2010. Global Tuberculosis Control. World Health Organization, Geneva, Switzerland.
187. Wu, Q. L.,, D. Kong,, K. Lam,, and R. N. Husson. 1997. A mycobacterial extracytoplasmic function sigma factor involved in survival following stress. J. Bacteriol. 179: 2922 2929.
188. Yang, D.,, O. Chertov,, S. N. Bykovskaia,, Q. Chen,, M. J. Buffo,, J. Shogan,, M. Anderson,, J. M. Schroder,, J. M. Wang,, O. M. Howard,, and J. J. Oppenheim. 1999. Beta-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science 286: 525 528.
189. Young, T. A.,, B. Delagoutte,, J. A. Endrizzi,, A. M. Falick,, and T. Alber. 2003. Structure of Mycobacterium tuberculosis PknB supports a universal activation mechanism for Ser/Thr protein kinases. Nat. Struct. Biol. 10: 168 174.
190. Zahrt, T. C.,, and V. Deretic. 2001. Mycobacterium tuberculosis signal transduction system required for persistent infections. Proc. Natl. Acad. Sci. USA 98: 12706 12711.
191. Zahrt, T. C.,, C. Wozniak,, D. Jones,, and A. Trevett. 2003. Functional analysis of the Mycobacterium tuberculosis MprAB two-component signal transduction system. Infect. Immun. 71: 6962 6970.
192. Zhang, W.,, V. C. Jones,, M. S. Scherman,, S. Mahapatra,, D. Crick,, S. Bhamidi,, Y. Xin,, M. R. McNeil,, and Y. Ma. 2008. Expression, essentiality, and a microtiter plate assay for mycobacterial GlmU, the bifunctional glucosamine-1-phosphate acetyltransferase and N-acetylglucosamine-1-phosphate uridyltransferase. Int. J. Biochem. Cell Biol. 40: 2560 2571.
193. Zhang, Y.,, B. Heym,, B. Allen,, D. Young,, and S. Cole. 1992. The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature 358: 591 593.
194. Zink, A.,, C. J. Haas,, U. Reischl,, U. Szeimies,, and A. G. Nerlich. 2001. Molecular analysis of skeletal tuberculosis in an ancient Egyptian population. J. Med. Microbiol. 50: 355 366.
195. Zink, A. R.,, C. Sola,, U. Reischl,, W. Grabner,, N. Rastogi,, H. Wolf,, and A. G. Nerlich. 2003. Characterization of Mycobacterium tuberculosis complex DNAs from Egyptian mummies by spoligotyping. J. Clin. Microbiol. 41: 359 367.


Generic image for table
Table 1

Regulators of cell envelope and environmental stresses known to activate their signaling

Citation: Bretl D, Zahrt T. 2013. Regulation of Envelope Stress Responses by , p 465-489. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch24
Generic image for table
Table 2

Genes coregulated by transcriptional regulators associated with cell envelope stress

Citation: Bretl D, Zahrt T. 2013. Regulation of Envelope Stress Responses by , p 465-489. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch24

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error