Chapter 9 : Regulation of Exopolysaccharide Biosynthesis in

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Regulation of Exopolysaccharide Biosynthesis in , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818524/9781555816766_Chap09-1.gif /docserver/preview/fulltext/10.1128/9781555818524/9781555816766_Chap09-2.gif


Alginate is arguably the best-characterized exopolysaccharide produced by , and several excellent reviews have been written on the molecular biology of its production and clinical ramifications. This chapter reviews the transcriptional factor and posttranscriptional factor involved in controlling and inducing alginate production. The gene encoding the cognate histidine kinase for the response regulator AlgB is (PA5484 on the PAO1 chromosome), located directly downstream of on the PAO1 chromosome. Deletion of also affected other known cyclic dimeric-GMP (c-di-GMP) processes in , including swarming motility, biofilm formation, and alginate production. It additionally showed, through the use of and fusions, that the predicted amino-terminal MHYT domain of MucR resides on the inner membrane. MHYT domains are proposed to bind O, NO, or CO. A model for c-di-GMP regulation of alginate production was proposed whereby the guanylate cyclase of MucR is stimulated by a yet-to-be-identified signal, which binds to a predicted MHYT domain in the amino terminus of MucR. The current state of knowledge indicates that Psl and Pel are likely involved with the initial stages of biofilm development, whereas alginate is the stress response exopolysaccharide. The levels of alginate produced by newly generated MucA, MucB, MucC, or MucD mutants of PAO1 and other nonmucoid clinical isolates (i.e., non-CF isolates) was found to be inversely related to biologically relevant concentrations (e.g., <5 to 100 μM) of iron present in the media used in this study.

Citation: Schurr M, Okkotsu Y, Pritchett C. 2013. Regulation of Exopolysaccharide Biosynthesis in , p 171-189. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch9
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Biochemical pathways that leads to Pel, alginate, and Psl exopolysaccharide production. Alginate production requires fructose-6-phosphate as the precursor for GDP-mannuronic acid. AlgA, AlgC, and AlgD perform this conversion. Since lacks enzymes required for glycolysis, carbon sources must be converted into tricarboxylic acid (TCA) cycle intermediates before being processed to fructose-6-phosphate via gluconeogenesis. GDP-mannuronic acid is polymerized (Alg8, Alg44, AlgX, and AlgK) and modified (AlgI, AlgJ, AlgF, AlgG, and AlgL) before being exported (AlgE) out to the extracellular space. Several enzymes required for alginate production overlap with Psl and Pel production. The precursors for Psl are sugar nucleotides, including GDP-mannose, UDP-glucose, and dTDP-l-rhamnose, which are derived from fructose-6-phosphate and glucose-6- phosphate from the activity of AlgC, a Psl-specific enzyme PslB, the AlgA homolog WbpW, and an enzyme involved with rhamnose production, RmlC. These precursors are polymerized (PslA, PslE, PslF, PslC, PslH, and PslI), modified (PslG), and exported (PslD). Pel is thought to consist of linear chains of sugar moieties. Sugar nucleotides produced by the metabolic pathway are, again, polymerized (PelF), modified (PelA), and exported (PelB). Currently, the roles of PelG, PelE, and PelC have not been elucidated. c-di-GMP also activates alginate and Pel production. MucR contains a GGDEF domain to synthesize c-di-GMP. c-di-GMP, in turn, binds to the PilZ domain of Alg44 to enhance alginate polymerization. PelD also contains a PilZ domain. Acetyl-CoA, acetyl coenzyme A; IM, inner membrane; OM, outer membrane; PDG, peptidoglycan layer. doi:10.1128/9781555818524.ch9f1

Citation: Schurr M, Okkotsu Y, Pritchett C. 2013. Regulation of Exopolysaccharide Biosynthesis in , p 171-189. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Transcriptional regulation of alginate biosynthetic genes. The transcription of the major operon (, , , , , , , , , , , and ) encoding the biosynthetic enzymes and membrane-associated polymerization, modification, and export proteins is regulated by the promoter region of (A). Transcriptional regulators (AlgR, AlgB, AmrZ, CysB, and CRP [from ]), histone-like proteins (Hp-1 and IHF), and two sigma factors (AlgU/T and RpoN) associate with the DNA and are involved with P transcription. Numbers underneath the regulator name indicate the regions of the DNA (relative to the transcriptional start site) that have been found to bind the regulator through experimental evidence. Binding sites of the regulators are shaded with their respective colors. Hp-1 binding regions are underlined. Sigma factor consensus sequences are boxed. (B and C) Models showing AlgU/T- and RpoN-dependent transcriptional activation. DNA bending is thought to occur with the aid of IHF and Hp-1. Transcriptional activators in the far upstream region, such as AlgR (B) or AlgB (C), are then able to activate transcription near the +1 site by interaction with the AlgU-RNAP or RpoN-RNAP complexes, respectively. P transcription is thought to be regulated by sigma factor competition (D). RpoN and AlgU binding sites overlap, and alginate production is activated depending on the type of stress encountered by the cell (nitrogen-related stress versus cell wall stress). doi:10.1128/9781555818524.ch9f2

Citation: Schurr M, Okkotsu Y, Pritchett C. 2013. Regulation of Exopolysaccharide Biosynthesis in , p 171-189. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Posttranslational regulatory system for alginate production. The cell wall stress-sensing mechanism that is intimately linked with alginate is encoded by the genes . MucA is a membrane-spanning anti-sigma factor that represses the AlgU sigma-factor regulon by sequestering AlgU to the membrane. MucB protects MucA from degradation. MucD is a general protease that scans the periplasm for misfolded or excess proteins to be degraded. Increase in membrane stress results in MucE or other proteins to be degraded in a way to reveal a WVF or YVF triple-residue motif, which is recognized by the protease AlgW. An unidentified signal activates the MucP and ClpP proteases. AlgW, MucP, and ClpP cleave MucA at either the cytoplasmic domain, the inner membrane, or the periplasmic domain, which results in AlgU/T release and activation of P. IM, inner membrane; OM, outer membrane; PDG, peptidoglycan layer. doi:10.1128/9781555818524.ch9f3

Citation: Schurr M, Okkotsu Y, Pritchett C. 2013. Regulation of Exopolysaccharide Biosynthesis in , p 171-189. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Albus, A.,, E. C. Pesci,, L. J. Runyen-Janecky,, S. E. West,, and B. H. Iglewski. 1997. Vfr controls quorum sensing in Pseudomonas aeruginosa. J. Bacteriol. 179: 3928 3935.
2. Amikam, D.,, and M. Y. Galperin. 2006. PilZ domain is part of the bacterial c-di-GMP binding protein. Bioinformatics 22: 3 6.
3. Anastassiou, E. D.,, A. C. Mintzas,, C. Kounavis,, and G. Dimitracopoulos. 1987. Alginate production by clinical nonmucoid Pseudomonas aeruginosa. J. Clin. Microbiol. 25: 656 659.
4. Arai, H.,, T. Kodama,, and Y. Igarashi. 1997. Cascade regulation of the two CRP/FNR-related transcriptional regulators (ANR and DNR) and the denitrification enzymes in Pseudomonas aeruginosa. Mol. Microbiol. 25: 1141 1148.
5. Baynham, P. J.,, A. L. Brown,, L. L. Hall,, and D. J. Wozniak. 1999. Pseudomonas aeruginosa AlgZ, a ribbon-helix-helix DNA-binding protein, is essential for alginate synthesis and algD transcriptional activation. Mol. Microbiol. 33: 1069 1080.
6. Baynham, P. J.,, D. M. Ramsey,, B. V. Gvozdyev,, E. M. Cordonnier,, and D. J. Wozniak. 2006. The Pseudomonas aeruginosa ribbon-helix-helix DNA-binding protein AlgZ (AmrZ) controls twitching motility and biogenesis of type IV pili. J. Bacteriol. 188: 132 140.
7. Baynham, P. J.,, and D. J. Wozniak. 1996. Identification and characterization of AlgZ, an AlgT-dependent DNA-binding protein required for Pseudomonas aeruginosa algD transcription. Mol. Microbiol. 22: 97 108.
8. Beatson, S. A.,, C. B. Whitchurch,, J. L. Sargent,, R. C. Levesque,, and J. S. Mattick. 2002. Differential regulation of twitching motility and elastase production by Vfr in Pseudomonas aeruginosa. J. Bacteriol. 184: 3605 3613.
9. Berry, A.,, J. D. DeVault,, and A. M. Chakrabarty. 1989. High osmolarity is a signal for enhanced algD transcription in mucoid and nonmucoid Pseudomonas aeruginosa strains. J. Bacteriol. 171: 2312 2317.
10. Blumer, C.,, and D. Haas. 2000. Iron regulation of the hcnABC genes encoding hydrogen cyanide synthase depends on the anaerobic regulator ANR rather than on the global activator GacA in Pseudomonas fluorescens CHA0. Microbiology 146( Pt. 10): 2417 2424.
11. Borlee, B. R.,, A. D. Goldman,, K. Murakami,, R. Samudrala,, D. J. Wozniak,, and M. R. Parsek. 2010. Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix. Mol. Microbiol. 75: 827 842.
12. Boucher, J. C.,, J. Martinez-Salazar,, M. J. Schurr,, M. H. Mudd,, H. Yu,, and V. Deretic. 1996. Two distinct loci affecting conversion to mucoidy in Pseudomonas aeruginosa in cystic fibrosis encode homologs of the serine protease HtrA. J. Bacteriol. 178: 511 523.
13. Boucher, J. C.,, M. J. Schurr,, and V. Deretic. 2000. Dual regulation of mucoidy in Pseudomonas aeruginosa and sigma factor antagonism. Mol. Microbiol. 36: 341 351.
14. Boucher, J. C.,, M. J. Schurr,, H. Yu,, D. W. Rowen,, and V. Deretic. 1997. Pseudomonas aeruginosa in cystic fibrosis: role of mucC in the regulation of alginate production and stress sensitivity. Microbiology 143: 3473 3480.
15. Bragonzi, A.,, D. Worlitzsch,, G. B. Pier,, P. Timpert,, M. Ulrich,, M. Hentzer,, J. B. Andersen,, M. Givskov,, M. Conese,, and G. Doring. 2005. Nonmucoid Pseudomonas aeruginosa expresses alginate in the lungs of patients with cystic fibrosis and in a mouse model. J. Infect. Dis. 192: 410 419.
16. Byrd, M. S.,, B. Pang,, W. Hong,, E. A. Waligora,, R. A. Juneau,, C. E. Armbruster,, K. E. Weimer, K. Murrah, E. E. Mann, H. Lu, A. Sprinkle, M. R. Parsek, N. D. Kock, D. J. Wozniak, and W. E. Swords. 2011. Direct evaluation of Pseudomonas aeruginosa biofilm mediators in a chronic infection model. Infect. Immun. 79: 3087 3095.
17. Byrd, M. S.,, B. Pang,, M. Mishra,, W. E. Swords,, and D. J. Wozniak. 2010. The Pseudomonas aeruginosa exopolysaccharide Psl facilitates surface adherence and NF-κB activation in A549 cells. mBio 1: e00140 10.
18. Byrd, M. S.,, I. Sadovskaya,, E. Vinogradov,, H. Lu,, A. B. Sprinkle,, S. H.Richardson, L. Ma, B. Ralston, M. R. Parsek, E. M. Anderson, J.S. Lam, and D. J. Wozniak. 2009. Genetic and biochemical analyses of the Pseudomonas aeruginosa Psl exopolysaccharide reveal overlapping roles for polysaccharide synthesis enzymes in Psl and LPS production. Mol. Microbiol. 73: 622 638.
19. Carterson, A. J.,, L. A. Morici,, D. W. Jackson,, A. Frisk,, S. E. Lizewski,, R. Jupiter,, K. Simpson,, D. A. Kunz,, S. H. Davis,, J. R. Schurr,, D. J.Hassett, and M. J. Schurr. 2004. The transcriptional regulator AlgR controls cyanide production in Pseudomonas aeruginosa. J. Bacteriol. 186: 6837 6844.
20. Cezairliyan, B. O.,, and R. T. Sauer. 2009. Control of Pseudomonas aeruginosa AlgW protease cleavage of MucA by peptide signals and MucB. Mol. Microbiol. 72: 368 379.
21. Chand, N. S.,, J. S. Lee,, A. E. Clatworthy,, A. J. Golas,, R. S. Smith,, and D. T. Hung. 2011. The sensor kinase KinB regulates virulence in acute Pseudomonas aeruginosa infection. J. Bacteriol. 193: 2989 2999.
22. Ciofu, O.,, B. Lee,, M. Johannesson,, N. O. Hermansen,, P. Meyer,, and N. Hoiby. 2008. Investigation of the algT operon sequence in mucoid and non-mucoid Pseudomonas aeruginosa isolates from 115 Scandinavian patients with cystic fibrosis and in 88 in vitro non-mucoid revertants. Microbiology 154: 103 113.
23. Cochran, W. L.,, S. J. Suh,, G. A. McFeters,, and P. S. Stewart. 2000. Role of RpoS and AlgT in Pseudomonas aeruginosa biofilm resistance to hydrogen peroxide and monochloramine. J. Appl. Microbiol. 88: 546 553.
24. Cody, W. L.,, C. L. Pritchett,, A. K. Jones,, A. J. Carterson,, D. Jackson,, A. Frisk,, M. C. Wolfgang,, and M. J. Schurr. 2009. Pseudomonas aeruginosa AlgR controls cyanide production in an AlgZ-dependent manner. J. Bacteriol. 191: 2993 3002.
25. Comolli, J. C.,, and T. J. Donohue. 2004. Differences in two Pseudomonas aeruginosa cbb 3 cytochrome oxidases. Mol. Microbiol. 51: 1193 1203.
26. Coulon, C.,, E. Vinogradov,, A. Filloux,, and I. Sadovskaya. 2010. Chemical analysis of cellular and extracellular carbohydrates of a biofilm-forming strain Pseudomonas aeruginosa PA14. PLoS One 5: e14220.
27. Coyne, M. J.,, K. S. Russell,, C. L. Coyle,, and J. B. Goldberg. 1994. The Pseudomonas aeruginosa algC gene encodes phosphoglucomutase, required for the synthesis of a complete lipopolysaccharide core. J. Bacteriol. 176: 3500 3507.
28. Damron, F. H.,, M. R. Davis, Jr., T. R. Withers, R. K. Ernst, J. B. Goldberg, G. Yu, and H. D. Yu. 2011. Vanadate and triclosan synergistically induce alginate production by Pseudomonas aeruginosa strain PAO1. Mol. Microbiol. 81: 554 570.
29. Damron, F. H.,, D. Qiu,, and H. D. Yu. 2009. The Pseudomonas aeruginosa sensor kinase KinB negatively controls alginate production through AlgW-dependent MucA proteolysis. J. Bacteriol. 191: 2285 2295.
30. Damron, F. H.,, and H. D. Yu. 2011. Pseudomonas aeruginosa MucD regulates the alginate pathway through activation of MucA degradation via MucP proteolytic activity. J. Bacteriol. 193: 286 291.
31. Dasgupta, N.,, E. P. Ferrell,, K. J. Kanack,, S. E. West,, and R. Ramphal. 2002. fleQ, the gene encoding the major flagellar regulator of Pseudomonas aeruginosa, is sigma70 dependent and is downregulated by Vfr, a homolog of Escherichia coli cyclic AMP receptor protein. J. Bacteriol. 184: 5240 5250.
32. Davies, D. G.,, A. M. Chakrabarty,, and G. G. Geesey. 1993. Exopolysaccharide production in biofilms: substratum activation of alginate gene expression by Pseudomonas aeruginosa. Appl. Environ. Microbiol. 59: 1181 1186.
33. Davies, D. G.,, and G. G. Geesey. 1995. Regulation of the alginate biosynthesis gene algC in Pseudomonas aeruginosa during biofilm development in continuous culture. Appl. Environ. Microbiol. 61: 860 867.
34. Davies, D. G.,, M. R. Parsek,, J. P. Pearson,, B. H. Iglewski,, J. W. Costerton,, and E. P. Greenberg. 1998. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280: 295 298.
35. Delic-Attree, I.,, B. Toussaint,, A. Froger,, J. C. Willison,, and P. M.Vignais. 1996. Isolation of an IHF-deficient mutant of a Pseudomonas aeruginosa mucoid isolate and evaluation of the role of IHF in algD gene expression. Microbiology 142: 2785 2793.
36. Delic-Attree, I.,, B. Toussaint,, J. Garin,, and P. M. Vignais. 1997. Cloning, sequence and mutagenesis of the structural gene of Pseudomonas aeruginosa CysB, which can activate algD transcription. Mol. Microbiol. 24: 1275 1284.
37. Deretic, V.,, R. Dikshit,, W. M. Konyecsni,, A. M. Chakrabarty,, and T. K. Misra. 1989. The algR gene, which regulates mucoidy in Pseudomonas aeruginosa, belongs to a class of environmentally responsive genes. J. Bacteriol. 171: 1278 1283.
38. Deretic, V.,, N. S. Hibler,, and S. C. Holt. 1992. Immunocytochemical analysis of AlgP (Hp1), a histonelike element participating in control of mucoidy in Pseudomonas aeruginosa. J. Bacteriol. 174: 824 831.
39. Deretic, V.,, and W. M. Konyecsni. 1990. A procaryotic regulatory factor with a histone H1-like carboxy-terminal domain: clonal variation of repeats within algP, a gene involved in regulation of mucoidy in Pseudomonas aeruginosa. J. Bacteriol. 172: 5544 5554.
40. DeVault, J. D.,, W. Hendrickson,, J. Kato,, and A. M. Chakrabarty. 1991. Environmentally regulated algD promoter is responsive to the cAMP receptor protein in Escherichia coli. Mol. Microbiol. 5: 2503 2509.
41. DeVries, C. A.,, and D. E. Ohman. 1994. Mucoid-to-nonmucoid conversion in alginate-producing Pseudomonas aeruginosa often results from spontaneous mutations in algT, encoding a putative alternate sigma factor, and shows evidence for autoregulation. J. Bacteriol. 176: 6677 6687.
42. Doggett, R. G. 1969. Incidence of mucoid Pseudomonas aeruginosa from clinical sources. Appl. Microbiol. 18: 936 937.
43. Edwards, K. J.,, and N. A. Saunders. 2001. Real-time PCR used to measure stress-induced changes in the expression of the genes of the alginate pathway of Pseudomonas aeruginosa. J. Appl. Microbiol. 91: 29 37.
44. Engel, J.,, and P. Balachandran. 2009. Role of Pseudomonas aeruginosa type III effectors in disease. Curr. Opin. Microbiol. 12: 61 66.
45. Flynn, J. L.,, and D. E. Ohman. 1988a. Cloning of genes from mucoid Pseudomonas aeruginosa which control spontaneous conversion to the alginate production phenotype. J. Bacteriol. 170: 1452 1460.
46. Flynn, J. L.,, and D. E. Ohman. 1988b. Use of a gene replacement cosmid vector for cloning alginate conversion genes from mucoid and nonmucoid Pseudomonas aeruginosa strains: algS controls expression of algT. J. Bacteriol. 170: 3228 3236.
47. Franklin, M. J.,, D. E. Nivens,, J. T. Weadge,, and L. P. Howell. 2011. Biosynthesis of the Pseudomonas aeruginosa extracellular polysaccharides alginate, Pel and Psl. Front. Cell. Infect. Microbiol. 2: 167.
48. Friedman, L.,, and R. Kolter. 2004a. Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms. Mol. Microbiol. 51: 675 690.
49. Friedman, L.,, and R. Kolter. 2004b. Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix. J. Bacteriol. 186: 4457 4465.
50. Fujiwara, S.,, and A. M. Chakrabarty. 1994. Post-transcriptional regulation of the Pseudomonas aeruginosa algC gene. Gene 146: 1 5.
51. Fujiwara, S.,, N. A. Zielinski,, and A. M. Chakrabarty. 1993. Enhancer-like activity of AlgR1-binding site in alginate gene activation: positional, orientational, and sequence specificity. J. Bacteriol. 175: 5452 5459.
52. Galimand, M.,, M. Gamper,, A. Zimmermann,, and D. Haas. 1991. Positive FNR-like control of anaerobic arginine degradation and nitrate respiration in Pseudomonas aeruginosa. J. Bacteriol. 173: 1598 1606.
53. Galperin, M. Y.,, T. A. Gaidenko,, A. Y. Mulkidjanian,, M. Nakano,, and C. W. Price. 2001. MHYT, a new integral membrane sensor domain. FEMS Microbiol. Lett. 205: 17 23.
54. Ghafoor, A.,, I. D. Hay,, and B. H. M. Rehm. 2011. Role of exopolysaccharides in Pseudomonas aeruginosa biofilm formation and architecture. Appl. Environ. Microbiol. 77: 5238 5246.
55. Gilbert, K. B.,, T. H. Kim,, R. Gupta,, E. P. Greenberg,, and M. Schuster. 2009. Global position analysis of the Pseudomonas aeruginosa quorum-sensing transcription factor LasR. Mol. Microbiol. 73: 1072 1085.
56. Goldberg, J. B.,, and T. Dahnke. 1992. Pseudomonas aeruginosa AlgB, which modulates the expression of alginate, is a member of the NtrC subclass of prokaryotic regulators. Mol. Microbiol. 6: 59 66.
57. Goldberg, J. B.,, W. L. Gorman,, J. Flynn,, and D. E. Ohman. 1993. A mutation in algN permits trans activation of alginate production by algT in Pseudomonas species. J. Bacteriol. 175: 1303 1308.
58. Goldberg, J. B.,, and D. E. Ohman. 1987. Construction and characterization of Pseudomonas aeruginosa algB mutants: role of algB in high-level production of alginate. J. Bacteriol. 169: 1593 1602.
59. Govan, J. R.,, and V. Deretic. 1996. Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol. Rev. 60: 539 574.
60. Govan, J. R. W., 1988. Alginate biosynthesis and other unusual characteristics associated with the pathogenesis of Pseudomonas aeruginosa in cystic fibrosis, p. 67 96. In E. Griffiths, W.E. Donachie, and J. Stephen (ed.), Bacterial Infections of Respiratory and Gastrointestinal Mucosae. IRL Press, Oxford, United Kingdom.
61. Hasegawa, N.,, H. Arai,, and Y. Igarashi. 1998. Activation of a consensus FNR-dependent promoter by DNR of Pseudomonas aeruginosa in response to nitrite. FEMS Microbiol. Lett. 166: 213 217.
62. Hassett, D. J. 1996. Anaerobic production of alginate by Pseudomonas aeruginosa: alginate restricts diffusion of oxygen. J. Bacteriol. 178: 7322 7325.
63. Hay, I. D.,, Z. U. Rehman,, A. Ghafoor,, and B. H. Rehm. 2010. Bacterial biosynthsis of alginates. J. Chem. Technol. Biotechnol. 85: 752 759.
64. Hay, I. D.,, U. Remminghorst,, and B. H. Rehm. 2009. MucR, a novel membrane-associated regulator of alginate biosynthesis in Pseudomonas aeruginosa. Appl. Environ. Microbiol. 75: 1110 1120.
65. Hay, I. D.,, O. Schmidt,, J. Filitcheva,, and B. H. Rehm. 2012. Identification of a periplasmic AlgK-AlgX-MucD multiprotein complex in Pseudomonas aeruginosa involved in biosynthesis and regulation of alginate. Appl. Microbiol. Biotechnol. 93: 215 227.
66. Hentzer, M.,, G. M. Teitzel,, G. J. Balzer,, A. Heydorn,, S. Molin,, M. Givskov,, and M. R. Parsek. 2001. Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. J. Bacteriol. 183: 5395 5401.
67. Hershberger, C. D.,, R. W. Ye,, M. R. Parsek,, Z.-D. Xie,, and A. M. Chakrabarty. 1995. The algT ( algU) gene of Pseudomonas aeruginosa, a key regulator involved in alginate biosynthesis, encodes an alternative σ factor (σ E). Proc. Natl. Acad. Sci. USA 92: 7941 7945.
68. Irie, Y.,, M. Starkey,, A. N. Edwards,, D. J. Wozniak,, T. Romeo,, and M. R. Parsek. 2010. Pseudomonas aeruginosa biofilm matrix polysaccharide Psl is regulated transcriptionally by RpoS and post-transcriptionally by RsmA. Mol. Microbiol. 78: 158 172.
69. Jackson, K. D.,, M. Starkey,, S. Kremer,, M. R. Parsek,, and D. J. Wozniak. 2004. Identification of psl, a locus encoding a potential exopolysaccharide that is essential for Pseudomonas aeruginosa PAO1 biofilm formation. J. Bacteriol. 186: 4466 4475.
70. Jain, S.,, and D. E. Ohman. 1998. Deletion of algK in mucoid Pseudomonas aeruginosa blocks alginate polymer formation and results in uronic acid secretion. J. Bacteriol. 180: 634 641.
71. Jain, S.,, and D. E. Ohman. 2005. Role of an alginate lyase for alginate transport in mucoid Pseudomonas aeruginosa. Infect. Immun. 73: 6429 6436.
72. Kanack, K. J.,, L. J. Runyen-Janecky,, E. P. Ferrell,, S. J. Suh,, and S. E. West. 2006. Characterization of DNA-binding specificity and analysis of binding sites of the Pseudomonas aeruginosa global regulator, Vfr, a homologue of the Escherichia coli cAMP receptor protein. Microbiology 152: 3485 3496.
73. Kato, J.,, and A. M. Chakrabarty. 1991. Purification of the regulatory protein AlgR1 and its binding in the far upstream region of the algD promoter in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 88: 1760 1764.
74. Kato, J.,, T. K. Misra,, and A. M. Chakrabarty. 1990. AlgR3, a protein resembling eukaryotic histone H1, regulates alginate synthesis in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 87: 2887 2891.
75. Keiski, C. L.,, M. Harwich,, S. Jain,, A. M. Neculai,, P. Yip,, H. Robinson,, J. C. Whitney,, L. Riley,, L. L. Burrows,, D. E. Ohman,, and P. L. Howell. 2010. AlgK is a TPR-containing protein and the periplasmic component of a novel exopolysaccharide secretin. Structure 18: 265 273.
76. Keith, L. M.,, and C. L. Bender. 1999. AlgT (sigma22) controls alginate production and tolerance to environmental stress in Pseudomonas syringae. J. Bacteriol. 181: 7176 7184.
77. Kimbara, K.,, and A. M. Chakrabarty. 1989. Control of alginate synthesis in Pseudomonas aeruginosa: regulation of the algR1 gene. Biochem. Biophys. Res. Commun. 164: 601 608.
78. Konyecsni, W. M.,, and V. Deretic. 1988. Broad-host-range plasmid and M13 bacteriophage-derived vectors for promoter analysis in Escherichia coli and Pseudomonas aeruginosa. Gene 74: 375 386.
79. Konyecsni, W. M.,, and V. Deretic. 1990. DNA sequence and expression analysis of algP and algQ, components of the multigene system transcriptionally regulating mucoidy in Pseudomonas aeruginosa: algP contains multiple direct repeats. J. Bacteriol. 172: 2511 2520.
80. Krieg, D. P.,, J. A. Bass,, and S. J. Mattingly. 1986. Aeration selects for mucoid phenotype of Pseudomonas aeruginosa. J. Clin. Microbiol. 24: 986 990.
81. Krieg, D. P.,, J. A. Bass,, and S. J. Mattingly. 1988a. Phosphorylcholine stimulates capsule formation of phosphate-limited mucoid Pseudomonas aeruginosa. Infect. Immun. 56: 864 873.
82. Krieg, D. P.,, R. J. Helmke,, V. F. German,, and J. A. Mangos. 1988b. Resistance of mucoid Pseudomonas aeruginosa to nonopsonic phagocytosis by alveolar macrophages in vitro. Infect. Immun. 56: 3173 3179.
83. Lau, G. W.,, D. J. Hassett,, H. Ran,, and F. Kong. 2004. The role of pyocyanin in Pseudomonas aeruginosa infection. Trends Mol. Med. 10: 599 606.
84. Lee, V. T.,, J. M. Matewish,, J. L. Kessler,, M. Hyodo,, Y. Hayakawa,, and S. Lory. 2007. A cyclic-di-GMP receptor required for bacterial exopolysaccharide production. Mol. Microbiol. 65: 1474 1484.
85. Leech, A. J.,, A. Sprinkle,, L. Wood,, D. J. Wozniak,, and D. E. Ohman. 2008. The NtrC family regulator AlgB, which controls alginate biosynthesis in mucoid Pseudomonas aeruginosa, binds directly to the algD promoter. J. Bacteriol. 190: 581 589.
86. Lizewski, S. E.,, D. S. Lundberg,, and M. J. Schurr. 2002. The transcriptional regulator AlgR is essential for Pseudomonas aeruginosa pathogenesis. Infect. Immun. 70: 6083 6093.
87. Lizewski, S. E.,, J. R. Schurr,, D. W. Jackson,, A. Frisk,, A. J. Carterson,, and M. J. Schurr. 2004. Identification of AlgR-regulated genes in Pseudomonas aeruginosa by use of microarray analysis. J. Bacteriol. 186: 5672 5684.
88. Ma, L.,, K. D. Jackson,, R. M. Landry,, M. R. Parsek,, and D. J. Wozniak. 2006. Analysis of Pseudomonas aeruginosa conditional Psl variants reveals roles for the Psl polysaccharide in adhesion and maintaining biofilm structure postattachment. J. Bacteriol. 188: 8213 8221.
89. Ma, L.,, H. Lu,, A. Sprinkle,, M. R. Parsek,, and D. J. Wozniak. 2007. Pseudomonas aeruginosa Psl is a galactose- and mannose-rich exopolysaccharide. J. Bacteriol. 189: 8353 8356.
90. Ma, S.,, U. Selvaraj,, D. E. Ohman,, R. Quarless,, D. J. Hassett,, and D. J. Wozniak. 1998. Phosphorylation-independent activity of the response regulators AlgB and AlgR in promoting alginate biosynthesis in mucoid Pseudomonas aeruginosa. J. Bacteriol. 180: 956 968.
91. Ma, S.,, D. J. Wozniak,, and D. E. Ohman. 1997. Identification of the histidine protein kinase KinB in Pseudomonas aeruginosa and its phosphorylation of the alginate regulator algB. J. Biol. Chem. 272: 17952 17960.
92. Mai, G. T.,, W. K. Seow,, G. B. Pier,, J. G. McCormack,, and Y. H. Thong. 1993. Suppression of lymphocyte and neutrophil functions by Pseudomonas aeruginosa mucoid exopolysaccharide (alginate): reversal by physicochemical, alginase, and specific monoclonal antibody treatments. Infect. Immun. 61: 559 564.
93. Martin, D. W.,, B. W. Holloway,, and V. Deretic. 1993a. Characterization of a locus determining the mucoid status of Pseudomonas aeruginosa: AlgU shows sequence similarities with a Bacillus sigma factor. J. Bacteriol. 175: 1153 1164.
94. Martin, D. W.,, M. J. Schurr,, M. H. Mudd,, and V. Deretic. 1993b. Differentiation of Pseudomonas aeruginosa into the alginate-producing form: inactivation of mucB causes conversion to mucoidy. Mol. Microbiol. 9: 497 506.
95. Martin, D. W.,, M. J. Schurr,, M. H. Mudd,, J. R. W. Govan,, B. W. Holloway,, and V. Deretic. 1993c. Mechanism of conversion to mucoidy in Pseudomonas aeruginosa infecting cystic fibrosis patients. Proc. Natl. Acad. Sci. USA 90: 8377 8381.
96. Martin, D. W.,, M. J. Schurr,, H. Yu,, and V. Deretic. 1994. Analysis of promoters controlled by the putative sigma factor AlgU regulating conversion to mucoidy in Pseudomonas aeruginosa: relationship to sigma E and stress response. J. Bacteriol. 176: 6688 6696.
97. Martinez-Salazar, J. M.,, S. Moreno,, R. Najera,, J. C. Boucher,, G. Espin,, G. Soberon-Chavez,, and V. Deretic. 1996. Characterization of the genes coding for the putative sigma factor AlgU and its regulators MucA, MucB, MucC, and MucD in Azotobacter vinelandii and evaluation of their roles in alginate biosynthesis. J. Bacteriol. 178: 1800 1808.
98. Mathee, K.,, O. Ciofu,, C. Sternberg,, P. W. Lindum,, J. I. Campbell,, P. Jensen,, A. H. Johnsen,, M. Givskov,, D. E. Ohman,, S. Molin,, N. Hoiby,, and A. Kharazmi. 1999. Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide: a mechanism for virulence activation in the cystic fibrosis lung. Microbiology 145( Pt. 6): 1349 1357.
99. Mathee, K.,, A. Kharazmi,, and N. Hoiby. 2002 Role of exopolysaccharide in biofilm matrix formation: the alginate paradigm, p. 1 34. In R. J. C. McLean and A. W. Decho (ed.), Molecular Ecology of Biofilms. Horizon Scientific Press, Wymondham, United Kingdom.
100. Mathee, K.,, C. J. McPherson,, and D. E. Ohman. 1997. Posttranslational control of the AlgT (AlgU)-encoded sigma22 for expression of the alginate regulon in Pseudomonas aeruginosa and localization of its antagonist proteins MucA and MucB (AlgN). J. Bacteriol. 179: 3711 3720.
101. Matsukawa, M.,, and E. P. Greenberg. 2004. Putative exopolysaccharide synthesis genes influence Pseudomonas aeruginosa biofilm development. J. Bacteriol. 186: 4449 4456.
102. Mattick, J. S. 2002. Type IV pili and twitching motility. Annu. Rev. Microbiol. 56: 289 314.
103. McAvoy, M. J.,, V. Newton,, A. Paull,, J. Morgan,, P. Gacesa,, and N. J. Russell. 1989. Isolation of mucoid strains of Pseudomonas aeruginosa from non-cystic fibrosis patients and characterisation of the structure of their secreted alginate. J. Med. Microbiol. 28: 183 189.
104. Merighi, M.,, V. T. Lee,, M. Hyodo,, Y. Hayakawa,, and S. Lory. 2007. The second messenger bis-(3'-5')-cyclic-GMP and its PilZ domain-containing receptor Alg44 are required for alginate biosynthesis in Pseudomonas aeruginosa. Mol. Microbiol. 65: 876 895.
105. Mohr, C. D.,, and V. Deretic. 1992. In vitro interactions of the histone-like protein IHF with the algD promoter, a critical site for control of mucoidy in Pseudomonas aeruginosa. Biochem. Biophys. Res. Commun. 189: 837 844.
106. Mohr, C. D.,, N. S. Hibler,, and V. Deretic. 1991. AlgR, a response regulator controlling mucoidy in Pseudomonas aeruginosa, binds to the FUS sites of the algD promoter located unusually far upstream from the mRNA start site. J. Bacteriol. 173: 5136 5143.
107. Mohr, C. D.,, J. H. Leveau,, D. P. Krieg,, N. S. Hibler,, and V. Deretic. 1992. AlgR-binding sites within the algD promoter make up a set of inverted repeats separated by a large intervening segment of DNA. J. Bacteriol. 174: 6624 6633.
108. Mohr, C. D.,, D. W. Martin,, W. M. Konyecsni,, J. R. Govan,, S. Lory,, and V. Deretic. 1990. Role of the far-upstream sites of the algD promoter and the algR and rpoN genes in environmental modulation of mucoidy in Pseudomonas aeruginosa. J. Bacteriol. 172: 6576 6580.
109. Morici, L. A.,, A. J. Carterson,, V. E. Wagner,, A. Frisk,, J. R. Schurr,, K. H. Zu Bentrup, D. J. Hassett, B. H. Iglewski, K. Sauer, and M.J. Schurr. 2007. Pseudomonas aeruginosa AlgR represses the Rhl quorum-sensing system in a biofilm-specific manner. J. Bacteriol. 189: 7752 7764.
110. Muhammadi,, and N. Ahmed. 2007. Genetics of bacterial alginate: alginate genes distribution, organization and biosynthesis in bacteria. Curr. Genomics 8: 191 202.
111. Nunez, C.,, R. Leon,, J. Guzman,, G. Espin,, and G. Soberon-Chavez. 2000. Role of Azotobacter vinelandii mucA and mucC gene products in alginate production. J. Bacteriol. 182: 6550 6556.
112. Oliver, A. M.,, and D. M. Weir. 1985. The effect of Pseudomonas alginate on rat alveolar macrophage phagocytosis and bacterial opsonization. Clin. Exp. Immunol. 59: 190 196.
113. Oliver, A. M.,, and D. M. Weir. 1983. Inhibition of bacterial binding to mouse macrophages by Pseudomonas alginate. J. Clin. Lab. Immunol. 10: 221 224.
114. Olvera, C,, J. B. Goldberg,, R. Sanchez,, and G. Soberon-Chavez. 1999. The Pseudomonas aeruginosaalgC gene product participates in rhamnolipid biosynthesis. FEMS Microbiol. Lett. 179: 85 90.
115. Pasquier, C.,, N. Marty,, J. L. Dournes,, G. Chabanon,, and B. Pipy. 1997. Implication of neutral polysaccharides associated to alginate in inhibition of murine macrophage response to Pseudomonas aeruginosa. FEMS Microbiol. Lett. 147: 195 202.
116. Pritt, B.,, L. O’Brien,, and W. Winn. 2007. Mucoid Pseudomonas in cystic fibrosis. Am. J. Clin. Pathol. 128: 32 34.
117. Qiu, D.,, V. M. Eisinger,, N. E. Head,, G. B. Pier,, and H. D. Yu. 2008. ClpXP proteases positively regulate alginate overexpression and mucoid conversion in Pseudomonas aeruginosa. Microbiology 154: 2119 2130.
118. Qiu, D.,, V. M. Eisinger,, D. W. Rowen,, and H. D. Yu. 2007. Regulated proteolysis controls mucoid conversion in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 104: 8107 8112.
119. Ramsey, D. M.,, P. J. Baynham,, and D. J. Wozniak. 2005. Binding of Pseudomonas aeruginosa AlgZ to sites upstream of the algZ promoter leads to repression of transcription. J. Bacteriol. 187: 4430 4443.
120. Regni, C.,, P. A. Tipton,, and L. J. Beamer. 2002. Crystal structure of PMM/PGM: an enzyme in the biosynthetic pathway of Pseudomonas aeruginosa virulence factors. Structure 10: 269 279.
121. Reiling, S. A.,, J. A. Jansen,, B. J. Henley,, S. Singh,, C. Chattin,, M. Chandler,, and D. W. Rowen. 2005. Prc protease promotes mucoidy in mucA mutants of Pseudomonas aeruginosa. Microbiology 151: 2251 2261.
122. Remminghorst, U.,, and B. H. Rehm. 2006. Alg44, a unique protein required for alginate biosynthesis in Pseudomonas aeruginosa. FEBS Lett. 580: 3883 3888.
123. Robles-Price, A.,, T. Y. Wong,, H. Sletta,, S. Valla,, and N. L. Schiller. 2004. AlgX is a periplasmic protein required for alginate biosynthesis in Pseudomonas aeruginosa. J. Bacteriol. 186: 7369 7377.
124. Rompf, A.,, C. Hungerer,, T. Hoffmann,, M. Lindenmeyer,, U. Romling,, U. Gross,, M. O. Doss,, H. Arai,, Y. Igarashi,, and D. Jahn. 1998. Regulation of Pseudomonas aeruginosa hemF and hemN by the dual action of the redox response regulators Anr and Dnr. Mol. Microbiol. 29: 985 997.
125. Rowen, D. W.,, and V. Deretic. 2000. Membrane-to-cytosol redistribution of ECF sigma factor AlgU and conversion to mucoidy in Pseudomonas aeruginosa isolates from cystic fibrosis patients. Mol. Microbiol. 36: 314 327.
126. Sakuragi, Y.,, and R. Kolter. 2007. Quorum-sensing regulation of the biofilm matrix genes ( pel) of Pseudomonas aeruginosa. J. Bacteriol. 189: 5383 5386.
127. Schurr, M. J.,, and V. Deretic. 1997. Microbial pathogenesis in cystic fibrosis: co-ordinate regulation of heat-shock response and conversion to mucoidy in Pseudomonas aeruginosa. Mol. Microbiol. 24: 411 420.
128. Schurr, M. J.,, H. Yu,, J. C. Boucher,, N. S. Hibler,, and V. Deretic. 1995a. Multiple promoters and induction by heat shock of the gene encoding the alternative sigma factor AlgU (sigma E) which controls mucoidy in cystic fibrosis isolates of Pseudomonas aeruginosa. J. Bacteriol. 177: 5670 5679.
129. Schurr, M. J.,, H. Yu,, J. M. Martinez-Salazar,, N. S. Hibler,, and V. Deretic. 1995b. Biochemical characterization and posttranslational modification of AlgU, a regulator of stress response in Pseudomonas aeruginosa. Biochem. Biophys. Res. Commun. 216: 874 880.
130. Sidote, D. J.,, C. M. Barbieri,, T. Wu,, and A. M. Stock. 2008. Structure of the Staphylococcus aureus AgrA LytTR domain bound to DNA reveals a beta fold with an unusual mode of binding. Structure 16: 727 735.
131. Simpson, J. A.,, S. E. Smith,, and R. T. Dean. 1988. Alginate inhibition of the uptake of Pseudomonas aeruginosa by macrophages. J. Gen. Microbiol. 134: 29 36.
132. Simpson, J. A.,, S. E. Smith,, and R. T. Dean. 1993. Alginate may accumulate in cystic fibrosis lung because the enzymatic and free radical capacities of phagocytic cells are inadequate for its degradation. Biochem. Mol. Biol. Int. 30: 1021 1034.
133. Simpson, J. A.,, S. E. Smith,, and R. T. Dean. 1989. Scavenging by alginate of free radicals released by macrophages. Free Radic. Biol. Med. 6: 347 353.
134. Snook, C. F.,, P. A. Tipton,, and L. J. Beamer. 2003. Crystal structure of GDP-mannose dehydrogenase: a key enzyme of alginate biosynthesis in Pseudomonas aeruginosa. Biochemistry 42: 4658 4668.
135. Starkey, M.,, J. H. Hickman,, L. Ma,, N. Zhang,, S. De Long,, A. Hinz,, S. Palacios,, C. Manoil,, M. J. Kirisits,, T. D. Starner,, D. J. Wozniak,, C. S. Harwood,, and M. R. Parsek. 2009. Pseudomonas aeruginosa rugose small-colony variants have adaptations that likely promote persistence in the cystic fibrosis lung. J. Bacteriol. 191: 3492 3503.
136. Suh, S. J.,, L. Silo-Suh,, D. E. Woods,, D. J. Hassett,, S. E. West,, and D. E.Ohman. 1999. Effect of rpoS mutation on the stress response and expression of virulence factors in Pseudomonas aeruginosa. J. Bacteriol. 181: 3890 3897.
137. Tart, A. H.,, M. J. Blanks,, and D. J. Wozniak. 2006. The AlgT-dependent transcriptional regulator AmrZ (AlgZ) inhibits flagellum biosynthesis in mucoid, nonmotile Pseudomonas aeruginosa cystic fibrosis isolates. J. Bacteriol. 188: 6483 6489.
138. Tavares, I. M.,, J. H. Leitao,, A. M. Fialho,, and I. Sa-Correia. 1999. Pattern of changes in the activity of enzymes of GDP-D-mannuronic acid synthesis and in the level of transcription of algA, algC and algD genes accompanying the loss and emergence of mucoidy in Pseudomonas aeruginosa. Res. Microbiol. 150: 105 116.
139. Terry, J. M.,, S. E. Pina,, and S. J. Mattingly. 1991. Environmental conditions which influence mucoid conversion in Pseudomonas aeruginosa PAO1. Infect. Immun. 59: 471 477.
140. Terry, J. M.,, S. E. Pina,, and S. J. Mattingly. 1992. Role of energy metabolism in conversion of nonmucoid Pseudomonas aeruginosa to the mucoid phenotype. Infect. Immun. 60: 1329 1335.
141. Vasil, M. L. 2007. How we learnt about iron acquisition in Pseudomonas aeruginosa: a series of very fortunate events. Biometals 20: 587 601.
142. Vasil, M. L.,, L. M. Graham,, R. M. Ostroff,, V. D. Shortridge,, and A. I.Vasil. 1991. Phospholipase C: molecular biology and contribution to the pathogenesis of Pseudomonas aeruginosa. Antibiot. Chemother. 44: 34 47.
143. Vasseur, P.,, I. Vallet-Gely,, C. Soscia,, S. Genin,, and A. Filloux. 2005. The pel genes of the Pseudomonas aeruginosa PAK strain are involved at early and late stages of biofilm formation. Microbiology 151: 985 997.
144. Waligora, E. A.,, D. M. Ramsey,, E. E. Pryor, Jr.,, H. Lu,, T. Hollis,, G. P. Sloan,, R. Deora,, and D. J. Wozniak. 2010. AmrZ beta-sheet residues are essential for DNA binding and transcriptional control of Pseudomonas aeruginosa virulence genes. J. Bacteriol. 192: 5390 5401.
145. Whitchurch, C. B.,, R. A. Alm,, and J. S. Mattick. 1996. The alginate regulator AlgR and an associated sensor FimS are required for twitching motility in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 93: 9839 9843.
146. Whitchurch, C. B.,, T. E. Erova,, J. A. Emery,, J. L. Sargent,, J. M. Harris,, A. B. Semmler,, M. D. Young,, J. S. Mattick,, and D. J. Wozniak. 2002. Phosphorylation of the Pseudomonas aeruginosa response regulator AlgR is essential for type IV fimbria-mediated twitching motility. J. Bacteriol. 184: 4544 4554.
147. Whitney, J. C.,, I. D. Hay,, C. Li,, P. D. Eckford,, H. Robinson,, M. F. Amaya,, L. F. Wood,, D. E. Ohman,, C. E. Bear,, B. H. Rehm,, and P. Lynne Howell. 2011. Structural basis for alginate secretion across the bacterial outer membrane. Proc. Natl. Acad. Sci. USA 108: 13083 13088.
148. Wolfgang, M. C.,, V. T. Lee,, M. E. Gilmore,, and S. Lory. 2003. Coordinate regulation of bacterial virulence genes by a novel adenylate cyclase-dependent signaling pathway. Dev. Cell 4: 253 263.
149. Wood, L. F.,, A. J. Leech,, and D. E. Ohman. 2006. Cell wall-inhibitory antibiotics activate the alginate biosynthesis operon in Pseudomonas aeruginosa: roles of σ 22 (AlgT) and the AlgW and Prc proteases. Mol. Microbiol. 62: 412 426.
150. Wood, L. F.,, and D. E. Ohman. 2006. Independent regulation of MucD, an HtrA-like protease in Pseudomonas aeruginosa, and the role of its proteolytic motif in alginate gene regulation. J. Bacteriol. 188: 3134 3137.
151. Wood, S. R.,, A. M. Firoved,, W. Ornatowski,, T. Mai,, V. Deretic,, and G. S. Timmins. 2007. Nitrosative stress inhibits production of the virulence factor alginate in mucoid Pseudomonas aeruginosa. Free Radic. Res. 41: 208 215.
152. Worlitzsch, D.,, R. Tarran,, M. Ulrich,, U. Schwab,, A. Cekici,, K. C. Meyer,, P. Birrer,, G. Bellon,, J. Berger,, T. Weiss,, K. Botzenhart,, J. R. Yankaskas,, S. Randell,, R. C. Boucher,, and G. Doring. 2002. Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J. Clin. Investig. 109: 317 325.
153. Wozniak, D. J. 1994. Integration host factor and sequences downstream of the Pseudomonas aeruginosa algD transcription start site are required for expression. J. Bacteriol. 176: 5068 5076.
154. Wozniak, D. J.,, and D. E. Ohman. 1993. Involvement of the alginate algT gene and integration host factor in the regulation of the Pseudomonas aeruginosa algB gene. J. Bacteriol. 175: 4145 4153.
155. Wozniak, D. J.,, and D. E. Ohman. 1991. Pseudomonas aeruginosa AlgB, a two-component response regulator of the NtrC family, is required for algD transcription. J. Bacteriol. 173: 1406 1413.
156. Wozniak, D. J.,, A. B. Sprinkle,, and P. J. Baynham. 2003a. Control of Pseudomonas aeruginosa algZ expression by the alternative sigma factor AlgT. J. Bacteriol. 185: 7297 7300.
157. Wozniak, D. J.,, T. J. Wyckoff,, M. Starkey,, R. Keyser,, P. Azadi,, G. A. O’Toole,, and M. R. Parsek. 2003b. Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms. Proc. Natl. Acad. Sci. USA 100: 7907 7912.
158. Yorgey, P.,, L. G. Rahme,, M. W. Tan,, and F. M. Ausubel. 2001. The roles of mucD and alginate in the virulence of Pseudomonas aeruginosa in plants, nematodes and mice. Mol. Microbiol. 41: 1063 1076.
159. Yu, H.,, M. Mudd,, J. C. Boucher,, M. J. Schurr,, and V. Deretic. 1997. Identification of the algZ gene upstream of the response regulator AlgR and its participation in control of alginate production in Pseudomonas aeruginosa. J. Bacteriol. 179: 187 193.
160. Yu, H.,, M. J. Schurr,, and V. Deretic. 1995. Functional equivalence of Escherichia coli σ E and Pseudomonas aeruginosa AlgU: E.coli rpoE restores mucoidy and reduces sensitivity to reactive oxygen intermediates in algU mutants of P. aeruginosa. J. Bacteriol. 177: 3259 3268.
161. Zielinski, N. A.,, A. M. Chakrabarty,, and A. Berry. 1991. Characterization and regulation of the Pseudomonas aeruginosa algC gene encoding phosphomannomutase. J. Biol. Chem. 266: 9754 9763.
162. Zielinski, N. A.,, R. Maharaj,, S. Roychoudhury,, C. E. Danganan,, W. Hendrickson,, and A. M. Chakrabarty. 1992. Alginate synthesis in Pseudomonas aeruginosa: environmental regulation of the algC promoter. J. Bacteriol. 174: 7680 7688.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error