Chapter 3.1.1 : Current and Developing Methods for the Detection of Microbial Indicators in Environmental Freshwaters and Drinking Waters

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Current and Developing Methods for the Detection of Microbial Indicators in Environmental Freshwaters and Drinking Waters, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818821/9781555818821.ch3.1.1-1.gif /docserver/preview/fulltext/10.1128/9781555818821/9781555818821.ch3.1.1-2.gif


Fecal contamination of freshwaters and drinking waters may result in serious risks to public health that include gastrointestinal and respiratory illnesses, eye and skin infections, many caused by enteric pathogens. The microbiological quality of freshwaters and drinking waters is usually monitored by the detection of traditional indicators that include total and thermotolerant coliforms, Escherichia coli, and Enterococcus spp. Culture methods are usually employed to detect bacterial indicators, but emerging techniques that include the detection of bacteriophages, as well as PCR-based methods amplifying bacterial 16S or 23S rRNA genes also have been developed. Molecular methods targeting indicator bacteria may reduce the time needed to take action to reduce the impact that fecal contamination of freshwaters and drinking waters represent to public health. In freshwaters used for recreation and consumption, identifying the source of the fecal contamination is important in order to reduce or eliminate its impact to pubic health. Microbial Source Tracking (MST) methods have been developed to identify the possible source (e.g. animal vs human) of the fecal contamination and include amplification of nucleic acids of traditional indicator bacteria. While bacterial indicators have successfully been used to protect public health for the last 100 years, and variations on the theme will be in use for decades to come, the target microorganisms would probably need to be revisited, because of the little information we have about their ecology.

Citation: Santiago-Rodriguez T, Kinzelman J, Toranzos G. 2016. Current and Developing Methods for the Detection of Microbial Indicators in Environmental Freshwaters and Drinking Waters, p 3.1.1-1-3.1.1-10. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch3.1.1
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Dufour AP. 1984. Bacterial indicators of recreational water quality. Can J Public Health 75 : 49 56.
2. Harwood VJ, Levine AD, Scott TM, Chivukula V, Lukasik J, Farrah SR, Rose JB. 2005. Validity of the indicator organism paradigm for pathogen reduction in reclaimed water and public health protection. Appl Environ Microbiol 71 : 3163 3170.[CrossRef]
3. Savichtcheva O, Okabe S. 2006. Alternative indicators of fecal pollution: relations with pathogens and conventional indicators, current methodologies for direct pathogen monitoring and future application perspectives. Water Res 40 : 2463 2476.[CrossRef]
4. Scott TM, Rose JB, Jenkins TM, Farrah SR, Lukasik J. 2002. Microbial source tracking: current methodology and future directions. Appl Environ Microbiol 68 : 5796 5803.[CrossRef]
5. Lechevallier MW. 2014. Conducting self-assessments under the revised Total Coliform Rule. J Am Water Works Assoc 106 : 90 102.[CrossRef]
6. de Brauwere A, Ouattara NK, Servais P. 2014. Modeling fecal indicator bacteria concentrations in natural surface waters: a review. Crit Rev Environ Sci Technol 44 : 2380 2453.[CrossRef]
7. Golomidova A, Kulikov E, Isaeva A, Manykin A, Letarov A. 2007. The diversity of coliphages and coliforms in horse feces reveals a complex pattern of ecological interactions. Appl Environ Microbiol 73 : 5975 5981.[PubMed][CrossRef]
8. Toranzos G, McFeters G, Borrego J, Savill M. 2007. Detection of microorganisms in environmental freshwaters and drinking waters. In Manual of Environmental Microbiology, 3rd ed., ASM Press, Washington, DC, pp. 249 264.
9. Beauchamp CJ, Simao-Beaunoir AM, Beaulieu C, Chalifour FP. 2006. Confirmation of E. coli among other thermotolerant coliform bacteria in paper mill effluents, wood chips screening rejects and paper sludges. Water Res 40 : 2452 2462.[PubMed][CrossRef]
10. Rivera SC, Hazen TC, Toranzos GA. 1988. Isolation of fecal coliforms from pristine sites in a tropical rain forest. Appl Environ Microbiol 54 : 513 517.[PubMed]
11. Whitman RL, Shively DA, Pawlik H, Nevers MB, Byappanahalli MN. 2003. Occurrence of Escherichia coli and enterococci in Cladophora ( Chlorophyta) in nearshore water and beach sand of Lake Michigan. Appl Environ Microbiol 69 : 4714 4719.[PubMed][CrossRef]
12. Fong TT, Lipp EK. 2005. Enteric viruses of humans and animals in aquatic environments: health risks, detection, and potential water quality assessment tools. Microbiol Mol Biol Rev 69 : 357 371.[PubMed][CrossRef]
13. Edberg SC, Rice EW, Karlin RJ, Allen MJ. 2000. Escherichia coli: the best biological drinking water indicator for public health protection. Symp Ser Soc Appl Microbiol: 106S 116S.[PubMed][CrossRef]
14. Olstadt J, Schauer JJ, Standridge J, Kluender S. 2007. A comparison of ten USEPA approved total coliform/ E. coli tests. J Water Health 5 : 267 282.[PubMed]
15. Dufour AP, Strickland ER, Cabelli VJ. 1981. Membrane filter method for enumerating Escherichia coli. Appl Environ Microbiol 41 : 1152 1158.[PubMed]
16. U.S. EPA. 2002. Method 1603: Escherichia coli (E. coli) in water by membrane filtration using modified membrane-thermotolerant Escherichia coli agar (modified mTEC). U.S. Environmental Protection Agency, Office of Water, Washington, DC.
17. Olson BH. 1978. Enchanced accuracy of coliform testing in seawater by a modification of the most-probable-number method. Appl Environ Microbiol 36 : 438 444.[PubMed]
18. Noble RT, Blackwood AD, Griffith JF, McGee CD, Weisberg SB. 2010. Comparison of rapid quantitative PCR-based and conventional culture-based methods for enumeration of Enterococcus spp. and Escherichia coli in recreational waters. Appl Environ Microbiol 76 : 7437 7443.[PubMed][CrossRef]
19. Chern EC, Siefring S, Paar J, Doolittle M, Haugland RA. 2011. Comparison of quantitative PCR assays for Escherichia coli targeting ribosomal RNA and single copy genes. Lett Appl Microbiol 52 : 298 306.[PubMed][CrossRef]
20. Wheeler AL, Hartel PG, Godfrey DG, Hill JL, Segars WI. 2002. Potential of Enterococcus faecalis as a human fecal indicator for microbial source tracking. J Environ Qual 31 : 1286 1293.[PubMed][CrossRef]
21. Bonilla N, Santiago T, Marcos P, Urdaneta M, Domingo JS, Toranzos GA. 2010. Enterophages, a group of phages infecting E nterococcus faecalis, and their potential as alternate indicators of human faecal contamination. Water Sci Technol 61 : 293 300.[PubMed][CrossRef]
22. U.S. EPA. 2002. Method 1600: Enterococci in water by membrane filtration using membrane- Enterococcus indoxyl-B-d-glucoside agar (mEI). U.S. Environmental Protection Agency, Washington, DC.
23. Chen C, Doherty K, Gu H, Dichter G, Naqui A. 1995. Enterolert—A Rapid method for the detection of Enterococcus spp. Idexx Laboratories, Westbrook, ME.
24. U.S. EPA. 2012. Recreational water quality criteria. U.S. Environmental Protection Agency, Washinton, DC.
25. U.S. EPA. 2012. Method 1611: Enterococci in water by Taqman quantitative polymerase chain reaction (qPCR) assay. U.S. Environmental Protection AgencyOffice of Water, Washington, DC.
26. U.S. EPA. 2013. Acceptability of the EPA qPCR test at your beach. U.S. Environmental Protection Agency, Office of Water, Washington, DC.
27. Ogilvie LA, Caplin J, Dedi C, Diston D, Cheek E, Bowler L, Taylor H, Ebdon J, Jones BV. 2012. Comparative (meta)genomic analysis and ecological profiling of human gut-specific bacteriophage phiB124–14. PLoS One 7 : e35053.[PubMed][CrossRef]
28. Yahya M, Hmaied F, Jebri S, Jofre J, Hamdi M. 2015. Bacteriophages as indicators of human and animal faecal contamination in raw and treated wastewaters from Tunisia. J App Microbiol 118 : 1217 1225.[CrossRef]
29. Havelaar AH, Nieuwstad TJ. 1985. Bacteriophages and fecal bacteria as indicators of chlorination efficiency of biologically treated waste-water. J Water Poll Cont Fed 57 : 1084 1088.
30. Armon R, Kott Y. 1996. Bacteriophages as indicators of pollution. Crit R EnvironSci Techn 26 : 299 335.[CrossRef]
31. Tartera C, Lucena F, Jofre J. 1989. Human origin of Bacteroides fragilis bacteriophages present in the environment. Appl Environ Microbiol 55 : 2696 2701.[PubMed]
32. Tartera C, Jofre J. 1987. Bacteriophages active against Bacteroides fragilis in sewage-polluted waters. Appl Environ Microbiol 53 : 1632 1637.[PubMed]
33. Lucena F, Muniesa M, Puig A, Araujo R, Jofre J. 1995. Simple concentration method for bacteriophages of Bacteroides fragilis in drinking water. J Virol Meth 54 : 121 130.[CrossRef]
34. Jofre J, Olle E, Ribas F, Vidal A, Lucena F. 1995. Potential usefulness of bacteriophages that infect Bacteroides fragilis as model organisms for monitoring virus removal in drinking water treatment plants. Appl Environ Microbiol 61 : 3227 3231.[PubMed]
35. Gantzer C, Henny J, Schwartzbrod L. 2002. Bacteroides fragilis and Escherichia coli bacteriophages in human faeces. Int J Hyg Environ Health 205 : 325 328.[PubMed][CrossRef]
36. Ebdon JE, Sellwood J, Shore J, Taylor HD. 2012. Phages of Bacteroides (GB-124): a novel tool for viral waterborne disease control? Environ Sci Technol 46 : 1163 1169.[PubMed][CrossRef]
37. Payan A, Ebdon J, Taylor H, Gantzer C, Ottoson J, Papageorgiou GT, Blanch AR, Lucena F, Jofre J, Muniesa M. 2005. Method for isolation of Bacteroides bacteriophage host strains suitable for tracking sources of fecal pollution in water. Appl Environ Microbiol 71 : 5659 5662.[PubMed][CrossRef]
38. Salter RS, Durbin GW. 2012. Modified USEPA Method 1601 to Indicate Viral Contamination of Groundwater (PDF). J Am Water Works Assoc 104 : E480 E488.[CrossRef]
39. Havelaar AH, Hogeboom WM. 1984. A method for the enumeration of male-specific bacteriophages in sewage. J Appl Bacteriol 56 : 439 447.[PubMed][CrossRef]
40. Hernández-Delgado E, Sierra M, Toranzos G. 1991. Coliphages as alternate indicators of fecal contamination in tropical waters. Environ ToxicolWater Qual 6 : 131 143.[CrossRef]
41. Gantzer C, Maul A, Audic JM, Schwartzbrod L. 1998. Detection of infectious enteroviruses, enterovirus genomes, somatic coliphages, and Bacteroides fragilis phages in treated wastewater. Appl Environ Microbiol 64 : 4307 4312.[PubMed]
42. Long SC, El-Khoury SS, Oudejans SJ, Sobsey MD, Vinjé J. 2005. Assessment of sources and diversity of male-specific coliphages for source tracking. Environ Engineer Sci 22 : 367 377.[CrossRef]
43. Havelaar AH, Furuse K, Hogeboom WM. 1986. Bacteriophages and indicator bacteria in human and animal faeces. J Appl Bacteriol 60 : 255 262.[PubMed][CrossRef]
44. Cole D, Long SC, Sobsey MD. 2003. Evaluation of F + RNA and DNA coliphages as source-specific indicators of fecal contamination in surface waters. Appl Environ Microbiol 69 : 6507 6514.[PubMed][CrossRef]
45. Allwood PB, Malik YS, Maherchandani S, Vought K, Johnson LA, Braymen C, Hedberg CW, Goyal SM. 2004. Occurrence of Escherichia coli, noroviruses, and F-specific coliphages in fresh market-ready produce. J Food Prot 67 : 2387 2390.[PubMed]
46. Santiago-Rodriguez TM, Davila C, Gonzalez J, Bonilla N, Marcos P, Urdaneta M, Cadete M, Monteiro S, Santos R, Domingo JS, Toranzos GA. 2010. Characterization of Enterococcus faecalis-infecting phages (enterophages) as markers of human fecal pollution in recreational waters. Water Res 44 : 4716 4725.[PubMed][CrossRef]
47. Santiago-Rodriguez TM, Tremblay RL, Toledo-Hernandez C, Gonzalez-Nieves JE, Ryu H, Santo Domingo JW, Toranzos GA. 2012. Microbial quality of tropical inland waters and effects of rainfall events. Appl Environ Microbiol 78 : 5160 5169.[PubMed][CrossRef]
48. Santiago-Rodriguez TM, Marcos P, Monteiro S, Urdaneta M, Santos R, Toranzos GA. 2013. Evaluation of Enterococcus-infecting phages as indices of fecal pollution. J Water Health 11 : 51 63.[PubMed][CrossRef]
49. LeChevallier MW, McFeters GA. 1985. Interactions between heterotrophic plate count bacteria and coliform organisms. Appl Environ Microbiol 49 : 1338 1341.[PubMed]
50. Bartram J, Cotruvo J, Exner M, Fricker C, Glasmacher A. 2004. Heterotrophic plate count measurement in drinking water safety management: report of an Expert Meeting Geneva, 24–25 April 2002. Int J Food Microbiol 92 : 241 247.[PubMed][CrossRef]
51. Bisson JW, Cabelli VJ. 1980. Clostridium perfringens as a water pollution indicator. J Water Pollut Control Fed 52 : 241 248.[PubMed]
52. Sorensen DL, Eberl SG, Dicksa RA. 1989. Clostridium perfringens as a point source indicator in non-point polluted streams. Water Res 23 : 191 197.[CrossRef]
53. Manja KS, Maurya MS, Rao KM. 1982. A simple field test for the detection of faecal pollution in drinking water. Bull World Health Organ 60 : 797 801.[PubMed]
54. McMahan L, Grunden AM, Devine AA, Sobsey MD. 2012. Evaluation of a quantitative H2S MPN test for fecal microbes analysis of water using biochemical and molecular identification. Water Res 46 : 1693 1704.[PubMed][CrossRef]
55. van der Mee-Marquet N, Domelier AS, Arnault L, Bloc D, Laudat P, Hartemann P, Quentin R. 2006. Legionella anisa, a possible indicator of water contamination by Legionella pneumophila. J Clin Microbiol 44 : 56 59.[PubMed][CrossRef]
56. Pruss A. 1998. Review of epidemiological studies on health effects from exposure to recreational water. Int J Epidemiol 27 : 1 9.[PubMed][CrossRef]
57. Bucklin KE, Mcfeters GA, Amirtharajah A. 1991. Penetration of coliforms through municipal drinking-water filters. Water Res 25 : 1013 1017.[CrossRef]
58. Canada HaW. 1992. Guidelines for Canadian drinking water quality. Canadian Goverment Publishing Centre, Ottawa, Canada.
59. Canada HaW. 1993. Guidelines for Canadian drinking water quality. Canadian Government Publishing Centre, Ottawa, Canada.
60. Rheinheimer G, Walker N. 1992. Aquatic Microbiology. Wiley, New York.
61. Mujeriego R, Bravo J, Feliu M. 1982. Recreation in coastal waters: public health implications. Vièmes J Etud Poll: 585 594.
62. Fleisher JM, Fleming LE, Solo-Gabriele HM, Kish JK, Sinigalliano CD, Plano L, Elmir SM, Wang JD, Withum K, Shibata T. 2010. The BEACHES Study: health effects and exposures from non-point source microbial contaminants in subtropical recreational marine waters. Int J Epidemiol 39 : 1291 1298.[PubMed][CrossRef]
63. Morinigo MA, Córnax R, Muñoz MA, Romero P, Borrego JJ. 1990. Relationships between Salmonella spp and indicator microorganisms in polluted natural waters. Water Res 24 : 117 120.[CrossRef]
64. Polo F, Figueras MJ, Inza I, Sala J, Fleisher JM, Guarro J. 1999. Prevalence of Salmonella serotypes in environmental waters and their relationships with indicator organisms. Antonie Van Leeuwenhoek 75 : 285 292.[PubMed][CrossRef]
65. Ottoson J, Stenstrom TA. 2003. Faecal contamination of greywater and associated microbial risks. Water Res 37 : 645 655.[PubMed][CrossRef]
66. Hellein KN, Battie C, Tauchman E, Lund D, Oyarzabal OA, Lepo JE. 2011. Culture-based indicators of fecal contamination and molecular microbial indicators rarely correlate with Campylobacter spp. in recreational waters. J Water Health 9 : 695 707.[PubMed][CrossRef]
67. Wu J, Long SC, Das D, Dorner SM. 2011. Are microbial indicators and pathogens correlated? A statistical analysis of 40 years of research. J Water Health 9 : 265 278.[PubMed][CrossRef]
68. Payment P, Locas A. 2011. Pathogens in water: value and limits of correlation with microbial indicators. Ground Water 49 : 4 11.[PubMed][CrossRef]
69. Lipp EK, Kurz R, Vincent R, Rodriguez-Palacios C, Farrah SR, Rose JB. 2001. The effects of seasonal variability and weather on microbial fecal pollution and enteric pathogens in a subtropical estuary. Estuaries 24 : 266 276.[CrossRef]
70. Sinton L, Hall C, Braithwaite R. 2007. Sunlight inactivation of Campylobacter jejuni and Salmonella enterica, compared with Escherichia coli, in seawater and river water. J Water Health 5 : 357 365.[PubMed][CrossRef]
71. Bonilla TD, Nowosielski K, Cuvelier M, Hartz A, Green M, Esiobu N, McCorquodale DS, Fleisher JM, Rogerson A. 2007. Prevalence and distribution of fecal indicator organisms in South Florida beach sand and preliminary assessment of health effects associated with beach sand exposure. Mar Pollut Bull 54 : 1472 1482.[PubMed][CrossRef]
72. Goyal SM, Gerba CP, Melnick JL. 1977. Occurrence and distribution of bacterial indicators and pathogens in canal communities along the Texas coast. Appl Environ Microbiol 34 : 139 149.[PubMed]
73. Shehane SD, Harwood VJ, Whitlock JE, Rose JB. 2005. The influence of rainfall on the incidence of microbial faecal indicators and the dominant sources of faecal pollution in a Florida river. J Appl Microbiol 98 : 1127 1136.[PubMed][CrossRef]
74. Gourmelon M, Caprais MP, Mieszkin S, Marti R, Wery N, Jarde E, Derrien M, Jadas-Hecart A, Communal PY, Jaffrezic A, Pourcher AM. 2010. Development of microbial and chemical MST tools to identify the origin of the faecal pollution in bathing and shellfish harvesting waters in France. Water Res 44 : 4812 4824.[PubMed][CrossRef]
75. Edge TA, Hill S. 2005. Occurrence of antibiotic resistance in Escherichia coli from surface waters and fecal pollution sources near Hamilton, Ontario. Can J Microbiol 51 : 501 505.[PubMed][CrossRef]
76. Wade TJ, Sams E, Brenner KP, Haugland R, Chern E, Beach M, Wymer L, Rankin CC, Love D, Li Q, Noble R, Dufour AP. 2010. Rapidly measured indicators of recreational water quality and swimming-associated illness at marine beaches: a prospective cohort study. Environ Health 9 : 66.[PubMed][CrossRef]
77. Boehm AB, Fuhrman JA, Mrse RD, Grant SB. 2003. Tiered approach for identification of a human fecal pollution source at a recreational beach: case study at Avalon Bay, Catalina Island, California. Environ Sci Technol 37 : 673 680.[PubMed][CrossRef]
78. Shibata T, Solo-Gabriele HM, Sinigalliano CD, Gidley ML, Plano LR, Fleisher JM, Wang JD, Elmir SM, He G, Wright ME, Abdelzaher AM, Ortega C, Wanless D, Garza AC, Kish J, Scott T, Hollenbeck J, Backer LC, Fleming LE. 2010. Evaluation of conventional and alternative monitoring methods for a recreational marine beach with nonpoint source of fecal contamination. Environ Sci Technol 44 : 8175 8181.[PubMed][CrossRef]
79. Oliver DM, Hanley ND, van Niekerk M, Kay D, Heathwaite AL, Rabinovici SJM, Kinzelman JL, Fleming LE, Porter J, Shaikh S, Fish R, Chilton S, Hewitt J, Connolly E, Cummins A, Glenk K, McPhail C, McRory E, McVittie A, Giles A, Roberts S, Simpson K, Tinch D, Thairs T, Avery LM, Vinten AJA, Watts BD, Quilliam RS. 2015. Molecular tools for bathing water assessment in Europe: Balancing social science research with a rapidly developing environmental science evidence-base. Ambio : 1 11.
80. Giebel R, Worden C, Rust SM, Kleinheinz GT, Robbins M, Sandrin TR. 2010. Microbial fingerprinting using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) applications and challenges. Adv Appl Microbiol 71 : 149 184.[PubMed][CrossRef]
81. Kinzelman J, McLellan SL, Daniels AD, Cashin S, Singh A, Gradus S, Bagley R. 2004. Non-point source pollution: determination of replication versus persistence of Escherichia coli in surface water and sediments with correlation of levels to readily measurable environmental parameters. J Water Health 2 : 103 114.[PubMed]
82. Olivas Y, Faulkner BR. 2008. Fecal source tracking by antibiotic resistance analysis on a watershed exhibiting low resistance. Environ Monit Assess 139 : 15 25.[PubMed][CrossRef]
83. Lu Z, Lapen D, Scott A, Dang A, Topp E. 2005. Identifying host sources of fecal pollution: diversity of Escherichia coli in confined dairy and swine production systems. Appl Environ Microbiol 71 : 5992 5998.[PubMed][CrossRef]
84. Stewart-Pullaro J, Daugomah JW, Chestnut DE, Graves DA, Sobsey MD, Scott GI. 2006. F + RNA coliphage typing for microbial source tracking in surface waters. J Appl Microbiol 101 : 1015 1026.[PubMed][CrossRef]
85. Okabe S, Okayama N, Savichtcheva O, Ito T. 2007. Quantification of host-specific Bacteroides-Prevotella 16S rRNA genetic markers for assessment of fecal pollution in freshwater. Appl Microbiol Biotechnol 74 : 890 901.[PubMed][CrossRef]
86. Oberste MS, Maher K, Williams AJ, Dybdahl-Sissoko N, Brown BA, Gookin MS, Penaranda S, Mishrik N, Uddin M, Pallansch MA. 2006. Species-specific RT-PCR amplification of human enteroviruses: a tool for rapid species identification of uncharacterized enteroviruses. J Gen Virol 87 : 119 128.[PubMed][CrossRef]
87. Jiang S, Noble R, Chu W. 2001. Human adenoviruses and coliphages in urban runoff-impacted coastal waters of Southern California. Appl Environ Microbiol 67 : 179 184.[PubMed][CrossRef]
88. Zoetendal EG, Akkermans AD, De Vos WM. 1998. Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl Environ Microbiol 64 : 3854 3859.[PubMed]
89. Love DC, Sobsey MD. 2007. Simple and rapid F+ coliphage culture, latex agglutination, and typing assay to detect and source track fecal contamination. Appl Environ Microbiol 73 : 4110 4118.[PubMed][CrossRef]
90. Lee JE, Lee H, Cho YH, Hur HG, Ko G. 2011. F+ RNA coliphage-based microbial source tracking in water resources of South Korea. Sci Total Environ 412–413 : 127 131.[CrossRef]
91. Payment P, Franco E. 1993. Clostridium perfringens and somatic coliphages as indicators of the efficiency of drinking water treatment for viruses and protozoan cysts. Appl Environ Microbiol 59 : 2418 2424.[PubMed]
92. Gomez-Donate M, Payan A, Cortes I, Blanch AR, Lucena F, Jofre J, Muniesa M. 2011. Isolation of bacteriophage host strains of Bacteroides species suitable for tracking sources of animal faecal pollution in water. Environ Microbiol 13 : 1622 1631.[PubMed][CrossRef]
93. Kirs M, Smith DC. 2007. Multiplex quantitative real-time reverse transcriptase PCR for F+-specific RNA coliphages: a method for use in microbial source tracking. Appl Environ Microbiol 73 : 808 814.[PubMed][CrossRef]
94. Smith DC. 2006. Microbial source tracking using F-specific coliphages and quantitative PCR. Doctoral dissertation, University of Rhode Island.
95. Griffin DW, Gibson CJ III, Lipp EK, Riley K, Paul JH III, Rose JB. 1999. Detection of viral pathogens by reverse transcriptase PCR and of microbial indicators by standard methods in the canals of the Florida Keys. Appl Environ Microbiol 65 : 4118 4125.[PubMed]
96. Bernhard AE, Field KG. 2000. A PCR assay to discriminate human and ruminant feces on the basis of host differences in Bacteroides-Prevotella genes encoding 16S rRNA. Appl Environ Microbiol 66 : 4571 4574.[PubMed][CrossRef]
97. Harmsen HJ, Wildeboer-Veloo AC, Raangs GC, Wagendorp AA, Klijn N, Bindels JG, Welling GW. 2000. Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J Pediatr Gastroenterol Nutr 30 : 61 67.[PubMed][CrossRef]
98. Gawler AH, Beecher JE, Brandao J, Carroll NM, Falcao L, Gourmelon M, Masterson B, Nunes B, Porter J, Rince A, Rodrigues R, Thorp M, Walters JM, Meijer WG. 2007. Validation of host-specific Bacteriodales 16S rRNA genes as markers to determine the origin of faecal pollution in Atlantic Rim countries of the European Union. Water Res 41 : 3780 3784.[PubMed][CrossRef]
99. Lee DY, Weir SC, Lee H, Trevors JT. 2010. Quantitative identification of fecal water pollution sources by TaqMan real-time PCR assays using Bacteroidales 16S rRNA genetic markers. Appl Microbiol Biotechnol 88 : 1373 1383.[PubMed][CrossRef]
100. Ahmed W, Sidhu JP, Toze S. 2012. Evaluation of the nifH gene marker of Methanobrevibacter smithii for the detection of sewage pollution in environmental waters in Southeast Queensland, Australia. Environ Sci Technol 46 : 543 550.[PubMed][CrossRef]
101. Bauer L, Alm E. 2012. Escherichia coli toxin and attachment genes in sand at Great Lakes recreational beaches. J Great Lakes Res 38 : 129 133.[CrossRef]
102. Dick LK, Field KG. 2004. Rapid estimation of numbers of fecal Bacteroidetes by use of a quantitative PCR assay for 16S rRNA genes. Appl Environ Microbiol 70 : 5695 5697.[PubMed][CrossRef]
103. Green HC, Dick LK, Gilpin B, Samadpour M, Field KG. 2012. Genetic markers for rapid PCR-based identification of gull, Canada goose, duck, and chicken fecal contamination in water. Appl Environ Microbiol 78 : 503 510.[PubMed][CrossRef]
104. Bae S, Wuertz S. 2009. Rapid decay of host-specific fecal Bacteroidales cells in seawater as measured by quantitative PCR with propidium monoazide. Water Res 43 : 4850 4859.[PubMed][CrossRef]
105. Opel KL, Chung D, McCord BR. 2010. A study of PCR inhibition mechanisms using real time PCR. J Forensic Sci 55 : 25 33.[PubMed][CrossRef]
106. Shanks OC, Sivaganesan M, Peed L, Kelty CA, Blackwood AD, Greene MR, Noble RT, Bushon RN, Stelzer EA, Kinzelman J, Anan'eva T, Sinigalliano C, Wanless D, Griffith J, Cao Y, Weisberg S, Harwood VJ, Staley C, Oshima KH, Varma M, Haugland RA. 2012. Interlaboratory comparison of real-time PCR protocols for quantification of general fecal indicator bacteria. Environ Sci Technol 46 : 945 953.[PubMed][CrossRef]
107. Hata A, Katayama H, Kitajima M, Visvanathan C, Nol C, Furumai H. 2011. Validation of internal controls for extraction and amplification of nucleic acids from enteric viruses in water samples. Appl Environ Microbiol 77 : 4336 4343.[PubMed][CrossRef]
108. Kinzelman JL, Bushon RN, Dorevitch S, Noble RT. 2011. Comparative evaluation of molecular and culture methods for fecal indicator bacteria for use in inland recreational waters. International Water Association. WERF Report PATH7R09.
109. Srinivasan S, Aslan A, Xagoraraki I, Alocilja E, Rose JB. 2011. Escherichia coli, enterococci, and Bacteroides thetaiotaomicron qPCR signals through wastewater and septage treatment. Water Res 45 : 2561 2572.[PubMed][CrossRef]


Generic image for table
Table 1.

Host specificity of different groups of F + RNA coliphages (modified from ( ))

Citation: Santiago-Rodriguez T, Kinzelman J, Toranzos G. 2016. Current and Developing Methods for the Detection of Microbial Indicators in Environmental Freshwaters and Drinking Waters, p 3.1.1-1-3.1.1-10. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch3.1.1
Generic image for table
Table 2.

Bacteriological drinking water and recreational freshwater standards or guidelines

Citation: Santiago-Rodriguez T, Kinzelman J, Toranzos G. 2016. Current and Developing Methods for the Detection of Microbial Indicators in Environmental Freshwaters and Drinking Waters, p 3.1.1-1-3.1.1-10. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch3.1.1

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error