Chapter 3.2.2 : Sampling for Airborne Microorganisms

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Sampling for Airborne Microorganisms, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818821/9781555818821.ch3.2.2-1.gif /docserver/preview/fulltext/10.1128/9781555818821/9781555818821.ch3.2.2-2.gif


Microbiologists have confronted the challenges of sampling and analysis of airborne microorganisms since the early 20th century. Today, the concentration and composition of airborne microorganisms are of interest in various areas such as agricultural and industrial settings, hospitals, home and office environments, and military installations. In all of these applications, the term "bioaerosol" is used to refer to airborne biological particles, such as bacterial cells, fungal spores, viruses, and pollen grains, and to their fragments and by-products. A wide variety of bioaerosol sampling and analysis methods have been used, and new methods are being developed. However, no single sampling method is suitable for the collection and analysis of all types of bioaerosols and no standardized protocols are currently available. Therefore, data from different studies are often difficult to compare because of differences in sampler designs, collection times, airflow rates, collection media and analysis methods. In addition, human exposure limits have not been established for bioaerosols because of the lack of exposure, dose, and response data.

The purpose of this chapter is to present various bioaerosol sampling and analysis methods that would allow facilitating an intelligent selection of instrumentation and techniques. The principles of bioaerosol sampling are presented, followed by a review of traditional and emerging sampling methods and techniques, including the results of performance evaluations of the various sampler types. Equipment calibration and air sampling considerations such as collection times and the number of samples are discussed. The advantages and disadvantages of surface sampling methods are also described.

Citation: Grinshpun S, Buttner M, Mainelis G, Willeke K. 2016. Sampling for Airborne Microorganisms, p 3.2.2-1-3.2.2-17. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch3.2.2
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Mechanisms of collection utilized in bioaerosol sampling. (a) Solid plate impaction; (b) centrifugal impaction; (c) liquid impingement; (d) filtration. F or F, inertial force. (Adapted from Nevalainen et al. ( ) with kind permission from Elsevier Science Ltd., Kidlington, UK). doi:10.1128/9781555818821.ch3.2.2.f1

Citation: Grinshpun S, Buttner M, Mainelis G, Willeke K. 2016. Sampling for Airborne Microorganisms, p 3.2.2-1-3.2.2-17. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch3.2.2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Collection times for selected bioaerosol samplers. BURK, Burkard spore trap (personal sampler); AND, Andersen six-stage viable impactor sampler; AND-VI, sixth stage of the Andersen six-stage impactor used as a separate sampler; MK-II, Casella MK-II sampler; SAS, surface air system high-flow sampler. (Adapted from Nevalainen et al. ( ) with kind permission from Elsevier Science Ltd., Kidlington, UK). doi:10.1128/9781555818821.ch3.2.2.f2

Citation: Grinshpun S, Buttner M, Mainelis G, Willeke K. 2016. Sampling for Airborne Microorganisms, p 3.2.2-1-3.2.2-17. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch3.2.2
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Agranovski IE, Agranovski V, Grinshpun SA, Reponen T, Willeke K. 2002. Collection of airborne microorganisms into liquid by bubbling through porous medium. Aerosol Sci Tech 36 : 502 509.[CrossRef]
2. Agranovski IE, Agranovski V, Reponen T, Willeke K, Grinshpun S. 2002. Development and evaluation of a new personal sampler for culturable airborne microorganisms. Atmos Environ 36 : 889 898.[CrossRef]
3. Aizenberg V, Reponen T, Grinshpun SA, Willeke K. 2000. Performance of Air-O-Cell, Burkard, and button samplers for total enumeration of airborne spores. Am Ind Hyg Assoc J 61 : 855 864.[CrossRef]
4. Alvarez AJ, Buttner MP, Toranzos GA, Dvorsky EA, Toro A, Heikes TB, Mertikas LE, Stetzenbach LD. 1994. The use of solid-phase polymerase chain reaction for the enhanced detection of airborne microorganisms. Appl Environ Microb 60 : 374 376.
5. Alvarez A, Buttner M, Stetzenbach L. 1995. PCR for bioaerosol monitoring: sensitivity and environmental interference. Appl Environ Microb 61 : 3639 3644.
6. An HR, Mainelis G, Yao M. 2004. Evaluation of a high volume portable bioaerosol sampler in laboratory and field environments. Indoor Air 14 : 385 393.[PubMed][CrossRef]
7. Beuchat LR. 1992. Media for detecting and enumerating yeasts and moulds. Int J Food Microbiol 17 : 145 158.[PubMed][CrossRef]
8. Burge HA, Solomon WR. 1987. Sampling and analysis of biological aerosols. Atmos Environ 21 : 451 456.[CrossRef]
9. Buttner MP, Stetzenbach LD. 1991. Evaluation of four aerobiological sampling methods for the retrieval of aerosolized Pseudomonas syringae. Appl Environ Microbiol 57 : 1268 1270.[PubMed]
10. Chapman MD,. 1995. Analytical methods: immunoassays. In Burge HA (ed), Bioaerosols. CRC Press, Boca Raton, FL.
11. Chatigny MA, Macher JM, Burge HA, Solomon WR,. 1989. Samplingairborne microorganisms and aeroallergens, p. 199 220. In Hering SV (ed), Air Sampling Instruments for Evaluation of Atmospheric Contaminants, 7th ed. ACGIH, Cincinnati, OH.
12. Eduard W, Heederic D. 1998. Methods for quantitative assessment of airborne levels of noninfectious microorganisms in highly contaminated work environments. Am Ind Hyg Assoc J 59 : 113 127.[PubMed][CrossRef]
13. Flannigan B. 1997. Air sampling for fungi in indoor Environments. J Aerosol Sci 28 : 381 392.[CrossRef]
14. Grinshpun SA, Clark JM. 2005. Guest editorial for the special issue on measurement and characterization of bioaerosols. J Aerosol Sci 36 : 553 555.[CrossRef]
15. Hobbie JE, Daley RJ, Jasper S. 1977. Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl Environ Microb 33 : 1225 1228.
16. Jensen PA, Lighthart B, Mohr AJ, Shaffer BT,. 1994. Instrumentation used with microbial bioaerosol, p. 226 284. In Lighthart B,, Mohr AJ (eds), Atmospheric Microbial Aerosols, Theory and Applications. Chapman and Hall, New York.
17. Jensen PA, Todd WF, Davis GN, Scarpino PV. 1992. Evaluation of eight bioaerosol samplers challenged with aerosols of free bacteria. Am Ind Hyg Assoc J 53 : 660 667.[PubMed][CrossRef]
18. Lange J, Thorne P, Lynch N. 1997. Application of flow cytometry and fluorescent in situ hybridization for assessment of exposures to airborne bacteria. Appl Environ Microb 63 : 1557 1563.
19. Lee KS, Bartlett KH, Brauer M, Stephens GM, Black WA, Teschke K. 2004. A field comparison of four samplers for enumerating fungal aerosols. I. Sampling characteristics. Indoor Air 14 : 360 366.[PubMed][CrossRef]
20. Lee KS, Teschke K, Brauer M, Bartlett KH. 2004. A field comparison of four fungal aerosol sampling instruments: inter-sampler calibration and caveats. Indoor Air 14 : 367 372.[PubMed][CrossRef]
21. Leser TD, Boye M, Hendriksen NB. 1995. Survival and activity of Pseudomonas sp. strain B13(FR1) in a marine microcosm determined by quantitative PCR and an rRNA-targeting probe and its effect on the indigenous bacterioplankton. Appl Environ Microb 61 : 1201 1207.
22. Macher JM. 1999. Bioaerosols: Assessment and Control. American Conference of Governmental Industrial Hygienists, Cincinnati, OH.
23. Madelin TM, Madelin MF,. 1995. Biological analysis of fungi and associated molds, p. 361 386. In Cox CS,, Wathes CM (eds), Bioaerosols Handbook. CRC Press, Boca Raton, FL.
24. Mainelis G, Willeke K, Adhikari A, Reponen T, Grinshpun SA. 2002. Design and collection efficiency of a new electrostatic precipitator for bioaerosol collection. Aerosol Sci Tech 36 : 1073 1085.[CrossRef]
25. Miller JD, Young JC. 1997. The use of ergosterol to measure exposure to fungal propagules in indoor air. Am Ind Hyg Assoc J 58 : 39 43.[PubMed][CrossRef]
26. Milton DK,. 1995. Endotoxin, p. 77 86. In Burge HA (ed), Bioaerosols. CRC Press, Boca Raton, FL.
27. Milton DK, Gere RJ, Feldman HA, Greaves IA. 1990. Endotoxin measurement: aerosol sampling and application of a new Limulus method. Am Ind Hyg Assoc J 51 : 331 337.[PubMed][CrossRef]
28. Muilenberg M. 2003. Sampling devices. Immunol Allergy Clin 23 : 337 355.[CrossRef]
29. Nevalainen A, Pastuszka J, Liebhaber F, Willeke K. 1992. Performance of bioaerosol samplers: collection characteristics and sampler design considerations. Atmos Environ 26A : 531 540.[CrossRef]
30. Palmgren U, Strom G, Blomquist G, Malmberg P. 1986. Collection of airborne micro-organisms on Nuclepore filters, estimation and analysis-CAMNEA method. J Appl Bacteriol 61 : 401 406.[PubMed][CrossRef]
31. Pasanen AL, Nikulin M, Tuomainene M, Berg S, Parikka P, Hintikka EL. 1993. Laboratory experiments on memberane filter sampling of airborne mycotoxins produced by Stachybotrys atra Corda. Atmos Environ 27A : 9 13.[CrossRef]
32. Placencia AM, Peeler JT, Oxborrow GS, Danielson JW. 1982. Comparison of bacterial recovery by Reuter centrifugal air sampler and slit-to-agar sampler. Appl Environ Microb 44 : 512 513.
33. Reponen T, Willeke K, Grinshpun SA, Nevalainen A,. 2001. Biological particle sampling, p. 751 777. In Willeke K,, Baron PA (eds), Aerosol Measurement: Principles, Techniques, and Applications, 2nd ed. John Wiley & Sons, New York.
34. Smid T, Schokkin E, Boleij JSM, Heederik D. 1989. Enumeration of viable fungi in occupational environments: a comparison of samplers and media. Am Ind Hyg Assoc J 50 : 235 239.[PubMed][CrossRef]
35. Wagner J, Marcher JM. 2003. Comparison of a passive aerosol sampler to size selective pump samplers in indoor environments. Am Ind Hyg Assoc J 64 : 630 639.[CrossRef]
36. Walters M, Milton D, Larsson L, Ford T. 1994. Airborne environmental endotoxin: a cross validation of sampling and analysis techniques. Appl Environ Microb 60 : 996 1005.
37. White LA, Hadley DJ, Davids DE, Naylor R. 1975. Improved large-volume sampler for the collection of bacterial cells from aerosol. Appl Microbiol 29 : 335 339.[PubMed]
38. Willeke K, Baron PA. 1993. Aerosol Measurement: Principles, Techniques and Applications. Van Nostrand Reinhold, New York.
39. Willeke K, Lin X, Grinshpun SA. 1998. Improved aerosol collection by combined impaction and centrifugal motion. Aerosol Sci Tech 28 : 439 456.[CrossRef]
40. Han T, An HR, Mainelis G. 2010. Performance of an electrostatic precipitator with superhydrophobic surface when collecting airborne bacteria. Aerosol Sci Tech 44 : 339 348.[CrossRef]
41. Han T, Nazarenko Y, Lioy PJ, Mainelis G. 2011. Collection efficiencies of an electrostatic sampler with superhydrophobic surface for fungal bioaerosols. Indoor Air 21 : 110 120.[PubMed][CrossRef]
42. Su W-C, Tolchinsky AD, Chen BT, Sigaev VI, Cheng YS. 2012. Evaluation of physical sampling efficiency for cyclone-based personal bioaerosol samplers in moving air environments. J Environ Monitor 14 : 2430 2437.[CrossRef]
43. Buttner MP, Cruz-Perez P, Stetzenbach LD, Garrett PJ, Luedtke AE. 2002. Measurement of airborne fungal spore dispersal from three types of flooring materials. Aerobiologia 18 : 1 11.[CrossRef]
44. Castellan RM, Olenchock SA, Kinsley KB, Hankinson JL. 1987. Inhaled endotoxin and decreased spirometric values: an exposure-response relation for cottondust. N Engl J Med 317 : 605 610.[PubMed][CrossRef]
45. Croft WA, Jarvis BB, Yatawara CS. 1986. Airborne outbreak of trichothecene toxicosis. Atmos Environ 20 : 549 552.[CrossRef]
46. DeBlay F, Chapman MD, Platts-Mills TAE. 1991. Airborne cat allergen Feld I: environmental control with the cat in situ. Am Rev Respir Dis 143 : 1334.[CrossRef]
47. Flannigan B. 1987. Mycotoxins in the air. Int Biodeterior 23 : 73 78.[CrossRef]
48. Higgins JA, Cooper M, Schroeder-Tucker L, Black S, Miller D, Karns JS, Manthey E, Breeze R, Perdue ML. 2003. A field investigation of Bacillus anthracis contamination of U.S. Department of Agriculture and other Washington D.C., buildings during the anthrax attack of October 2001. Appl Environ Microb 69 : 593 599.[CrossRef]
49. Hirsch SR, Sosman JA. 1976. A one-year survey of mold growth inside twelve homes. Ann Allergy 36 : 30 38.[PubMed]
50. Hocking AD, Pitt JI. 1980. Dichloran-glycerol medium for enumeration of xerophilic fungi from low-moisture foods. Appl Environ Microb 39 : 488 492.
51. Horner WE, Wortham AG, Morey PR. 2004. Air and dust borne mycoflora in houses free of water damage and fungal growth. Appl Environ Microb 70 : 6394 6400.[CrossRef]
52. Huang YL, Willeke K, Juozaitis A, Donnelly J, Leeson A, Wyza R. 1994. Fermentation process monitoring through measurement of aerosol release. Biotechnol Prog 10 : 32 38.[CrossRef]
53. Hunter CA, Grant C, Flannigan B, Bravery AF. 1988. Mould in buildings: the air spora of domestic buildings. Int Biodeterior 24 : 81 101.[CrossRef]
54. Jacobs RR. 1989. Airborne endotoxins: an association with occupational lung disease. Appl Ind Hyg 4 : 50 56.[CrossRef]
55. Jarvis BB, Sorenson WG, Hintikka E, Nijulin M, Zhou Y, Jiang J, Wang S, Hinkley S, Etzel RA, Dearbom D. 1998. Study of toxin production by isolates of Stachybotrys chartarum and Memnoniella echinata isolated during a study of pulmonary hemosiderosis in infants. Appl Environ Microb 64 : 3620 3625.
56. Johanning E, Biagini R, Hull D, Morey P, Jarvis B, Landsbergis P. 1996. Health and immunology study following exposure to toxigenic fungi ( Stachybotrys chartarum) in a water-damaged office environment. Int Arch Occup Environ Health 68 : 207 218.[PubMed]
57. Luczynska CM, Li Y, Chapman MD, Platts-Mills TAE. 1990. Airborne concentration and particle size distribution of allergen derived from domestic cats (Felis domesticus): measurements using cascade impactor, liquid impinger and a two site monoclonal antibody assay for Fel d I. Am Rev Respir Dis 141 : 361 367.[PubMed][CrossRef]
58. Miller JD, Laflamme AM, Sobol Y, Lafontaine P, Greenhalgh R. 1988. Fungi and fungal products in some Canadian houses. Int Biodeterior 24 : 103 120.[CrossRef]
59. Platts-Mills TAE, Thomas WR, Aalbersee RC, Vervloet D, Chapman MD. 1992. Dust mite allergens and asthma: report of a second international workshop. J Allergy Clin Immunol 89 : 1046.[PubMed][CrossRef]
60. Sawyer MH, Chamberlin CJ, Wu YN, Aintablian N, Wallace MR. 1994. Detection of varicella-zoster virus DNA in air samples from hospital rooms. J Infect Dis 169 : 91 94.[PubMed][CrossRef]
61. Sayer WJ, MacKnight MN, Wilson HW. 1972. Hospital airborne bacteria as estimated by the Andersen sampler versus the gravity settling culture plate. Am J Clin Pathol 58 : 558 562.[PubMed]
62. Solomon WR. 1975. Assessing fungus prevalence in domestic interiors. J Allergy Clin Immunol 56 : 235 242.[PubMed][CrossRef]
63. Sorber CA, Bausum HT, Schaub SA, Small MJ. 1976. A study of bacterial aerosols at a wastewater irrigation site. J Water Pollut Control Fed 48 : 2367 2379.[PubMed]
64. Sorenson WG, Frazer DG, Jarvis BB, Robinson VA. 1987. Trichothecene mycotoxins in aerosolized conidia of Stachybotrys atra. Appl Environ Microb 53 : 1370 1375.
65. Stärk KDC, Nicolet J, Frey J. 1998. Detection of Mycoplasma hyopneumoniae by air sampling with a nested PCR assay. Appl Environ Microb 64 : 543 548.
66. Strachan DP, Flannigan B, McCabe EM, McGarry E. 1990. Quantification of airborne moulds in the homes of children with and without wheeze. Thorax 45 : 382 387.[PubMed][CrossRef]
67. Verhoeff AP, Winjen JH, Boleij JSM, Brunekreef B, Van Reenen-Hoekstra BS, Samson RA. 1990. Enumeration and identification of airborn viable mould propagules in house. Allergy 45 : 275 284.[PubMed][CrossRef]
68. Wallace L. 1996. Indoor particles: a review. J Air Waste Manag Assoc 46 : 98 126.[PubMed][CrossRef]
69. Cruz P,. 2002. Identification of airborne fungi, p. 1647 1661. In Bitton G (ed), Encyclopedia of Environmental Microbiology. John Wiley & Sons, New York.
70. Desjardin LE, Chen Y, Perkins MD, Teixeira L, Cave MD, Eisenach KD. 1998. Comparison of the ABI 7700 system (TaqMan) and competitive PCR for quantification of IS6110 DNA in sputum during treatment of tuberculosis. J Clin Microbiol 36 : 1964 1968.[PubMed]
71. Douwes J, Doekes G, Montijn R, Heederik D, Brunekreef B. 1996. Measurement of beta(1→3)-glucans in occupational and home environments with an inhibition enzyme immunoassay. Appl Environ Microb 62 : 3176 3182.
72. Ferre F. 1992. Quantitative or semi-quantitative PCR: reality versus myth. PCR Meth Appl 2 : 1 9.[CrossRef]
73. Fogelmark B, Goto H, Yuasa K, Marchat B, Rylander R. 1992. Acute pulmonary toxicity of inhaled beta-1,3-glucan and endotoxin. Agents Actions 35 : 50 56.[PubMed][CrossRef]
74. Goto H, Yuasa K, Rylander R. 1994. (1→3)-Beta-D-glucan in indoor air, its measurement and in vitro activity. Am J Ind Med 25 : 81 83.[PubMed][CrossRef]
75. Josephson KL, Gerba CP, Pepper IL. 1993. Polymerase chain reaction detection of nonviable bacterial pathogens. Appl Environ Microb 59 : 3513 3515.
76. Picard C, Ponsonnet C, Paget E, Nesme X, Simonet P. 1992. Detection and enumeration of bacteria in soil by direct DNA extraction and polymerase chain reaction. Appl Environ Microb 58 : 2717 2722.
77. Saiki RK, Scharf S, Faloona F, Mullis KB, Hom GT, Erlich H, Amheim N. 1985. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230 : 1350 1354.[PubMed][CrossRef]
78. Wilson IG. 1997. Inhibition and facilitation of nucleic acid amplification. Appl Environ Microb 63 : 3741 3751.
79. Yike I, Allan T, Sorenson WG, Dearborn DG. 1999. Highly sensitive protein translation assay for trichothecene toxicity in airborne particulates: comparison with cytotoxicity assays. Appl Environ Microb 65 : 88 94.
80. Burge HA,. 1995. Bioaerosol investigations, p. 1 23. In Burge HA (ed), Bioaerosols. CRC Press, Boca Raton, FL.
81. Atlas RM, Bartha R. 1993. Microbial ecology: fundamentals and applications, 3rd ed. Benjamin/Cummings, Redwood City, CA.
82. Thorne PS, Kiekhaefer MS, Whitten P, Donham KJ. 1992. Comparison of bioaerosol sampling methods in barns housing swine. Appl Environ Microb 58 : 2543 2551.
83. Lee KW, Mukund R,. 2001. Filter collection, p. 197 228. In Baron PA,, Willeke K (eds), Aerosol Measurement: Principles, Techniques and Applications. John Wiley & Sons, New York.
84. Stewart SL, Grinshpun SA, Willeke K, Terzieva S, Ulevicius V, Donnelly J. 1995. Effect of impact stress on microbial recovery on an agar surface. Appl Environ Microb 61 : 1232 1239.
85. Wang Z, Reponen T, Grinshpun SA, Gorny RL, Willeke K. 2001. Effect of sampling time and air humidity on the bioefficiency of filter samplers for bioaerosol collection. J Aerosol Sci 32 : 661 674.[CrossRef]
86. Mainelis G, Grinshpun SA, Willeke K, Reponen T, Ulevicius V, Hintz PJ. 1999. Collection of airborne microorganisms by electrostatic precipitation. Aerosol Sci Tech 30 : 127 144.[CrossRef]
87. Buttner MP, Stetzenbach LD. 1993. Monitoring airborne fungal spores in an experimental indoor environment to evaluate sampling methods and the effects of human activity on air sampling. Appl Environ Microb 59 : 219 226.
88. Sayer WJ, Shean DB, Ghosseiri J. 1969. Estimation of airborne fungal flora by the Andersen sampler versus the gravity settling plate. J Allergy 44 : 214 227.[PubMed][CrossRef]
89. Andersen AA. 1958. New sampler for the collection, sizing, and enumeration of viable airborne particles. J Bacteriol 76 : 471 484.[PubMed]
90. Jones W, Marring K, Morey P, Sorenson W. 1985. Evaluation of the Andersen viable impactor for single stage sampling. Am Ind Hyg Assoc J 46 : 294 298.[PubMed][CrossRef]
91. Yao MS, Mainelis G. 2007. Use of portable microbial samplers for estimating inhalation exposure to viable biological agents. J Expo Sci Env Epid 17 : 31 38.[CrossRef]
92. Gillespie VL, Clark CS, Bjomson HS, Samuels SJ, Holland JW. 1981. A comparison of two stage and six-stage Andersen impactors for viable aerosols. Am Ind Hyg Assoc J 42 : 858 864.[CrossRef]
93. Mehta SK, Mishra SK, Pierson DL. 1996. Evaluation of three portable samplers for monitoring airborne fungi. Appl Environ Microb 62 : 1835 1838.
94. Li CM, Pan LK, Luong JHT. 2006. Capacitance immunosensors based on an array biotape. Analyst 131 : 788 790.[PubMed][CrossRef]
95. Zhen SQ, Li KJ, Yin LH, Yao MS, Zhang HL, Chen LS, Zhou MH, Chen XD. 2009. A comparison of the efficiencies of a portable BioStage impactor and a Reuter centrifugal sampler (RCS) High Flow for measuring airborne bacteria and fungi concentrations. J Aerosol Sci 40 : 503 513.[CrossRef]
96. Chang CW, Hung PY. 2012. Evaluation of sampling techniques for detection and quantification of airborne legionellae at biological aeration basins and shower rooms. J Aerosol Sci 48 : 63 74.[CrossRef]
97. Chang CW, Chou FC. 2011. Assessment of bioaerosol sampling techniques for viable Legionella pneumophila by ethidium monoazide quantitative PCR. Aerosol Sci Tech 45 : 343 351.[CrossRef]
98. Levetin E, Shaughnessy R, Fisher E, Ligman B, Harrison J, Brennan T. 1995. Indoor air quality in schools: exposure to fungal allergens. Aerobiologia 11 : 27 34.[CrossRef]
99. Adhikari A, Sen MM, Gupta-Bhattacharya S, Chanda S. 2000. Incidence of allergenically significant fungal aerosols in a rural bakery of West Bengal, India. Mycopathologia 149 : 35 45.[PubMed][CrossRef]
100. DeKoster JA, Thorne PS. 1995. Bioaerosol concentrations in noncomplaint, complaint, and intervention homes in the Midwest. Am Ind Hyg Assoc J 56 : 573 580.[CrossRef]
101. Mitakakis TZ, Tovey ER, Xuan W, Marks GB. 2000. Personal exposure to allergenic pollen and mould spores in inland New South Wales, Australia. Clin Exp Allergy 30 : 1733 1739.[PubMed][CrossRef]
102. Emberlin J, Newman T, Bryant R. 1995. The incidence of fungal spores in the ambient air and inside homes: evidence from London. Aerobiologia 11 : 253 258.[CrossRef]
103. Rosebury T. 1947. Experimental Airborne Infection. Williams and Wilkins, Baltimore, MD.
104. Cox CS. 1987. The aerobiological pathway of microorganisms. John Wiley & Sons, Chichester, UK.
105. Grinshpun SA, Chang C-W, Nevalainen A, Willeke K. 1994. Inlet characteristics of bioaerosol samplers. J Aerosol Sci 25 : 1503 1522.[CrossRef]
106. Grinshpun SA, Willeke K, Ulevicius V, Juozaitis A, Terzieva S, Donnelly J, Stelma GN, Brenner KP. 1997. Effect of impaction, bounce and reaerosolization on the collection efficiency of impingers. Aerosol Sci Tech 26 : 326 342.[CrossRef]
107. Lin X, Reponen T, Willeke K, Wang Z, Grinshpun SA, Trunov M. 2000. Survival of airborne microorganisms during swirling aerosol collection. Aerosol Sc Technol 32 : 184 196.[CrossRef]
108. Lin X, Reponen T, Willeke K, Grinshpun SA, Foarde KK, Ensor DS. 1999. Long-term sampling of airborne bacteria and fungi into a non-evaporating liquid. Atmos Environ. 33 : 4291 4298.[CrossRef]
109. Lin X, Willeke K, Ulevicius V, Grinshpun SA. 1997. Effect of sampling time on the collection efficiency of all-glass impingers. Am Ind Hyg Assoc J 58 : 480 488.[CrossRef]
110. Agranovski IE, Safatov AS, Borodulin AI, Pyankov OV, Petrishchenko VA, Sergeev AN, Sergeev AA, Agranovski V, Grinshpun SA. 2005. New personal sampler for viable airborne viruses: feasibility study. J Aerosol Sci 36 : 609 617.[CrossRef]
111. Pyankov OV, Agranovski IE, Pyankova O, Mokhonova E, Mokhonov V, Safatov AS, Khromykh AA. 2007. Using a bioaerosol personal sampler in combination with real-time PCR analysis for rapid detection of airborne viruses. Environ Microbiol 9 : 992 1000.[PubMed][CrossRef]
112. Hietala SK, Hullinger PJ, Crossley BM, Kinde H, Ardans AA. 2005. Environmental air sampling to detect exotic Newcastle disease virus in two california commercial poultry flocks. J Vet Diagn Invest 17 : 198 200.[PubMed][CrossRef]
113. Macher J, Chen B, Rao C. 2008. Chamber evaluation of a personal, bioaerosol cyclone sampler. J Occ Environ Hyg 5 : 702 712.[CrossRef]
114. Su WC, Tolchinsky AD, Sigaev VI, Cheng YS. 2012. A wind tunnel test of newly developed personal bioaerosol samplers. J Air Waste Manage 62 : 828 837.[CrossRef]
115. Lindsley WG, Schmechel D, Chen BT. 2006. A two-stage cyclone using microcentrifuge tubes for personal bioaerosol sampling. J Environ Monitor 8 : 1136 1142.[CrossRef]
116. Macher J, Chen B, Rao C. 2008. Field evaluation of a personal, bioaerosol cyclone sampler. J Occ Environ Hyg 5 : 724 734.[CrossRef]
117. Cao G, Noti JD, Blachere FM, Lindsley WG, Beezhold DH. 2011. Development of an improved methodology to detect infectious airborne influenza virus using the NIOSH bioaerosol sampler. J Environ Monitor 13 : 3321 3328.[CrossRef]
118. Lundholm IM. 1982. Comparison of methods for quantitative determinations of airborne bacteria and evaluation of total viable counts. Appl Environ Microb 44 : 179 183.
119. Yao MS, Mainelis G. 2007. Analysis of portable impactor performance for enumeration of viable bioaerosols. J Occ Environ Hyg 4 : 514 524.[CrossRef]
120. Wu Y, Shen FX, Yao MS. 2010. Use of gelatin filter and BioSampler in detecting airborne H5N1 nucleotides, bacteria and allergens. J Aerosol Sci 41 : 869 879.[CrossRef]
121. Haatainen S, Laitinen J, Linnainmaa M, Reponen T, Kalliokoski P. 2009. The suitability of the IOM foam sampler for bioaerosol sampling in occupational environments. J Occ Environ Hyg 7 : 1 6.[CrossRef]
122. Kenny LC, Bowry A, Crook B, Stancliffe JD. 1999. Field testing of a personal size-selective bioaerosol sampler. Ann Occup Hyg 43 : 393 404.[PubMed][CrossRef]
123. Berry CM. 1941. An electrostatic method for collecting bacteria from air. PhD dissertation, State University of Iowa.
124. Gerone PJ, Couch RB, Keefer GV, Douglas RG, Derrenbacher EB, Knight V. 1966. Assessment of experimental and natural viral aerosols. Bacteriol Rev 30 : 576 588.[PubMed]
125. Lee SA, Willeke K, Mainelis G, Adhikari A, Wang HX, Reponen T, Grinshpun SA. 2004. Assessment of electrical charge on airborne microorganisms by a new bioaerosol sampling method. J Occ Environ Hyg 1 : 127 138.[CrossRef]
126. Mainelis G, Adhikari A, Willeke K, Lee S-A, Reponen T, Grinshpun SA. 2002. Collection of airborne microorganisms by a new electrostatic precipitator. J Aerosol Sci 33 : 1417 1432.[CrossRef]
127. Yao MS, Mainelis G. 2006. Utilization of natural electrical charges on airborne microorganisms for their collection by electrostatic means. J Aerosol Sci 37 : 513 527.[CrossRef]
128. Han T, Mainelis G. 2008. Design and development of an electrostatic sampler for bioaerosols with high concentration rate. J Aerosol Sci 39 : 1066 1078.[CrossRef]
129. Tan M, Shen F, Yao M, Zhu T. 2011. Development of an automated electrostatic sampler (AES) for bioaerosol detection. Aerosol Sci Tech 45 : 1154 1160.[CrossRef]
130. Madsen AM, Sharma AK. 2008. Sampling of high amounts of bioaerosols using a high-volume electrostatic field sampler. Ann Occup Hyg 52 : 167 176.[PubMed][CrossRef]
131. Sharma KA, Wallin H, Jensen AK. 2007. High volume electrostatic field-sampler for collection of fine particle bulk samples. Atmos Environ 41 : 369 381.[CrossRef]
132. Xu Z, Yao M. 2011. Analysis of culturable bacterial and fungal aerosol diversity obtained using different samplers and culturing methods. Aerosol Sci Tech 45 : 1143 1153.[CrossRef]
133. Liebers V, van Kampen V, Buenger J, Dueser M, Stubel H, Bruening T, Raulf-Heimsoth M. 2012. Assessment of airborne exposure to endotoxin and pyrogenic active dust using electrostatic dustfall collectors (EDCs). J Toxicol Env Heal A 75 : 501 507.[CrossRef]
134. Noss I, Wouters IM, Visser M, Heederik DJJ, Thorne PS, Brunekreef B, Doekes G. 2008. Evaluation of a low-cost electrostatic dust fall collector for indoor air endotoxin exposure assessment. Appl Environ Microb 74 : 5621 5627.[CrossRef]
135. Frankel M, Timm M, Hansen EW, Madsen AM. 2012. Comparison of sampling methods for the assessment of indoor microbial exposure. Indoor Air 22 : 405 414.[PubMed][CrossRef]
136. Grinshpun SA, Reponen T. 2004. Sampling of biological particles from ambient environment: physical principles, efficiency, and exposure assessment. Int Aerobiol Newsl 59 : 1 2.
137. Juozaitis A, Willeke K, Grinshpun SA, Donnelly J. 1994. Impaction onto a glass slide or agar versus impingement into a liquid for the collection and recovery of airborne microorganisms. Appl Environ Microb 60 : 861 870.
138. Thompson MW, Donnelly J, Grinshpun SA, Juozaitis A, Willeke K. 1994. Method and test system for evaluation of bioaerosol samplers. J Aerosol Sci 25 : 1579 1593.[CrossRef]
139. Yao MS, Mainelis G. 2006. Investigation of cut-off sizes and collection efficiencies of portable microbial samplers. Aerosol Sci Tech 40 : 595 606.[CrossRef]
140. Brockmann JE,. 2001. Sampling and transport of aerosols, p. 143 195. In Baron P,, Willeke K (eds), Aerosol Measurement: Principles, Techniques and Applications. John Wiley & Sons, New York.
141. Michel D, Rotach MW, Gehrig R, Vogt R. 2012. On the efficiency and correction of vertically oriented blunt bioaerosol samplers in moving air. Int J Biometeorol. 56 : 1113 1121.[PubMed][CrossRef]
142. Marple VA, Rubow KL, Olson BA,. 2001. Inertial, gravitational, centrifugal and thermal collection techniques, p. 229 260. In Baron PA,, Willeke K (eds), Aerosol Measurement: Principles, Techniques and Applications. John Wiley & Sons, New York.
143. Lippmann M,. 1989. Sampling aerosols by filtration, p. 305 336. In Hering SV (ed), Air Sampling Instruments for Evaluation of Atmospheric Contaminants, 7th ed. American Conference of Governmental Industrial Hygienists, Cincinnati, OH.
144. Miaskiewicz-Peska E, Lebkowska M. 2012. Comparison of aerosol and bioaerosol collection on air filters. Aerobiologia 28 : 185 193.[PubMed][CrossRef]
145. Burton NC, Grinshpun SA, Reponen T. 2007. Physical collection efficiency of filter materials for bacteria and viruses. Ann Occup Hyg 51 : 143 151.[PubMed][CrossRef]
146. Baron PA, Willeke K,. 2001. Gas and particle motion, p. 61 82. In Baron PA,, Willeke K (eds), Aerosol Measurement: Principles, Techniques and Applications. John Wiley & Sons, New York.
147. Trunov M, Trakumas S, Willeke K, Grinshpun SA, Reponen T. 2001. Collection of bioaerosols particles by impaction: effect of fungal spore agglomeration and bounce. Aerosol Sci Tech 34 : 490 498.[CrossRef]
148. Grinshpun SA, Mainelis G, Trunov M, Górny RL, Sivasubramani SK, Adhikari A, Reponen T. 2005. Collection of airborne spores by circular single-stage impactors with small jet-to-plate distance. J Aerosol Sci 36 : 575 591.[CrossRef]
149. Cox CS. 1989. Airborne bacteria and viruses. Sci Prog 73 : 469 500.[PubMed]
150. Yao MH, Mainelis G. 2006. Effect of physical and biological parameters on enumeration of bioaerosols by portable microbial impactors. J Aerosol Sci 37 : 1467 1483.[CrossRef]
151. Martinez K, Rao C, Burton N. 2004. Exposure assessment and analysis for biological agents. Grana 43 : 193 208.[CrossRef]
152. Zhen H, Han T, Fennell D, Mainelis G. 2013. Release of free DNA molecules by the membrane-impaired bacteria during aerosolization and sampling. Appl Environ Microb 77 : 7780 7789.[CrossRef]
153. Adhikari A, Martuzevicius D, Reponen T, Grinshpun SA, Cho S-H, Sivasubramani SK, Zhong W, Levin L, Kelley AL, St. Clair HG, LeMasters G. 2003. Performance of the Button personal inhalable sampler for the measurement of outdoor aeroallergens. Atmos Environ 37 : 4723 4733.[CrossRef]
154. Adhikari A, Reponen T, Lee SA, Grinshpun SA. 2004. Assessment of human exposure to airborne fungi in agricultural confinements: personal inhalable sampling versus stationary sampling. Ann Agr Env Med 11 : 269 277.
155. Burton NC, Adhikari A, Grinshpun SA, Hornung R, Reponen T. 2005. The effect of filter material on bioaerosol collection of Bacillus subtilis spores used as a Bacillus anthracis simulant. J Environ Monitor 7 : 475 480.[CrossRef]
156. Dabisch P, Yeager J, Kline J, Klinedinst K, Welsch A, Pitt ML. 2012. Comparison of the efficiency of sampling devices for aerosolized Burkholderia pseudomallei. Inhal Toxicol 24 : 247 254.[PubMed][CrossRef]
157. Burge HP, Solomon WR, Boise JR. 1977. Comparative merits of eight popular media in aerometric studies of fungi. Allergy Clin Immunol 60 : 199 203.[CrossRef]
158. Morring KL, Sorenson WG, Attfield MD. 1983. Sampling for airborne fungi: a statistical comparison of media. Am Ind Hyg Assoc J 44 : 662 664.[PubMed][CrossRef]
159. Marthi B,. 1994. Resuscitation of microbial bioaerosols, p. 192 208. In Lighthart B,, Mohr, AJ (eds), Atmospheric Microbial Aerosols, Theory and Applications. Chapman & Hall, New York.
160. Chang C-W, Hwang Y-H, Grinshpun SA, Macher JM, Willeke K. 1994. Evaluation of counting error due to colony masking in bioaerosol sampling. Appl Environ Microb 60 : 3732 3738.
161. Chang C-W, Grinshpun SA, Willeke K, Macher JM, Donnelly J, Clark S, Juozaitis A. 1995. Factors affecting microbiological colony count accuracy for bioaerosol sampling and analysis. Am Ind Hyg Assoc J 56 : 979 986.[PubMed][CrossRef]
162. Tyler ME, Shipe EL. 1959. Bacterial aerosol samplers. I. Development and evaluation of the all-glass impinger. Appl Microbiol 7 : 337 349.[PubMed]
163. Baron PA, Willeke K. 1986. Respirable droplets from whirpools: measurements of size distribution and estimation of disease potential. Environ Research 39 : 8 18.[CrossRef]
164. Juozaitis A, Huang YL, Willeke K, Donnelly J, Kalatoor S, Leeson A, Wyza R. 1994. Dispersion of respirable aerosols in a fermenter and their removal in an exhaust system. Appl Occup Environ Hyg 9 : 552 559.[CrossRef]
165. Riemenschneider L, Woo MH, Wu CY, Lundgren D, Wander J, Lee JH, Li HW, Heimbuch B. 2010. Characterization of reaerosolization from impingers in an effort to improve airborne virus sampling. J Appl Microbiol 108 : 315 324.[PubMed][CrossRef]
166. Han TW, Mainelis G. 2012. Investigation of inherent and latent internal losses in liquid-based bioaerosol samplers. J Aerosol Sci 45 : 58 68.[CrossRef]
167. Chang CW, Hung PY. 2012. Methods for detection and quantification of airborne Legionellae around cooling towers. Aerosol Sci Tech 46 : 369 379.[CrossRef]
168. Blatny JM, Reif BAP, Skogan G, Andreassen O, Hoiby EA, Ask E, Waagen V, Aanonsen D, Aaberge IS, Caugant DA. 2008. Tracking airborne Legionella and Legionella pneumophila at a biological treatment plant. Environ Sci Technol 42 : 7360 7367.[PubMed][CrossRef]
169. Kesavan J. 2012. Sampling and retention efficiencies of batch-type liquid-based bioaerosol samplers. Aerosol Sci Tech 44 : 817 829.[CrossRef]
170. Favero MS, Puleo JR, Marshall JH, Oxborrow GS. 1966. Comparative levels and types of microbial contamination detected in industrial clean rooms. Appl Microbiol 14 : 539 551.[PubMed]
171. Eduard W, Lacey J, Karlsson K, Palmgren U, Strom G, Blomquist G. 1990. Evaluation of methods for enumerating microorganisms in filter samples from highly contaminated occupational environments. Am Ind Hyg Assoc J 51 : 427 436.[PubMed][CrossRef]
172. Kotimaa M. 1990. Occupational exposure to spores in the handling of wood chips. Grana 29 : 153 156.[CrossRef]
173. Chew GL, Wilson J, Rabito FA, Grimsley F, Iqbal S, Reponen T, Muilenberg ML, Thorne PS, Dearborn DG, Morley RL. 2006. Mold and endotoxin levels in the aftermath of hurricane Katrina: a pilot project of homes in New Orleans undergoing renovation. Environ Health Perspect 114 : 1883 1889.[PubMed]
174. Godish DR, Godish TJ. 2007. Relationship between sampling duration and concentration of culturable airborne mould and bacteria on selected culture media. J Appl Microbiol 102 : 1479 1484.[PubMed][CrossRef]
175. Saldanha R, Manno M, Saleh M, Ewaze JO, Scott JA. 2008. The influence of sampling duration on recovery of culturable fungi using the Andersen N6 and RCS bioaerosol samplers. Indoor Air 18 : 464 472.[PubMed][CrossRef]
176. Macher JM. 1989. Positive-hole correction of multiplejet impactors for collecting viable microorganisms. Am Ind Hyg Assoc J 50 : 561 568.[PubMed][CrossRef]
177. Hatch MT, Wolochow H,. 1969. Bacterial survival: consequences of the airborne state. In Dimmick RL,, Akers AB (eds), An Introduction to Experimental Aerobiology. John Wiley & Sons, New York.
178. Mainelis G, Tabayoyong M. 2010. The effect of sampling time on the overall performance of portable microbial impactors. Aerosol Sci Tech 44 : 75 82.[CrossRef]
179. Haglund JS. 2003. Two linear slot nozzle virtual impactors for concentration of bioaerosols, College Station, TX.
180. Hindson BJ, Brown SB, Marshall GD, McBride MT, Makarewicz AJ, Gutierrez DM, Wolcott DK, Metz TR, Madabhushi RS, Dzenitis JM, Colston BW Jr. 2004. Development of an automated sample preparation module for environmental monitoring of biowarfare agents. Anal Chem 76 : 3492 3497.[PubMed][CrossRef]
181. Hindson BJ, Makarewicz AJ, Setlur US, Henderer BD, McBride MT, Dzenitis JM. 2005. APDS: the autonomous pathogen detection system. Biosens Bioelectron 20 : 1925 1931.[PubMed][CrossRef]
182. Hindson BJ, McBride MT, Makarewicz AJ, Henderer BD, Setlur US, Smith SM, Gutierrez DM, Metz TR, Nasarabadi SL, Venkateswaran KS, Farrow SW, Colston BW, Dzenitis JM. 2005. Autonomous detection of aerosolized biological agents by multiplexed immunoassay with polymerase chain reaction confirmation. Anal Chem 77 : 284 289.[PubMed][CrossRef]
183. Langlois RG, Brown S, Colston B, Jones L, Masquelier D, Meyer P, McBride M, Nasarabi S, Ramponi AJ, Venkateswaran K, Milanowich F. 2000. Development of an autonomous pathogen detection system, p. 227 234. In Abstracts of the First Joint Conference on Point Detection, Williamsburg, VA.
184. Alburty D, Murowchick P, Packingham Z, Page A, Davis T, Wheeldon D II. 2010. Integration of a hydrosol concentrator with an aerosol to hydrosol sampler for fluid reuse and improved concentration factors. Abstract 446, AAAR 29th Annual Conference, Portland, OR.
185. Hunter DM, Leskinen SD, Magaña S, Schlemmer SM, Lim DV. 2011. Dead-end ultrafiltration concentration and IMS/ATP-bioluminescence detection of Escherichia coli O157:H7 in recreational water and produce wash. J Microbiol Meth 87 : 338 342.[CrossRef]
186. Lembke LL, Kniseley RN, van Nostrand RC, Hale MD. 1981. Precision of the all-glass impinger and the andersen microbial impactor for air sampling in solid-waste handling facilities. Appl Environ Microb 42 : 222 225.
187. Khattab A, Levetin E. 2008. Effect of sampling height on the concentration of airborne fungal spores. Ann Allerg Asthma Im 101 : 529 534.[CrossRef]
188. Wang Z, Shalat SL, Black K, Lioy PJ, Stambler AA, Emoekpere OH, Hernandez M, Han T, Ramagopal M, Mainelis G. 2012. Use of a robotic sampling platform to assess young children's exposure to indoor bioaerosols. Indoor Air 22 : 159 169.[PubMed][CrossRef]
189. Li KJ. 2011. Molecular comparison of the sampling efficiency of four types of airborne bacterial samplers. Sci Total Environ 409 : 5493 5498.[PubMed][CrossRef]
190. Fahlgren C, Bratbak G, Sandaa R-A, Thyrhaug R, Zweifel UL. 2011. Diversity of airborne bacteria in samples collected using different devices for aerosol collection. Aerobiologia 27 : 107 120.[CrossRef]
191. Chen BT,. 1993. Instrument calibration, p. 493 520. In Willeke K,, Baron PA (eds), Aerosol Measurement: Principles, Techniques and Applications. Van Nostrand Reinhold, New York.
192. Lippmann M. 1973. The Industrial Environment—Its Evaluation and Control, p. 101 122. National Institute for Occupational Safety and Health, Government Printing Office, Washington, DC.
193. Lippmann M,. 1989. Calibration of air sampling instruments, p. 73 110. In Hering SV (ed), Air Sampling Instruments for Evaluation of Atmospheric Contaminants, 7th ed. American Conference of Governmental Industrial Hygienists, Cincinnati, OH.
194. Martyny JW, Martinez KF, Morey PR,. 1999. Source sampling. In Macher J (ed), Bioaerosols: Assessment and Control. American Conference of Governmental Industrial Hygienists, Cincinnati, OH.
195. Weis CP, Intrepido AJ, Miller AK, Cowin PG, Durno MA, Gebhardt JS, Bull R. 2002. Secondary aerosolization of viable Bacillus anthracis spores in a contaminated US Senate office. J Am Med Assoc 288 : 2853 2858.[CrossRef]
196. Bausum HT, Schaub SA, Kenyon KF, Small MJ. 1982. Comparison of coliphage and bacterial aerosols at a wastewater spray irrigation site. Appl Environ Microb 43 : 28 38.
197. Blomquist G, Strom G, Stromquist LH. 1984. Sampling of high concentrations of airborne fungi. Scand J Work Environ Health 10 : 109 113.[PubMed][CrossRef]
198. Burge HA, Boise JR, Rutherford JA, Solomon WR. 1977. Comparative recoveries of airborne fungus spores by viable and non-viable modes of volumetric collection. Mycopathologia 61 : 27 33.[PubMed][CrossRef]
199. Zimmerman NJ, Reist PC, Turner AG. 1987. Comparison of two biological aerosol sampling methods. Appl Environ Microb 53 : 99 104.
200. Gallup D, Purves J, Burge H. 2004. A disposable sampler for collecting volumetric air samples onto agar media. J Allergy Clin Immun 113 : S138.[CrossRef]
201. Kaye A. 1988. Efficiency of “Biotest RCS” as a sampler of airborne bacteria. PDA J Pharm Sci Technol 42 : 147 152.
202. Macher JM, First MW. 1983. Reuter centrifugal air sampler: measurement of effective airflow rate and collection efficiency. Appl Environ Microbial. 45 : 1960 1962.
203. Sanchez-Munoz M, Munoz-Vicente M, Cobas G, Portela R, Amils R, Sanchez B. 2012. Comparison of three high-flow single-stage impaction-based air samplers for bacteria quantification: DUO SAS SUPER 360, SAMPL'AIR and SPIN AIR. Anal Meth 4 : 399 405.[CrossRef]
204. Jensen P, Schafer M. 1998. Sampling and characterization of bioaerosols, p. 82 112. In NIOSH Manual of Analytical Methods. National Institute for Occupational Safety and Health, Atlanta, GA.
205. Levetin E. 2004. Methods for aeroallergen sampling. Curr Allergy Asthm R 4 : 376 383.[CrossRef]
206. Solomon WR, Burge HA, Boise JR, Becker M. 1980. Comparative particle recoveries by the retracting rotorod, rotoslide and Burkard spore trap sampling in a compact array. Int J Biometeorol 24 : 107 116.[CrossRef]
207. Crook B, Higgins S, Lacey J,. 1987. Methods for sampling microorganisms at solid waste disposal sites, p. 791 797. In Houghton DR,, Smith RN,, Eggins HOW (eds), Biodeterioration 7. Elsevier, London.
208. Cage BR, Schreiber K, Barnes C, Portnoy J. 1996. Evaluation of four bioaerosol samplers in the outdoor environment. Ann Allerg Asthma Im 77 : 401 406.[CrossRef]
209. Zhao Y, Aarnink AJA, Doornenbal P, Huynh TTT, Koerkamp PWGG, Landman WJM, de Jong MCM. 2011. Investigation of the efficiencies of bioaerosol samplers for collecting aerosolized bacteria using a fluorescent tracer. II: Sampling efficiency and half-life time. Aerosol Sci Tech 45 : 432 442.[CrossRef]
210. Carvalho E, Sindt C, Verdier A, Galan C, O'Donoghue L, Parks S, Thibaudon M. 2008. Performance of the Coriolis air sampler, a high-volume aerosol-collection system for quantification of airborne spores and pollen grains. Aerobiologia 24 : 191 201.[CrossRef]
211. Zhao Y, Aarnink AJA, Doornenbal P, Huynh TTT, Koerkamp PWGG, de Jong MCM, Landman WJM. 2011. Investigation of the efficiencies of bioaerosol samplers for collecting aerosolized bacteria using a fluorescent tracer. I: Effects of non-sampling processes on bacterial culturability. Aerosol Sci Tech 45 : 423 431.[CrossRef]
212. Parks S, Bennet AM, Speight SE, Benbough JE. 1996. An assessment of the Sartorius MD8 microbiological air sampler. Appl Microb 80 : 529 534.[CrossRef]


Generic image for table

General characteristics of several commercially available bioaerosol samplers

Citation: Grinshpun S, Buttner M, Mainelis G, Willeke K. 2016. Sampling for Airborne Microorganisms, p 3.2.2-1-3.2.2-17. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch3.2.2
Generic image for table

Calculated and reported cutoff diameters (ds) for several commercially available bioaerosol samplers

Citation: Grinshpun S, Buttner M, Mainelis G, Willeke K. 2016. Sampling for Airborne Microorganisms, p 3.2.2-1-3.2.2-17. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch3.2.2