Chapter 3.2.8 : Aerobiology of Agricultural Pathogens

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Aerobiology of Agricultural Pathogens, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818821/9781555818821.ch3.2.8-1.gif /docserver/preview/fulltext/10.1128/9781555818821/9781555818821.ch3.2.8-2.gif


Crop plants are subject to diseases caused by viruses, bacteria, oomycetes, and fungi. For many pathogens the aerobiological pathway is important in disease transmission.

Airborne fungal spores and other disease propagules are frequently present in the atmosphere and pose a constant threat to crops as well as plants in the natural environment. This chapter reviews mechanisms of pathogen dispersal with the focus on wind and rain splash and also discusses both local and long distance transport. Various examples of pathogens from the groups above are described with details on the dispersal phase as well as disease forecasting and aspects of control. For many plant diseases, forecasting models are valuable tools alerting the grower regarding the likelihood of disease spread and when to apply control measures. Development of forecasting models requires an understanding of all stages of dispersal from spore takeoff to transport to deposition within the crop. Knowledge of the influence of meteorological conditions on spore development and the ability of spores to survive long-distance transport are also needed for accurately modeling disease spread. In addition to descriptions of well known plant pathogens, several emerging plant diseases are described along with the potential use of plant pathogens in anti-crop biological warfare

Citation: Levetin E. 2016. Aerobiology of Agricultural Pathogens, p 3.2.8-1-3.2.8-20. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch3.2.8
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Global spread of soybean rust caused by . Map supplied by Annalisa Ariatti, Dept. of Plant Pathology, Pennsylvania State University, University Park, PA 16802. doi:10.1128/9781555818821.ch3.2.8.f1

Citation: Levetin E. 2016. Aerobiology of Agricultural Pathogens, p 3.2.8-1-3.2.8-20. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch3.2.8
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Aylor DE. 1990. The role of intermittent wind in the dispersal of fungal pathogens. Ann Rev Phytopathol 28 : 73 92.[CrossRef]
2. Campbell CL. 1999. The importance of dispersal mechanisms in the epidemiology of Phytophthora blights and downy mildews on crop plants. Ecosyst Health 5 : 146 157.[CrossRef]
3. Pedgley DE,. 1991. Aerobiology: the atmosphere as a source and sink for microbes, p 43 59. In Andrews JH,, Hirano SS (eds), Microbial ecology of leaves. Springer, New York.
4. Waggoner PE, Aylor DE. 2000. Epidemiology: a science of patterns. Ann Rev Phytopathol 38 : 71 94.[CrossRef]
5. Zadoks J, Van den Bosch F. 1994. On the spread of plant disease: a theory on foci. Ann Rev Phytopathol 32 : 503 521.[CrossRef]
6. Van den Bosch F, Metz JAJ, Zadoks JC. 1999. Pandemics of focal plant disease, a model. Phytopathology 89 : 495 505.[PubMed][CrossRef]
7. Heesterbeek JAP, Zadoks JC. 1987. Modelling pandemics of quarantine pests and diseases: problems and perspectives. Crop Prot 6 : 211 221.[CrossRef]
8. Xu X-M, Ridout M. 1998. Effects of initial epidemic conditions, sporulation rate, and spore dispersal gradient on the spatio-temporal dynamics of plant disease epidemics. Phytopathology 88 : 1000 1012.[PubMed][CrossRef]
9. Aylor DE. 1999. Biophysical scaling and the passive dispersal of fungus spores: relationship to integrated pest management strategies. Agr For Meteorol 97 : 275 292.[CrossRef]
10. Aylor DE,. 2002. Aerobiology of fungi in relation to capture and release by plants, p 341 361. In Lindow SE,, Hecht-Poinar EI,, Elliott VJ (eds), Phyllosphere microbiology. APS Press, St. Paul, MN.
11. de Jong MD, Bourdot GW, Powell J, Goudriaan J. 2002. A model of the escape of Sclerotinia sclerotiorum ascospores from pasture. Ecol Model 150 : 83 105.[CrossRef]
12. Brown JKM, Hovmoller MS. 2002. Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science 297 : 537 541.[PubMed][CrossRef]
13. Nagarajan S, Singh DV. 1990. Long-distance dispersion of rust pathogens. Annu Rev Phytopathol 28 : 139 153.[PubMed][CrossRef]
14. Griffin DW, Garrison VH, Herman JR, Shinn EA. 2001. African desert dust in the Caribbean atmosphere: microbiology and public health. Aerobiologia 17 : 203 213.[CrossRef]
15. Griffin DW, Kellogg CA, Garrison VH, Lisle JT, Borden TC, Shinn EA. 2003. Atmospheric microbiology in the northern Caribbean during African dust events. Aerobiologia 19 : 143 157.[CrossRef]
16. Mims SA, Mims FM. 2004. Fungal spores are transported long distances in smoke from biomass fires. Atmos Environ 38 : 651 655.[CrossRef]
17. Schneider RW, Hollier CA, Whitam HK, Palm ME, McKemy JM, Hernandez JR, Levy L, DeVries-Paterson R. 2005. First report of soybean rust caused by Phakopsora pachyrhizi in the continental United States. Plant Dis 89 : 774.[CrossRef]
18. Isard SA, Gage SH, Comtois P, Russo JM. 2005. Principles of the atmospheric pathway for invasive species applied to soybean rust. BioScience 55 : 851 861.[CrossRef]
19. Pan Z, Yang XB, Pivonia S, Xue L, Pasken R, Roads J. 2006. Long-term prediction of soybean rust entry into the continental United States. Plant Dis 90 : 840 846.[CrossRef]
20. Holmes G, Main C, Keever Z III, 2004. Cucurbit downy mildew: a unique pathosystem for disease forecasting, p 69 80. In Spencer-Phillips P,, Jeger M (eds), Advances in downy mildew research. Kluwer Academic, Dordrecht, The Netherlands.
21. Yao C, Pal Arya S, Davis J, Main CE. 1997. A numerical model of the transport and diffusion of Peronospora tabacina spores in the evolving atmospheric boundary layer. Atmos Environ 31 : 1709 1714.[CrossRef]
22. Aylor DE. 2003. Spread of plant disease on a continental scale: role of aerial dispersal of pathogens. Ecology 84 : 1989 1997.[CrossRef]
23. Cox CS. 1987. The aerobiological pathway of microorganisms. John Wiley & Sons, New York.
24. Gregory PH. 1973. The microbiology of the atmosphere, 2nd ed. Halstead Press, New York.
25. Burch M, Levetin E. 2002. Effects of meteorological conditions on spore plumes. Int J Biometeorol 46 : 107 117.[PubMed][CrossRef]
26. Lacey J,. 1991. Aerobiology and health: the role of airborne fungal spores in respiratory disease, p 157 185. In Hawksworth DL (ed), Frontiers in mycology. CAB International, Kew, UK.
27. Frinking HD,. 1993. A historical perspective on aerobiology as a discipline. In Isard SA (ed), Alliance for aerobiology research workshop report. Illinois Natural History Survey, Champaign, IL.
28. Govi G. 1992. Aerial diffusion of phytopathogenic fungi. Aerobiologia 8 : 84 93.[CrossRef]
29. McCartney HA, Fitt BDL,. 1998. Dispersal of foliar fungal plant pathogens: mechanisms, gradients and spatial patterns. In Jones DG (ed), The epidemiology of plant disease. Kluwer, Dordrecht, The Netherlands.
30. Burge H, Muilenberg M, Chapman J,. 1991. Crop plants as a source of fungus spores of medical importance, p 223 235. In Andrews J,, Hirano S (eds), Microbial ecology of leaves. Springer, New York.
31. Lacey J. 1996. Spore dispersal: its role in ecology and disease: the British contribution to fungal aerobiology. Mycol Res 100 : 641 660.[CrossRef]
32. Geagea L, Huber L, Sacbe I. 1999. Dry-dispersal and rain-splash of brown ( Puccinia recondita f. sp. tritici) and yellow ( P. striiformis) rust spores from infected wheat leaves exposed to simulated raindrops. Plant Pathol 48 : 472 482.[CrossRef]
33. Kendrick B. 2000. The fifth kingdom, 3rd ed. A Focus Text, Newburyport, MA.
34. Fitt BDL, McCartney HA, Walklate PJ. 1989. The role of rain in dispersal of pathogen inoculum. Ann Rev Phytopathol 27 : 241 270.[CrossRef]
35. Huber L, Madden LV, Fitt BDL,. 1998. Rain-splash and spore dispersal: a physical perspective, p 348 370. In Jones DG (ed), The epidemiology of plant diseases. Kluwer Academic, Dordrecht, The Netherlands.
36. Pielaat A, Madden L, Gort G. 1998. Spores splashing under different environmental conditions: a modeling approach. Phytopathology 88 : 1131 1140.[PubMed][CrossRef]
37. Rajasab AH, Chawda HT. 1994. Dispersal of the conidia of Colletotrichum gloeosporioides by rain and the development of anthracnose on onion. Grana 33 : 162 165.[CrossRef]
38. Huber L, Gillespie TJ. 1992. Modeling leaf wetness in relation to plant disease epidemiology. Ann Rev Phytopathol 30 : 553 577.[CrossRef]
39. Hirano SS, Upper CD. 1990. Population biology and epidemiology of Pseudomonas syringae. Ann Rev Phytopathol 28 : 155 177.[CrossRef]
40. Tucker SL, Talbot NJ. 2001. Surface attachment and pre-penetration stage development by plant pathogenic fungi. Ann Rev Phytopathol 39 : 385 417.[CrossRef]
41. Lacey J, Venette J,. 1995. Outdoor air sampling techniques, p 407 471. In Cox CS,, Wathes CM (eds), Bioaerosols handbook. Lewis, Boca Raton, FL.
42. Bock C, Parker P, Gottwald T. 2005. Effect of simulated wind-driven rain on duration and distance of dispersal of Xanthomonas axonopodis pv. Citri from canker-infected citrus trees. Plant Dis 89 : 71 80.[CrossRef]
43. Lovell D, Parker S, Hunter T, Welham S, Nichols A. 2003. Position of inoculum in the canopy affects the risk of septoria tritici blotch epidemics in winter wheat. Plant Pathol 53 : 11 21.[CrossRef]
44. Paul P, El-Allaf S, Lipps P, Madden L. 2004. Rain splash dispersal of Gibberella zeae within wheat canopies in Ohio. Phytopathology 94 : 1342 1349.[PubMed][CrossRef]
45. Levetin E,. 1995. Fungi, p 87 120. In Burge H (ed), Bioaerosols. Lewis, Boca Raton, FL.
46. Levetin E, Horner WE,. 2002. Fungal aerobiology: exposure and measurement, p 10 27. In Breitenbach M,, Crameri R,, Lehrer SB (eds), Fungal allergy and pathogenicity. Chem. Immunol., vol. 81. Krager, Basel.
47. Troutt C, Levetin E. 2001. Correlation of spring spore concentrations and meteorological conditions in Tulsa, Oklahoma. Int J Biometeorol 45 : 64 74.[PubMed][CrossRef]
48. Deacon JW. 1997. Modern mycology, 3rd ed. Blackwell Science, Oxford, UK.
49. Moore-Landecker E. 1990. Fundamentals of the fungi. Prentice Hall, Englewood Cliffs, NJ.
50. Money NP. 1998. More g's than the Space Shuttle: ballistospore discharge. Mycologia 90 : 547 558.[CrossRef]
51. Webster J, Davey RA, Turner JCR. 1989. Vapour as the source of water in Buller's drop. Mycol Res 93 : 297 302.[CrossRef]
52. Levetin E. 1991. Identification and concentration of airborne basidiospores. Grana 30 : 123 128.[CrossRef]
53. Moody SA, Newsham KK, Ayres PG, Paul ND. 1999. Variation in the responses of litter and phylloplane fungi to UV-B radiation (290–315 nm). Mycol Res 103 : 1469 1477.[CrossRef]
54. Sundin G,. 2002. Ultraviolet radiation on leaves: its influence on microbial communities and their adaptations, p 27 42. In Lindow S,, Hecht-Poinar E,, Elliott V (eds), Phyllosphere microbiology. APS Press, St. Paul, MN.
55. Agrios G. 2005. Plant pathology. Elsevier Academic Press, Boston, MA.
56. Ng JC, Perry KL. 2004. Transmission of plant viruses by aphid vectors. Mol Plant Pathol 5 : 505 511.[PubMed][CrossRef]
57. Gutiérrez S, Michalakis Y, Munster M, Blanc S. 2013. Plant feeding by insect vectors can affect life cycle, population genetics and evolution of plant viruses. Funct Ecol 27 : 610 622. doi: 10.1111/1365-2435.12070.[CrossRef] http://dx.doi.org/10.1111/1365-2435.12070
58. Navas-Castillo J, Fiallo-Olivé E, Sánchez-Campos S. 2011. Emerging virus diseases transmitted by whiteflies. Ann Rev Phytopathol 49 : 219 248.[CrossRef]
59. Miller WA, Rasochova L. 1997. Barley yellow dwarf viruses. Ann Rev Phytopathol 35 : 167 190.[CrossRef]
60. Strange RN, Scott PR. 2005. Plant disease: a threat to global food security. Ann Rev Phytopathol 43 : 83 116.[CrossRef]
61. Irwin ME, Thresh JM. 1990. Epidemiology of barley yellow dwarf: a study in ecological complexity. Ann Rev Phytopathol 28 : 393 424.[CrossRef]
62. Hall G, Peters J, Little D, Power A. 2010. Plant community diversity influences vector behaviour and barley yellow dwarf virus population structure. Plant Pathol 59 : 1152 1158.[CrossRef]
63. Miller WA, Liu S, Beckett R. 2002. Barley yellow dwarf virus: Luteoviridae or Tombusviridae? Mol Plant Pathol 3 : 177 183.[PubMed][CrossRef]
64. Plumb RT. 2002. Viruses of Poaceae: a case history in plant pathology. Plant Pathol 51 : 673 682.[CrossRef]
65. Fokunang CN, Beynon JL, Watson KA, Battey NH, Dunwell JM, Tembe-Fokunang EA. 2004. Advancement in genetic modification technologies towards disease resistance and food crop production. Biotechnology 3 : 1 20.[CrossRef]
66. Verreault D, Moineau S, Duchaine C. 2008. Methods for sampling of airborne viruses. Microbiol Mol Biol Rev 72 : 413 444.[PubMed][CrossRef]
67. Whon TW, Kim M-S, Roh SW, Shin N-R, Lee H-W, Bae J-W. 2012. Metagenomic characterization of airborne viral DNA diversity in the near-surface atmosphere. J Virol 86 : 8221 8231.[PubMed][CrossRef]
68. Cooper JI, Kelley SE, Massalski PR. 1988. Virus-pollen interactions. Adv Dis Vector Res 5 : 221 249.
69. Mink GI. 1993. Pollen and seed-transmitted viruses and viroids. Ann Rev Phytopathol 31 : 375 402.[CrossRef]
70. Gottwald TR, Gibson GJ, Garnsey SM, Irey M. 1999. Examination of the effect of aphid vector population composition on the spatial dynamics of citrus tristeza virus spread by stochastic modeling. Phytopathology 89 : 603 608.[PubMed][CrossRef]
71. Hibino H. 1996. Biology and epidemiology of rice viruses. Annu Rev Phytopathol 34 : 249 274.[PubMed][CrossRef]
72. Barras F, van Gijsegem F, Chatterjee AK. 1994. Extracellular enzymes and pathogenesis of soft-rot Erwinia. Ann Rev Phytopathol 32 : 201 234.[CrossRef]
73. Romantschuk M. 1992. Attachment of plant pathogenic bacteria to plant surfaces. Ann Rev Phytopathol 30 : 225 243.[CrossRef]
74. Salmond GP. 1994. Secretion of extracellular virulence factors by plant pathogenic bacteria. Ann Rev Phytopathol 32 : 181 200.[CrossRef]
75. Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P, Dow M, Verdier V, Beer SV, Machado MA, Toth I, Salmond G, Foster GD. 2012. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol 13 : 614 629.[PubMed][CrossRef]
76. Eichenlaub R, Gartemann K-H. 2011. The Clavibacter michiganensis subspecies: molecular investigation of Gram-positive bacterial plant pathogens. Ann Rev Phytopathol 49 : 445 464.[CrossRef]
77. Francis I, Holsters M, Vereecke D. 2010. The Gram-positive side of plant-microbe interactions. Environ Microbiol 12 : 1 12.[PubMed][CrossRef]
78. Conn KE, Ogawa JM, Manji BT, Adaskaveg JE. 1995. Leuconostoc mesenteroides subsp. mesenteroides, the first report of a coccoid bacterium causing a plant disease. Phytopathology 85 : 593 599.[CrossRef]
79. Bock CH, Cook AZ, Parker PE, Gottwald TR, Graham JH. 2012. Short distance dispersal of splashed bacteria of Xanthomonas citri subsp. citri from canker-infected grapefruit tree canopies in turbulent wind. Plant Pathol 61 : 829 836.[CrossRef]
80. Marthi B,. 1994. Resuscitation of microbial bioaerosols, p 192 225. In Lighthart B,, Mohr AJ (eds), Atmospheric microbial aerosols: theory and applications. Chapman and Hall, New York.
81. Franc GD. 1994. Atmospheric transport of Erwinia carotovora. Presented at Proc. 21st Conf. on Agricultural and Forest Meteorology and 11th Conf. on Biometeorology and Aerobiology, March 1994, San Diego, CA.
82. Barak JD, Schroeder BK. 2012. Interrelationships of food safety and plant pathology: the life cycle of human pathogens on plants. Ann Rev Phytopathol 50 : 241 266.[CrossRef]
83. Berger CN, Sodha SV, Shaw RK, Griffin PM, Pink D, Hand P, Frankel G. 2010. Fresh fruit and vegetables as vehicles for the transmission of human pathogens. Environ Microbiol 12 : 2385 2397.[PubMed][CrossRef]
84. Brandl MT. 2006. Fitness of human enteric pathogens on plants and implications for food safety. Ann Rev Phytopathol 44 : 367 392.[CrossRef]
85. Critzer FJ, Doyle MP. 2010. Microbial ecology of foodborne pathogens associated with produce. Curr Opin Biotech 21 : 125 130.[PubMed][CrossRef]
86. Lynch MF, Tauxe RV, Hedberg CW. 2009. The growing burden of foodborne outbreaks due to contaminated fresh produce: risks and opportunities. Epidemiol Infect 137 : 307 315.[PubMed][CrossRef]
87. Teplitski M, Barak JD, Schneider KR. 2009. Human enteric pathogens in produce: un-answered ecological questions with direct implications for food safety. Curr Opin Biotech 20 : 166 171.[PubMed][CrossRef]
88. Fravel DR. 2005. Commercialization and implementation of biocontrol. Ann Rev Phytopathol 43 : 337 359.[CrossRef]
89. Haas D, Keel C. 2003. Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Ann Rev Phytopathol 41 : 117 153.[CrossRef]
90. Janisiewicz WJ, Korsten L. 2002. Biological control of postharvest diseases of fruits. Ann Rev Phytopathol 40 : 411 441.[CrossRef]
91. Paulitz TC, Belanger RR. 2001. Biological control in greenhouse systems. Ann Rev Phytopathol 39 : 103 133.[CrossRef]
92. Stockwell V, Johnson K, Loper J,. 2002. Biological control of fire blight: understanding interactions among introduced and indigenous microbial communities, p 225 239. In Lindow S,, Hecht-Poinar E,, Elliott V (eds), Phyllosphere microbiology. APS Press, St. Paul, MN.
93. Chattopadhyay A, Bhatnagar N, Bhatnagar R. 2004. Bacterial insecticidal toxins. Crit Rev Microbiol 30 : 33 54.[PubMed][CrossRef]
94. de Maagd RA, Bravo A, Berry C, Crickmore N, Schnepf HE. 2003. Structure, diversity, and evolution of protein toxins from spore-forming entomopathogenic bacteria. Ann Rev Genet 37 : 409 433.[PubMed][CrossRef]
95. Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62 : 775 806.[PubMed]
96. Atlas RM, Bartha R. 1998. Microbial ecology: fundamentals and applications. Benjamin Cummings Science Publishing, Menlo Park, CA.
97. Chen J, Jacobson L, Handelsman J, Goodman R. 1996. Compatibility of systemic acquired resistance and microbial biocontrol for suppression of plant disease in a laboratory assay. Mol Ecol 5 : 73 80.[CrossRef]
98. Paul B, Chereyathmanjiyil A, Masih I, Chapuis L, Benoit A. 1998. Biological control of Botrytis cinerea causing grey mould disease of grapevine and elicitation of stilbene phytoalexin (resveratrol) by a soil bacterium. FEMS Microbiol Lett 165 : 65 70.[CrossRef]
99. Umesha S, Dharmesh SM, Shetty SA, Krishnappa M, Shetty HS. 1998. Biocontrol of downy mildew disease of pearl millet using Pseudomonas fluorescens. Crop Prot 17 : 387 392.[CrossRef]
100. Lindow SE, Suslow TV. 2003. Temporal dynamics of the biocontrol agent Pseudomonas fluorescens strain A506 in flowers in inoculated pear trees. Phytopathology 93 : 727 737.[PubMed][CrossRef]
101. Levesque CA. 2011. Fifty years of oomycetes—from consolidation to evolutionary and genomic exploration. Fungal Divers 50 : 35 46.[CrossRef]
102. Niederhauser JS. 1993. International cooperation in potato research and development. Ann Rev Phytopathol 31 : 1 25.[CrossRef]
103. Garelik G. 2002. Taking the bite out of potato blight. Science 298 : 1702 1704.[PubMed][CrossRef]
104. Fry WE, Goodwin SB, Matuszak JM, Spielman LJ, Milgroom MG, Drenth A. 1992. Population genetics and intercontinental migrations of Phytophthora infestans. Ann Rev Phytopathol 30 : 107 130.[CrossRef]
105. Ponti I, Cavanni P. 1992. Aerobiology in plant protection. Aerobiologia 8 : 94 101.[CrossRef]
106. Song J, Bradeen JM, Naess SK, Raasch JA, Wielgus SM, Haberlach GT, Liu J, Kuang H, Austin-Phillips S, Buell CR, Helgeson JP, Jiang J. 2003. Gene RB cloned from Solanum bulbocastanum confers broad spectrum resistance to potato late blight. Proc. Nat. Acad. Sci 100 : 9128 9133.[PubMed]
107. Nowicki M, Foolad MR, Nowakowska M, Kozik EU. 2012. Potato and tomato late blight caused by Phytophthora infestans: an overview of pathology and resistance breeding. Plant Dis 96 : 4 17.[CrossRef]
108. Johnson DA, Cummings TF, Abi Ghanem R, Alldredge JR. 2009. Association of solar irradiance and days of precipitation with incidence of potato late blight in the semiarid environment of the Columbia Basin. Plant Dis 93 : 272 280.[CrossRef]
109. Aylor DE, Fry WE, Mayton H, Andrade-Piedra JL. 2001. Quantifying the rate of release and escape of Phytophthora infestans sporangia from a potato canopy. Phytopathology 91 : 1189 1196.[PubMed][CrossRef]
110. Fry WE, Goodwin SB. 1997. Re-emergence of potato and tomato late blight in the United States. Plant Dis 1 : 1349 1357.[CrossRef]
111. Fry WE, Mizubuti ES,. 1998. Potato late blight, p 371 388. In Jones DG (ed), The epidemiology of plant disease. Kluwer Academic, Dordrecht, The Netherlands.
112. Lokossou AA, Rietman H, Wang M, Krenek P, van der Schoot H, Henken B, Hoekstra R, Vleeshouwers VG, van der Vossen EA, Visser RG. 2010. Diversity, distribution, and evolution of Solanum bulbocastanum late blight resistance genes. Mol Plant Microbe Interact 23 : 1206 1216.[PubMed][CrossRef]
113. Johnson GI,. 1989. Peronospora hyoscyami de Bary: taxonomic history, strains and host range, p 1 8. In McKeen WE (ed), Blue mold of tobacco. APS Press, St. Paul, MN.
114. Main C, Davis J,. 1989. Epidemiology and biometeorology of tobacco blue mold, p 201 215. In McKeen WE (ed), The blue mold of tobacco. APS Press, St. Paul, MN.
115. Wiglesworth MD, Nesmith WC, Schardl CL, Li D, Siegel MR. 1994. Use of specific repetitive sequences in Peronospora tabacina for the early detection of the tobacco blue mold pathogen. Phytopathology 84 : 425 430.[CrossRef]
116. Levetin E, Dorsey K. 2006. Contribution of leaf surface fungi to the air spora. Aerobiologia 22 : 3 12.[CrossRef]
117. Bus VG, Rikkerink EH, Caffier V, Durel C-E, Plummer KM. 2011. Revision of the nomenclature of the differential host-pathogen interactions of Venturia inaequalis and Malus. Ann Rev Phytopathol 49 : 391 413.[CrossRef]
118. Stensvand A, Amundsen T, Semb L, Gadoury DM, Seem RC. 1998. Discharge and dissemination of ascospores by Venturia inaequalis during dew. Plant Dis 82 : 761 764.[CrossRef]
119. Rossi V, Ponti I, Marinelli M, Giosue S, Bugiani R. 2001. Environmental factors influencing the dispersal of Venturia inaequalis ascospores in the orchard air. J Phytopathol 149 : 11 19.[CrossRef]
120. Aylor DE. 1995. Vertical variation of aerial concentration of Venturia inaequalis ascospores in an apple orchard. Phytopathology 85 : 175 180.[CrossRef]
121. Aylor DE. 1998. The aerobiology of apple scab. Plant Dis 82 : 838 849.[CrossRef]
122. Aylor DE. 1996. Comparison of the seasonal pattern of airborne Venturia inaequalis ascospores with the release potential of V. inaequalis ascospores from a source. Phytopathology 86 : 769 776.[CrossRef]
123. Gadoury DM, Stensvand A, Seem RC. 1998. Influence of light, relative humidity, and maturity of populations on discharge of ascospores of Venturia inaequalis. Phytopathology 88 : 902 909.[PubMed][CrossRef]
124. Jones AL,. 1998. Apple scab: role of environment in pathogen and epidemic development, p 389 403. In Jones DG (ed), The epidemiology of plant diseases. Kluwer Academic, Dordrecht, The Netherlands.
125. Sterling M, Rogers C, Levetin E. 1999. An evaluation of two methods used for microscopic analysis of airborne fungal spore concentrations from the Burkard spore trap. Aerobiologia 15 : 9 18.[CrossRef]
126. Rossi V, Ponti I, Marinelli M, Giosue S, Bugiani R. 1999. Field evaluation of some models estimating the seasonal pattern of airborne ascospores of Venturia inaequalis. J Phytopathol 147 : 567 575.[CrossRef]
127. American Academy of Allergy A, and Immunology (AAAAI) 1999. 1998 Pollen and spore report. American Academy of Allergy, Asthma, and Immunology , Milwaukee, WI.
128. Iglesias I, Rodríguez-Rajo F, Méndez J. 2007. Evaluation of the different Alternaria prediction models on a potato crop in A Limia (NW of Spain). Aerobiologia 23 : 27 34.[CrossRef]
129. Rotem J. 1994. The genus Alternaria: biology, epidemiology, and pathogenicity. APS Press, St. Paul, MN.
130. Vloutoglou I, Kalogerakis S. 2000. Effects of inoculum concentration, wetness duration and plant age on development of early blight ( Alternaria solani) and on shedding of leaves in tomato plants. Plant Pathol 49 : 339 345.[CrossRef]
131. Escuredo O, Seijo MC, Fernández-González M, Iglesias I. 2011. Effects of meteorological factors on the levels of Alternaria spores on a potato crop. Int J Biometeorol 55 : 243 252.[PubMed][CrossRef]
132. Leplat J, Friberg H, Abid M, Steinberg C. 2013. Survival of Fusarium graminearum, the causal agent of Fusarium head blight. A review. Agron Sust Devel 33 : 97 111.[CrossRef]
133. Xu X, Nicholson P. 2009. Community ecology of fungal pathogens causing wheat head blight. Annu Rev Phytopathol 47 : 83 103.[PubMed][CrossRef]
134. Osborne LE, Stein JM. 2007. Epidemiology of Fusarium head blight on small-grain cereals. Int J Food Microbiol 119 : 103 108.[PubMed][CrossRef]
135. West JS, Holdgate S, Townsend JA, Edwards SG, Jennings P, Fitt BD. 2012. Impacts of changing climate and agronomic factors on fusarium ear blight of wheat in the UK. Fungal Ecol 5 : 53 61.[CrossRef]
136. Trail F. 2009. For blighted waves of grain: Fusarium graminearum in the postgenomics era. Plant Physiol 149 : 103 110.[CrossRef]
137. Trail F, Xu H, Loranger R, Gadoury D. 2002. Physiological and environmental aspects of ascospore discharge in Gibberella zeae (anamorph Fusarium graminearum). Mycologia 94 : 181 189.[CrossRef]
138. Kriss AB, Paul PA, Madden LV. 2010. Relationship between yearly fluctuations in Fusarium head blight intensity and environmental variables: a window-pane analysis. Phytopathology 00 : 784 797.[CrossRef]
139. Maldonado-Ramirez SL, Schmale DG, Shields EJ, Bergstrom GC. 2005. The relative abundance of viable spores of Gibberella zeae in the planetary boundary layer suggests the role of long-distance transport in regional epidemics of Fusarium head blight. Agr Forest Meteorol 32 : 20 27.[CrossRef]
140. Schmale DG, Ross SD, Fetters TL, Tallapragada P, Wood-Jones AK, Dingus B. 2012. Isolates of Fusarium graminearum collected 40–320 meters above ground level cause Fusarium head blight in wheat and produce trichothecene mycotoxins. Aerobiologia 28 : 1 11.[CrossRef]
141. Kriss AB, Paul PA, Xu X, Nicholson P, Doohan FM, Hornok L, Rietini A, Edwards SG, Madden LV. 2012. Quantification of the relationship between the environment and Fusarium head blight, Fusarium pathogen density, and mycotoxins in winter wheat in Europe. Eur J Plant Pathol 133 : 975 993.[CrossRef]
142. Schaafsma AW, Tamburic-Ilincic L, Hooker DC. 2005. Effect of previous crop, tillage, field size, adjacent crop, and sampling direction on airborne propagules of Gibberella zeae/Fusarium graminearum, fusarium head blight severity, and deoxynivalenol accumulation in winter wheat. Can J Plant Pathol 27 : 217 224.[CrossRef]
143. Brennan JM, Egan D, Cooke BM, Doohan FM. 2005. Effect of temperature on head blight of wheat caused by Fusarium culmorum and F. graminearum. Plant Pathol 54 : 156 160.[CrossRef]
144. Hodson D. 2011. Shifting boundaries: challenges for rust monitoring. Euphytica 179 : 93 104.[CrossRef]
145. Singh RP, Hodson DP, Huerta-Espino J, Jin Y, Bhavani S, Njau P, Herrera-Foessel S, Singh PK, Singh S, Govindan V. 2011. The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Ann Rev Phytopathol 49 : 465–4 81.[CrossRef]
146. Hau B, de Vallavieille-Pope C,. 1998. Wind-dispersed diseases, p 323 347. In Jones DG (ed), The epidemiology of plant diseases. Kluwer Academic, Dordrecht, The Netherlands.
147. Eversmeyer MG, Kramer CL. 2000. Epidemiology of wheat leaf and stem rust in the central Great Plains of the USA. Ann Rev Phytopathol 38 : 491 513.[CrossRef]
148. Eversmeyer MG, Kramer CL. 1994. Survival of Puccinia recondita and P. graminis urediniospores as affected by exposure to weather conditions at one meter. Phytopathology 84 : 332 334.[CrossRef]
149. Eversmeyer MG, Kramer CL. 1995. Survival of Puccinia recondita and P. graminis urediniospores exposed to temperatures from subfreezing to 35 C. Phytopathology 85 : 161.[CrossRef]
150. Visser B, Herselman L, Park RF, Karaoglu H, Bender CM, Pretorius ZA. 2011. Characterization of two new Puccinia graminis f. sp. tritici races within the Ug99 lineage in South Africa. Euphytica 179 : 119 127.[CrossRef]
151. Singh RP, Hodson DP, Huerta-Espino J, Jin Y, Njau P, Wanyera R, Herrera-Foessel SA, Ward RW. 2008. Will stem rust destroy the world's wheat crop? Adv Agron 98 : 271 309.[CrossRef]
152. Hodson D, Grønbech-Hansen J, Lassen P, Alemayehu Y, Arista J, Sonder K, Kosina P, Moncada P, Nazari K, Park R,. 2012. Tracking the wheat rust pathogens, p 11 22. In McIntosh R (ed), Borlaug Global Rust Initiative 2012 technical workshop. Beijing, China.
153. Singh RP, Hodson DP, Jin Y, Huerta-Espino J, Kinyua MG, Wanyera R, Njau P, Ward RW. 2006. Current status, likely migration and strategies to mitigate the threat to wheat production from race Ug99 (TTKS) of stem rust pathogen. In CAB reviews: perspectives in agriculture, veterinary science, nutrition and natural resources. doi: 10.1079/PAVSNNR20061054. http://dx.doi.org/10.1079/PAVSNNR20061054
154. Hartman GL, Miles MR, Frederick RD. 2005. Breeding for resistance to soybean rust. Plant Dis 89 : 664 666.[CrossRef]
155. Carmona M, Gally M, Lopez S. 2005. Asian soybean rust: incidence, severity, and morphological characterization of Phakopsora pachyrhizi (Uredinia and Telia) in Argentina. Plant Dis 89 : 109.2.
156. Hartman G, Hillz C, Twizeyimanaz M, Miles M, Bandyopadhyay R,. 2012. Interaction of soybean and Phakopsora pachyrhizi, the cause of soybean rust, p 59 72. In Hemmings D (ed), Plant sciences reviews 2011. CAB International, Cambridge, MA.
157. Li X, Esker PD, Pan Z, Dias AP, Xue L, Yang XB. 2010. The uniqueness of the soybean rust pathosystem: an improved understanding of the risk in different regions of the world. Plant Dis 94 : 796 806.[CrossRef]
158. Goellner K, Loehrer M, Langenbach C, Conrath U, Koch E, Schaffrath U. 2010. Phakopsora pachyrhizi, the causal agent of Asian soybean rust. Mol Plant Pathol 11 : 169 177.[PubMed][CrossRef]
159. Yorinori J, Paiva W, Frederick R, Costamilan L, Bertagnolli P, Hartman G, Godoy C, Nunes Jr J. 2005. Epidemics of soybean rust ( Phakopsora pachyrhizi) in Brazil and Paraguay from 2001 to 2003. Plant Dis 89 : 675 677.[CrossRef]
160. Ploper LD, Gonzalez V, Galvez MR, de Ramallo NV, Zamorano MA, Garcia G, Castagnaro AP. 2005. Detection of soybean rust caused by Phakopsora pachyrhizi in Northwestern Argentina. Plant Dis 89 : 774.2.[CrossRef]
161. Isard SA, Barnes CW, Hambleton S, Ariatti A, Russo JM, Tenuta A, Gay DA, Szabo LJ. 2011. Predicting soybean rust incursions into the North American continental interior using crop monitoring, spore trapping, and aerobiological modeling. Plant Dis 95 : 1346 1357.[CrossRef]
162. Kim K-S, Unfried JR, Hyten DL, Frederick RD, Hartman GL, Nelson RL, Song Q, Diers BW. 2012. Molecular mapping of soybean rust resistance in soybean accession PI 561356 and SNP haplotype analysis of the Rpp1 region in diverse germplasm. Theor Appl Genet 125 : 1339 1352.[PubMed][CrossRef]
163. Hershman D, Sikora E, Giesler L. 2011. Soybean rust PIPE: past, present, and future. J Integr Pest Manage 2 : D1 D7.[CrossRef]
164. Isard SA, Russo JM, Ariatti A. 2007. The Integrated Aerobiology Modeling System applied to the spread of soybean rust into the Ohio River valley during September 2006. Aerobiologia 23 : 271 282.[CrossRef]
165. Vanky K. 2002. Illustrated genera of smut fungi. APS Press, St. Paul, MN.
166. Brefort T, Doehlemann G, Mendoza-Mendoza A, Reissmann S, Djamei A, Kahmann R. 2009. Ustilago maydis as a pathogen. Annu Rev Phytopathol 47 : 423 445.[PubMed][CrossRef]
167. Halwagy MH. 1989. Seasonal airspora at three sites in Kuwait 1977–1982. Mycol Res 93 : 208 213.[CrossRef]
168. Hasnain SM, Fatima K, Al-Frayh A, Al-Sedairy ST. 2005. Prevalence of airborne basidiospores in three coastal cities of Saudi Arabia. Aerobiologia 21 : 139 145.[CrossRef]
169. LaMondia J. 2010. January temperatures predict tobacco blue mold severity: evidence for local source and long-distance transport of inoculum in Connecticut. Plant Dis 94 : 119 124.[CrossRef]
170. Leonard KJ, Szabo LJ. 2005. Stem rust of small grains and grasses caused by Puccinia graminis. Mol Plant Pathol 6 : 99 111.[PubMed][CrossRef]
171. Crotzer V, Levetin E. 1996. The aerobiological significance of smut spores in Tulsa, Oklahoma. Aerobiologia 12 : 177 184.[CrossRef]
172. Anderson PK, Cunningham AA, Patel NG, Morales FJ, Epstein PR, Daszak P. 2004. Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol Evol 19 : 535 544.[PubMed][CrossRef]
173. Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ. 2012. Emerging fungal threats to animal, plant and ecosystem health. Nature 484 : 186 194.[PubMed][CrossRef]
174. Fletcher J, Luster D, Bostock R, Burans J, Cardwell K, Gottwald T, McDaniel L, Royer M, Smith K,. 2010. Emerging infectious plant diseases, p 337 366. In Scheid WM,, Grayson ML,, Hughes JM (eds), Emerging infectious diseases. ASM Press, Washington, DC.
175. Polston JE, McGovern RJ, Brown LG. 1999. Introduction of tomato yellow leaf curl virus in Florida and implications for the spread of this and other geminiviruses of tomato. Plant Dis 83 : 984 988.[CrossRef]
176. Gottwald TR, Hughes G, Graham JH, Sun XS, Riley T. 2001. The citrus canker epidemic in Florida: the scientific basis of regulatory eradication policy for an invasive species. Phytopathology 91 : 30 34.[PubMed][CrossRef]
177. Grunwald NJ, Garbelotto M, Goss EM, Heungens K, Prospero S. 2012. Emergence of the sudden oak death pathogen Phytophthora ramorum. Trends Microbiol 20 : 131 138.[PubMed][CrossRef]
178. Madden L, Wheelis M. 2003. The threat of plant pathogens as weapons against US crops. Ann Rev Phytopathol 41 : 155 176.[CrossRef]
179. Rogers P, Whitby S, Dando M. 1999. Biological warfare against crops. Sci Am 280 : 70 75.[PubMed][CrossRef]
180. Christopher GW, Cieslak TJ, Pavlin JA, Eitzen EM Jr.. 1997. Biological warfare. J Am Med Assoc 278 : 412 417.[CrossRef]
181. Zilinskas RA. 1997. Iraq's biological weapons: the past as future? J Am Med Assoc 278 : 418 424.[CrossRef]
182. Inglesby TV. 1999. Anthrax: a possible case history. Emerg Infect Dis 5 : 556 560.[PubMed][CrossRef]
183. Hardwick NV,. 1998. Disease forecasting. In Jones DG (ed), The epidemiology of plant disease. Kluwer Academic, Dordrecht, The Netherlands.
184. Paulitz T, Dutilleul P, Yamasaki S, Fernando W, Seaman W. 1999. A generalized two-dimensional Gaussian model of disease foci of head blight of wheat caused by Gibberella zeae. Phytopathology 89 : 74 83.[PubMed][CrossRef]
185. Rosa M, Gozzini B, Orlandini S, Seghi L. 1995. A computer program to improve the control of grapevine downy mildew. Comput Electron Agr 12 : 311 322.[CrossRef]
186. De Wolf ED, Isard SA. 2007. Disease cycle approach to plant disease prediction. Ann Rev Phytopathol 45 : 203 220.[CrossRef]
187. Newton AC, Gaunt RE,. 1998. Information technology in epidemiology, p 278. In Jones DG (ed), The epidemiology of plant diseases. Kluwer Academic, Dordrecht, The Netherlands.


Generic image for table

Major oomycete and fungal pathogens with aerobiological dispersal

Citation: Levetin E. 2016. Aerobiology of Agricultural Pathogens, p 3.2.8-1-3.2.8-20. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch3.2.8
Generic image for table

Examples of online plant disease forecasting systems

Citation: Levetin E. 2016. Aerobiology of Agricultural Pathogens, p 3.2.8-1-3.2.8-20. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch3.2.8

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error