Chapter 4.2.3 : Aquatic Biofilms: Development, Cultivation, Analyses, and Applications

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Aquatic Biofilms: Development, Cultivation, Analyses, and Applications, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818821/9781555818821.ch4.2.3-1.gif /docserver/preview/fulltext/10.1128/9781555818821/9781555818821.ch4.2.3-2.gif


This chapter focuses on microbial biofilms in aquatic environments and attempts to provide a framework for their study based on unifying fundamental concepts of microbial ecology (resilience, resistance, diversity) across micro, community and landscape scales of observation. Biofilm development is briefly considered in terms of classical sequences of events and our current understanding. Growth of microbial communities in natural environments and methods and apparatus for their experimental cultivation at various scales are presented. Critical aspects of biofilm development, the nature and study of exopolymeric substances, predation, grazing, cooperative and trophic interactions, as well as the role of biofilms in the fate of contaminants are reviewed. The essential tools for aquatic biofilm study, from microscale (microscopy), molecular/genomic (FISH/next generation sequencing), to cultivation-based approaches, are laid out for the reader. The effects of environmental stress on aquatic biofilms, as well as their use as bioindicators of ecosystem health and applications in ecotoxicology, risk assessment, and monitoring, are reviewed and discussed.

Citation: Lawrence J, Neu T, Paule A, Korber D, Wolfaardt G. 2016. Aquatic Biofilms: Development, Cultivation, Analyses, and Applications, p 4.2.3-1-4.2.3-33. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch4.2.3
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Selected micrographs illustrating structural, functional, microenvironmental and molecular parameters in microbial biofilms. A1, Natural river biofilm on a stone; A2, Natural river biofilm on a stone; A3, Natural river biofilm on a stone; A4, Natural river biofilm on a stone; B, River water biofilm from bioreactor; C1, Reactor biofilm dual lectin staining + autofluorescence; C2, Zoom on C1 showing microcolony; D, 2 lectin + autofluorescence stained microcolony; E, green lectin + autofluorescence showing cyanobacteria; F, red + green lectin with orange microcolonies; G, red + green lectin with green microcolony shells; H, red lectin microcolony cells surrounded by red capsules and a diffuse red infilling EPS; I1, CTC-stained microcolony showing metabolic activity; I2, Green latex beads on outer shell and blue on the inside of a microcolony; J1, Control biofilm WGA TRITC, SYTO 9, and autofluorescence; J2, Comparison to (J1) 25 mg/liter MeOH-exposed biofilm WGA TRITC, SYTO 9, and autofluorescence; J3, FISH probe image microcolony in J1; J4, FISH probe image microcolony in J2; K1, Snail grazing, left side ungrazed, right side grazed; K2, Xz image of K1 left side (ungrazed); K3, Xz image of K1 right side (grazed); L1, Biofilm pH grayscale gradient dark <pH 5, light = pH 7; L2, Zoom on image L1; M1, Time series of high molecular weight dextran diffusion into microbial biofilm—25 s; M2, high molecular weight dextran diffusion into biofilm—50 s; M3, high molecular weight dextran diffusion into biofilm—80 s; N1, Syto9 green nucleic acid stain of microcolony; N2, FISH probe image of microcolony N1; N3, FISH probe image of coral microcolony N1; O1, STXM image of the biology (protein) in river biofilm; O2, STXM image of the calcium in O1; O3, STXM image of the same area O1, showing Ni, Ca, protein (RGB); O4, STXM image of Ni, protein and lipid (RGB) in O1; P1, Microcolonies exposed to nickel stained with Newport green; P2, X-ray microprobe map of nickel (red dots) in biofilm in P1. doi:10.1128/9781555818821.ch4.2.3.f1

Citation: Lawrence J, Neu T, Paule A, Korber D, Wolfaardt G. 2016. Aquatic Biofilms: Development, Cultivation, Analyses, and Applications, p 4.2.3-1-4.2.3-33. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch4.2.3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Schematic representation of different parameters integrated for ecotoxicological assessments using attached microbial communities: (i) levels of biological complexity in the experimental methods (field and microcosm); (ii) selected factors modulating the toxicity of the specific chemical or mixture, additional allogenic and autogenic factors influencing biofilm development; and (iii) examples of tools which may be used depending on the suspected exposure and organisms affected. doi:10.1128/9781555818821.ch4.2.3.f2

Citation: Lawrence J, Neu T, Paule A, Korber D, Wolfaardt G. 2016. Aquatic Biofilms: Development, Cultivation, Analyses, and Applications, p 4.2.3-1-4.2.3-33. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch4.2.3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Results from a transplantation experiment presented as a two-dimensional plot of a nonmetric multidimensional scaling (NMDS) analysis of DGGE banding patterns from gels analyzed for bacterial communities from 3- and 5.5-week biofilms from site L, located in a forested watershed (open circles) and from site A, located in an agricultural watershed (black dots) and from transplanted biofilms (dark squares). Plots issued from the first DGGE gel were rotated (45° counterclockwise—axis represented by dashed lines) to allow superposition of plots from gels 1 and 2. The numbers 1, 2, 3, and 4 indicate replicates from the same experimental condition ( ). doi:10.1128/9781555818821.ch4.2.3.f3

Citation: Lawrence J, Neu T, Paule A, Korber D, Wolfaardt G. 2016. Aquatic Biofilms: Development, Cultivation, Analyses, and Applications, p 4.2.3-1-4.2.3-33. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch4.2.3
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Guillitte O. 1995. Bioreceptivity: a new concept for building ecology studies. Sci Total Environ 167: 215 220.[CrossRef]
2. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM. 1995. Microbial biofilms. Ann Rev Microbiol 49: 711 745.[CrossRef]
3. Baho DL, Hannes P, Tranvi Lars J. 2012. Resistance and resilience of microbial communities—temporal and spatial insurance against perturbations. Environ Microbiol 9: 2283 2292.[CrossRef]
4. Freeman C, Lock MA. 1995. The biofilm polysaccharide matrix: a buffer against changing organic substrate supply. Limnol Oceanogr 40: 273 278.[CrossRef]
5. Lock MA, Wallace RR, Costerson JW, Ventullo RM, Charlton SE. 1984. River epilithon: toward a structural functional model. Oikos 42: 10 22.[CrossRef]
6. Decho AW, Frey RL, Ferry JL. 2011. Chemical challenges to bacterial AHL signaling in the environment. Chem Rev 111: 86 99.[CrossRef]
7. Platt TG, Fuqua C. 2010. What's in a name? The semantics of quorum sensing. Trends Microbiol 18: 383 387.[CrossRef]
8. Ratcliff WC, Denison RF. 2011. Microbiology. Alternative actions for antibiotics. Science 332: 547 548.[CrossRef]
9. Battin TJ, Wille A, Psenner R, Richter A. 2004. Large-scale environmental controls on microbial biofilms in high-alpine streams. Biogeosciences 1: 159 171.[CrossRef]
10. Lock MA,. 1993. Attached microbial communities in rivers, p 113 138. In Ford TE (ed), Aquatic Microbiology—An Ecological Approach. Blackwell Scientific, Oxford.
11. Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S. 2011. A guide to the natural history of freshwater lake bacteria. Microbiol Mol Biol Rev 75: 14 49.[CrossRef]
12. Winter JG, Duthie HC. 2000. Stream epilithic, epipelic and epiphytic diatoms: habitat fidelity and use in biomonitoring. Aquat Ecol 34: 345 353.[CrossRef]
13. Battin TJ. 2000. Hydrodynamics is a major determinant of streambed biofilm activity: from the sediment to the reach scale. Limnol Oceanogr 45: 1308 1319.[CrossRef]
14. Battin TJ, Kaplan LA, Newbold JD, Hansen CME. 2003. Contributions of microbial biofilms to ecosystem processes in stream mesocosms. Nature 426: 439 441.[CrossRef]
15. Battin TJ, Kaplan L, Newbold J, Cheng X, Hansen C. 2003. Effects of current velocity on the nascent architecture of stream microbial biofilms. Appl Environ Microbiol 69: 5443 5452.[CrossRef]
16. Besemer K, Singer G, Limberger R, Chlup A-K, Hochedlinger G, , Hödl I, Baranyi C, Battin TJ. 2007. Biophysical controls on community succession in stream biofilms. Appl Environ Microbiol 73: 4966 4974.[CrossRef]
17. Neu TR, Swerhone GDW, Bockelmann U, Lawrence JR. 2005. Effect of carbon, nitrogen and phosphorus on the nature and development of lectin-specific glycoconjugates in lotic biofilms. Aquat Microb Ecol 38: 283 294.[CrossRef]
18. Slavik K, Peterson BJ, Deegan LA, Bowden WB, Hershey AE, Hobbie JE. 2004. Long term responses of the Kuparak river ecosystem to phosphorus fertilization. Ecology 85: 939 954.[CrossRef]
19. Mohamed MN, Lawrence JR, Robarts RD. 1998. Phosphorus limitation of heterotrophic biofilms from the Fraser River, British Columbia, and the effect of pulp mill effluent. Microb Ecol 36: 121 130.[CrossRef]
20. Walton SP, Welch EB, Horner RR. 1995. Stream periphyton response to grazing and changes in phosphorus concentration. Hydrobiologia 302: 31 46.[CrossRef]
21. Dorigo U, Bourrain X, Berard A, Leboulanger C. 2004. Seasonal changes in the sensitivity of river microalgae to atrazine and isoproturon along a contamination gradient. Sci Tot Environ 318: 101 114.[CrossRef]
22. Olapade OA, Leff LG. 2004. Seasonal dynamics of bacterial assemblages in epilithic biofilms in a northeastern Ohio stream. J North Am Benthol Soc 23: 686 700.[CrossRef]
23. Genter RB, Amyot DJ. 1994. Freshwater benthic algal population and community changes due to acidity and aluminum-acid mixtures in artificial streams. Environ Toxicol Chem 13: 369 380.
24. Lear G, Lewis GD. 2009. Impact of land use on bacterial communities within stream biofilms. Ecol Ind 9: 848 855.[CrossRef]
25. Lyautey E, Jackson CR, Cayrou J, Rols J-L, Garabetian F. 2005. Bacterial community succession in natural river biofilm assemblages. Microb Ecol 50: 589 601.[CrossRef]
26. Lawrence JR, Swerhone GDW, Wassenaar LI, Neu TR. 2005. Effects of selected pharmaceuticals on riverine biofilm communities. Can J Microbiol 51: 655 669.[CrossRef]
27. Lawrence JR, Swerhone GDW, Kuhlicke U, Neu TR. 2007. In situ evidence for microdomains in the polymer matrix of bacterial microcolonies. Can J Microbiol 53: 450 458.[CrossRef]
28. Lawrence JR, Zhu B, Swerhone GDW, Topp E, Roy J, Wassenaar LI, Rema T, Korber DR. 2008. Community-level assessment of the effects of the broad-spectrum antimicrobial chlorhexidine on the outcome of river microbial biofilm development. Appl Environ Microbiol 74: 3541 3550.[CrossRef]
29. Lawrence JR, Zhu B, Swerhone GDW, Roy J, Wassenaar LI, Topp E, Korber DR. 2009. Comparative microscale analysis of the effects of triclosan and triclocarban on the structure and function of river biofilm communities. Sci Tot Environ 407: 3307 3316.[CrossRef]
30. Sabater S. 2008. Alterations of the global water cycle and their effects on river structure, function and services. Freshw Rev 1: 75 88.[CrossRef]
31. Yergeau E, Lawrence JR, Waiser MJ, Korber DR, Greer CW. 2010. Metatranscriptomic analysis of the response of river biofilms to pharmaceutical products, using anonymous DNA microarrays. Appl Environ Microbiol 76: 5432 5439.[CrossRef]
32. Yergeau E, Lawrence JR, Waiser MJ, Korber DR, Greer CW. 2012. Effects of oil sands mining on the microbial communities of the Athabasca River and its tributaries. Appl Environ Microbiol 78: 7626 7637.[CrossRef]
33. Guasch H, Bonet B, Bonnineau C, Corcoll N, Lopez-Doval JC, Munoz I, Ricart M, Serra A, Clements W,. 2012. How to link field observations with causality? Field and experimental approaches linking chemical pollution with ecological alterations, pp 181 218. In Guasch H, Ginebreda, A., Geiszinger, A. (eds.), Emerging and Priority Pollutants in Rivers.
34. Marshall KC,. 1993. Microbial ecology: whither goest thou?, pp 5 8. In Guerrero R, Pedros-Alio C (eds.), Trends in Microbial Ecology: Proceedings of the Sixth International Symposium on Microbial Ecology. Spanish Society for Microbiology, Madrid, 1993.
35. Hobbie JE, Ford TE,. 1993. A perspective on the ecology of aquatic microbes, p 1 14. In Ford TE (ed), Aquatic Microbiology: An Ecological Approach. Blackwell Scientific Publ, Inc, Cambridge, UK.
36. Konopka A. 2006. Microbial ecology: searching for principles. Microbe 1: 175 179.
37. Neu TR, Manz B, Volke F, Dynes JJ, Hitchcock AP, Lawrence JR. 2010. Advanced imaging techniques for assessment of structure, composition and function in biofilm systems. FEMS Microbiol Ecol 72: 1 21.[CrossRef]
38. Bengtsson MM, Sjotun K, Lanzen A, Ovreas L. 2012. Bacterial diversity in relation to secondary production and succession on surfaces of the kelp Laminaria hyperborea. ISME J 6: 2188 2198.[CrossRef]
39. Justice NB, Pan C, Mueller R, Spaulding SE, Shah V, Sun CL, Yelton AP, Miller CS, Thomas BC, Shah M, VerBerkmoes N, Hettich R, Banfield JF. 2012. Heterotrophic archaea contribute to carbon cycling in low-pH, suboxic biofilm communities. Appl Environ Microbiol 78: 8321 8330.[CrossRef]
40. Battin TJ, Sloan WT, Kjelleberg S, Daims H, Head IM, Curtis TP, Eberl L. 2007. Microbial landscapes: new paths to biofilm research. Nat Rev Microbiol 5: 76 81.[CrossRef]
41. Caldwell DE, Wolfaardt GM, Korber DR, Lawrence JR,. 1997. Do microbial communities transcend Darwinism? pp 105 191. In Jones JG (ed.) Advances in Microbial Ecology, vol. 15. Plenum Press, New York, NY.
42. Snyder RA, Lewis MA, Nocker A, Lepo JE,. 2005. Microbial biofilms as integrative sensors of environmental quality, pp 111 122. In Bortone SA (ed.), Estuarine Indicators. CRC Press, Boca Raton, FL.
43. Proia L, Cassio F, Pascoal C, Tlili A, Romanι AM,. 2012. The use of attached microbial communities to assess ecological risks of pollutants in river ecosystems: the role of heterotrophs, pp 55 84. In Guasch H, Ginebreda, A, Geiszinger, A (eds), Emerging and Priority Pollutants in Rivers: Bringing science into River Management Plans. Springer Verlag, Berlin Heidelberg. Hdb Env Chem 19: 55–84 DOI 10.1007/978-3-642-25722-3_3.
44. Sabater S, Guasch H, Ricart M, Romani A, Vidal G, Klunder C, Schmitt-Jansen M. 2007. Monitoring the effect of chemicals on biological communities. The biofilm as an interface. Anal Bioanal Chem 387: 1425 1434.[CrossRef]
45. Geiszinger A, Bonnineau C, Faggiano L, Guasch H, Lopez-Doval J-C, Proia L, Ricart M, Ricciardi F, Romanι A, Rotter S, Munoz I, Schmitt-Jansen M, Sabater S. 2009. The relevance of the community approach linking chemical and biological analyses in pollution assessment. Trends Anal Chem 28: 619 626.[CrossRef]
46. Loreau M, Mouquet N, Gonzalez A. 2003. Biodiversity as spatial insurance in heterogeneous landscapes. Proc Natl Acad Sci USA 100: 12765 12770.[CrossRef]
47. Grime JP. 1977. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111: 1169 1194.[CrossRef]
48. Rapport DH, Regier HA, Hutchinson TC. 1985. Ecosystem behavior under stress. Am Nat 125: 617 640.[CrossRef]
49. Sweeney BW, Bott TL, Jackson JK, Kaplan LA, Newbold JD, Standley LJ, Hession WC, Horwitz RJ. 2004. Riparian deforestation, stream narrowing, and loss of stream ecosystem services. Proc Natl Acad Sci USA 101: 14132 14137.[CrossRef]
50. Cáceres DM, Diaz S, Polo MG, Kitzberger T, Parma A, Pascual M, Rabinovich J, Tancredi E, Viglizzo E. 2005. Millennium Ecosystem Assessment. World Resources Institute, Washington, DC.
51. Ducklow H. 2008. Microbial services: challenges for microbial ecologists in a changing world. Aquat Microb Ecol 53: 13 19.[CrossRef]
52. Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, Holt RD, Shurin JB, Law R, Tilman D, Loreau M, Gonzalez A. 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7: 601 613.[CrossRef]
53. Holling CS. 1973. Resilience and stability of ecological systems. Ann Rev Ecol Syst 4: 1 23.[CrossRef]
54. Gunderson LH. 2000. Ecological resilience—in theory and application. Ann Rev Ecol Syst 31: 425 439.[CrossRef]
55. Jackson CR, Churchill P, Roden E. 2001. Successional changes in bacterial assemblage structure during epilithic biofilm development. Ecology 82: 555 566.[CrossRef]
56. Fisher SG. 1990. Recovery processes in lotic ecosystems: limits of successional theory. Environ Manage 14: 725 736.[CrossRef]
57. Shea K, Chesson P. 2002. Community ecology theory as a framework for biological invasions. Trends Ecol Evol 17: 170 176.[CrossRef]
58. Lawrence JR, Korber DR, Wolfaardt GM, Caldwell DE,. 1996. Surface colonization strategies of biofilm-forming bacteria, pp 1 75. In Jones JG (ed.), Advances in Microbial Ecology, vol. 14. Plenum Press, New York, NY.
59. Hall-Stoodley L, Costerton JW, Stoodley P. 2004. Bacterial biofilms: from the natural environment to infectious disease. Nat Rev Microbiol 2: 95 108.[CrossRef]
60. Elias S, Banin E. 2012. Multi-species biofilms: living with friendly neighbors. FEMS Microbiol Rev 36: 990 1004.[CrossRef]
61. Mann EE, Wozniak DJ. 2012. Pseudomonas biofilm matrix composition and niche biology. FEMS Microbiol Rev 36: 893 916.[CrossRef]
62. Rendueles O, Ghigo J-M. 2012. Multi-species biofilms: how to avoid unfriendly neighbors. FEMS Microbiol Rev 36: 972 989.[CrossRef]
63. Lawrence JR, Zhu B, Swerhone GD, Roy J, Tumber V, Waiser MJ, Topp E, Korber DR. 2012. Molecular and microscopic assessment of the effects of caffeine, acetaminophen, diclofenac, and their mixtures on river biofilm communities. Environ Toxicol Chem 31: 508 517.[CrossRef]
64. Lawrence JR, Dynes JJ, Korber DR, Swerhone GDW, Leppard GG, Hitchcock AP. 2012. Monitoring the fate of copper nanoparticles in river biofilms using scanning transmission X-ray microscopy (STXM). Chem Geology 329: 18 25.[CrossRef]
65. McDougald D, Rice SA, Barraud N, Steinberg PD, Kjelleberg S. 2011. Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. Nat Rev Microbiol 10: 39 50.
66. Korber DR, Lawrence JR, Lappin-Scott HM, Costerton JW,. 1995. Growth of microorganisms on surfaces, p 15 45. In Lappin-Scott HM, Costerton JW (eds.), Microbial Biofilms. Cambridge University Press, Cambridge, UK.
67. Loeb GI, Neihof RA. 1975. Marine conditioning films. Adv Chem 145: 319 335.[CrossRef]
68. Rittle KH, Helmstetter CE, Meyer AE, Baier RE. 1990. Escherichia coli retention on solid surfaces as functions of substratum surface energy and cell growth phase. Biofouling 2: 121 130.[CrossRef]
69. Marshall KC, Stout R, Mitchell R. 1971. Mechanisms of the initial events in the sorption of marine bacteria to surfaces. J Gen Microbiol 68: 337 348.[CrossRef]
70. Alldredge AL, Passow U, Logan BE. 1993. The abundance and significance of a class of large, transparent organic particles in the ocean. Deep Sea Res Part I: Oceanogr ResPap 40: 1131 1140.[CrossRef]
71. Passow U. 2002. Transparent exopolymer particles (TEP) in aquatic environments. Prog Oceanogr 55: 287 333.[CrossRef]
72. Bar-Zeeva E, Berman-Franka I, Girshevitzb O, Berman T. 2012. Revised paradigm of aquatic biofilm formation facilitated by microgel transparent exopolymer particles. Proc Natl Acad Sci 109: 9119 9124.[CrossRef]
73. Palmer J, Flint S, Brooks J. 2007. Bacterial cell attachment, the beginning of a biofilm. Ind Microbiol Biotechnol 34: 577 588.[CrossRef]
74. Lorite GS, Rodrigues C, de Souza A, Kranz C, Mizaikoff B, Cotta MA. 2011. The role of conditioning film formation and surface chemical changes on Xylella fastidiosa adhesion and biofilm evolution. J Colloid Interface Sci 1: 289 295.[CrossRef]
75. Berg HC,. 1985. Physics of bacterial chemotaxis, pp 19 30. In Colombetti G, Linci F, Song PS (eds.), Sensory perception and transduction in aneural organisms. Plenum Press, London, UK.
76. Hermansson M, Marshall KC. 1985. Utilization of surface localized substrate by non-adhesive marine bacteria. Microb Ecol 11: 91 105.[CrossRef]
77. Jenal U. 2004. Cyclic di-guanosine-monophosphate comes of age: a novel secondary messenger involved in modulating cell surface structures in bacteria? Cur Opin Microbiol 7 : 185 191.[CrossRef]
78. Vogel S. 1983. Life in Moving Fluids. The Physical Biology of Flow. Princeton University Press, Princeton, NJ.
79. Characklis WG,. 1990. Microbial fouling, pp 523 584. In Characklis WG, Marshall, KC (eds.), Biofilms. John Wiley & Sons, New York, NY.
80. Katsikogianni M, Missirlis YF. 2004. Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions. Eur Cell Mater 8: 37 57.
81. Korber DR, Lawrence JR, Sutton B, Caldwell DE. 1989. Effect of laminar flow velocity on the kinetics of surface recolonization by Mot(+) and Mot (-) Pseudomonas fluorescens. Microb Ecol 18: 1 19.[CrossRef]
82. Conrad JC. 2012. Physics of bacterial near-surface motility using flagella and type IV pili: implications for biofilm formation. Res Microbiol 163: 619 629.[CrossRef]
83. Fletcher M, Loeb GI. 1979. Influence of substratum characteristics on the attachment of a marine pseudomonad to solid surfaces. Appl Environ Microbiol 37: 67 72.
84. van Loosdrecht MCM, Norde W, Zehnder AJB. 1987. Influence of cell surface characteristics on bacterial adhesion to solid surfaces, pp 575 580, Proceedings of the 4th European Congress on Biotechnology, vol. 4. Elsevier Science , Amstersdam.
85. van Loosdrecht MC, Lyklema J, Norde W, Zehnder AJ. 1989. Bacterial adhesion: a physicochemical approach. Microb Ecol 17: 1 15.[CrossRef]
86. Bellon-Fontaine MN, Mozes N, Van Der Mei HC, Sjollema J, Cerf O, Rouxhet PG, Busscher HJ. 1990. A comparison of thermodynamic approaches to predict the adhesion of dairy microorganisms to solid substrata. Cell Biochem Biophys 17: 93 106.
87. Stoodley P, Sauer K, Davies DG, Costerton JW. 2002. Biofilms as complex differentiated communities. Ann Rev Microbiol 56: 187 209.[CrossRef]
88. Davies DG, Geesey GG. 1995. Regulation of the alginate biosynthesis gene algC in Pseudomonas aeruginosa during biofilm development in continuous culture. Appl Environ Microbiol 61: 860 867.
89. Otto K, Silhavy TJ. 2002. Surface sensing and adhesion of Escherichia coli controlled by the Cpx-signaling pathway. Proc Natl Acad Sci USA 99: 2287 2292.[CrossRef]
90. Besemer K, Peter H, Logue JB, Langenheder S, Lindström ES, Tranvik LJ, Battin TJ. 2012. Unraveling assembly of stream biofilm communities. ISME J 6: 1459 1468.[CrossRef]
91. James GA, Korber DR, Caldwell DE, Costerton JW. 1995. Digital image analysis of growth and starvation responses of a surface-colonizing Acinetobacter sp. J Bacteriol 177: 907 915.
92. DeBeer D, Stoodley P, Roe F, Lewandowski Z. 1994. Effects of biofilm structures on oxygen distribution and mass transport. Biotechnol Bioeng 43: 1131 1138.[CrossRef]
93. Stoodley P, Debeer D, Lewandowski Z. 1994. Liquid flow in biofilm systems. Appl Environ Microbiol 60: 2711 2716.
94. Lawrence JR, Scharf B, Packroff G, Neu TR. 2002. Microscale evaluation of the effects of grazing by invertebrates with contrasting feeding modes on river biofilm architecture and composition. Microb Ecol 44: 199 207.[CrossRef]
95. Lawrence JR, Korber DR, Hoyle BD, Costerton JW, Caldwell DE. 1991. Optical sectioning of microbial biofilms. J Bacteriol 173: 6558 6567.
96. Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP. 1998. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280: 295 298.[CrossRef]
97. Glick R, Gilmour C, Tremblay J, Satanower S, Avidan O, Deziel E, Greenberg EP, Poole K, Banin E. 2010. Increase in rhamnolipid synthesis under iron-limiting conditions influences surface motility and biofilm formation in Pseudomonas aeruginosa. J Bacteriol 192: 2973 2980.[CrossRef]
98. Neu TR, Lawrence JR. 1997. Development and structure of microbial biofilms in river water studied by confocal laser microscopy. FEMS Microbiol Ecol 24: 11 25.[CrossRef]
99. Stoodley P, Wilson S, Hall-Stoodley L, Boyle JD, Lappin-Scott HM, Costerton JW. 2001. Growth and detachment of cell clusters from mature mixed-species biofilms. Appl Environ Microbiol 67: 5608 5613.[CrossRef]
100. Flemming HC, Wingender J, Mayer C, Korstgens V, Borchard W,. 2000. Cohesiveness in biofilm matrix polymers, p 87 105. In Allison D, Lappin-Scott PGHM, Wilson M (eds.), Community Structure and Cooperation in Biofilms. Cambridge University Press, Cambridge, UK.
101. Southey-Pillig CJ, Davies DG, Sauer K. 2005. Characterization of temporal protein production in Pseudomonas aeruginosa biofilms. J Bacteriol 187: 8114 8126.[CrossRef]
102. Labbate M, Queck SY, Koh KS, Rice SA, Givskov M, Kjelleberg S. 2004. Quorum sensing-controlled biofilm development in Serratia liquefaciens MG1. J Bacteriol 186: 692 698.[CrossRef]
103. Monds RD, O'Toole GA. 2009. The developmental model of microbial biofilms: ten years of a paradigm up for review. Trends Microbiol 17: 73 87.[CrossRef]
104. Ritter A, Com E, Bazire A, Goncalves MDS, Delage L, Pennec GL, Pineau C, Dreanno C, Compére C, Dufour A. 2012. Proteomic studies highlight outer-membrane proteins related to biofilm development in the marine bacterium Pseudoalteromonas sp. D41. Proteomics 12: 3180 3192.[CrossRef]
105. Mallegol J, Duncan C, Prashar A, So J, Low DE, Terebeznik M, Guyard C. 2012. Essential roles and regulation of the Legionella pneumophila collagen-like adhesin during biofilm formation. PLoS One 7.[CrossRef]
106. Handley PS, Rickard AH, Leach SA, Buswell CM, High NJ,. 2001. Coaggregation—is it a universal phenomenon?, pp 1 10. In Gilbert P, Allison D, Brading M, Verran J, Walker J (eds.), Biofilm Community Interactions: Chance or Necessity? Bioline Press, Cardiff, UK.
107. Kolenbrander PE, Andersen RN, Blehert DS, Egland PG, Foster JS, Palmer RJ. 2002. Communication among oral bacteria. Microbiol Mol Biol Rev 66: 486 505.[CrossRef]
108. Rickard AH, Gilbert P, High NJ, Kolenbrander PE, Handley PS. 2003. Bacterial coaggregation: an integral process in the development of multi-species biofilms. Trends Microbiol 11: 94 100.[CrossRef]
109. Cassels FJ, Hughes CV, Nauss JL. 1995. Adhesin receptors of human oral bacteria and modeling of putative adhesin-binding domains. J Ind Microbiol 15: 176 185.[CrossRef]
110. Rosen G, Sela MN. 2006. Coaggregation of Porphyromonas gingivalis and Fusobacterium nucleatum PK1594 is mediated by capsular polysaccharide and lipopolysaccharide. FEMS Microbiol Lett 256: 304 310.[CrossRef]
111. Min KR, Rickard AH. 2009. Coaggregation by the freshwater bacterium Sphingomonas natatoria alters dual-species biofilm formation. Appl Environ Microbiol 75: 3987 3997.[CrossRef]
112. Kolenbrander PE, Andersen RN, Blehert DS, Egland PG, Foster JS, Palmer RJ. 2000. Oral microbial communities: biofilms, interactions, and genetic systems. Ann Rev Microbiol 54: 413 437.[CrossRef]
113. Kaplan JB. 2010. Biofilm dispersal: mechanisms, clinical implications, and potential therapeutic uses. J Dent Res 89: 205 218.[CrossRef]
114. Ma L, Conover M, Lu H, Parsek MR, Bayles K, Wozniak DJ. 2009. Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathog 5.[CrossRef]
115. Sauer K, Cullen MC, Rickard AH, Zeef LAH, Davies DG, Gilbert P. 2004. Characterization of nutrient-induced dispersion in Pseudomonas aeruginosa PAO1 biofilm. J Bacteriol 186: 7312 7326.[CrossRef]
116. Schleheck D, , Barraud N, Klebensberger J, Webb JS, McDougald D, Rice SA, Kjelleberg S. 2009. Pseudomonas aeruginosa PAO1 preferentially grows as aggregates in liquid batch cultures and disperses upon starvation. PLoS Biol 4: 1 15.
117. Manuel SGA. 2007. Role of active-site residues of dispersin B, a biofilm-releasing β-hexosaminidase from a periodontal pathogen, in substrate hydrolysis. FEBS J 274: 5987 5999.[CrossRef]
118. Roy AB, Petrova OE, Sauer K. 2012. The phosphodiesterase DipA (PA5017) is essential for Pseudomonas aeruginosa biofilm dispersion. J Bacteriol 194: 2904 2915.[CrossRef]
119. Petrova OE, Sauer K. 2012. Dispersion by Pseudomonas aeruginosa requires an unusual posttranslational modification of BdlA. Proc Natl Acad Sci USA 109: 16690 16695.[CrossRef]
120. Marxsen J. 2001. Bacterial production in different streambed habitats of an upland stream: sandy versus coarse gravelly sediments. Arch Hydrobiol 152: 543 565.
121. Delaquis PJ, Caldwell DE, Lawrence JR, McCurdy AR. 1989. Detachment of Pseudomonas fluorescens from biofilms on glass surfaces in response to nutrient stress. Microb Ecol 18: 199 210.[CrossRef]
122. Lawrence JR, Caldwell DE. 1987. Behavior of bacterial stream populations within the hydrodynamic boundary layers of surface microenvironments. Microb Ecol 14: 15 27.[CrossRef]
123. Hentzer M, Eberl L, Givskov M. 2005. Transcriptome analysis of Pseudomonas aeruginosa biofilm development: anaerobic respiration and iron limitation. Biofilms 2: 37 61.[CrossRef]
124. Ito A, May T, Kawata K, Okabe S. 2008. Significance of rpoS during maturation of Escherichia coli biofilms. Biotechnol Bioeng 99: 1462 1471.[CrossRef]
125. Lawrence JR, Korber DR, Caldwell DE. 1992. Behavioral analysis of Vibrio parahaemolyticus variants in high and low viscosity microenvironments using computer-enhanced microscopy. J Bacteriol 174: 5732 5739.
126. Steinhauer ES, Omelon CR, Bennett PC. 2010. Limestone corrosion by neutrophilic sulfur-oxidizing bacteria: a coupled microbe-mineral system. Geomicrobiol 27: 723 738.[CrossRef]
127. Luttge A, Conrad PG. 2004. Direct observation of microbial inhibition of calcite dissolution. Appl Environ Microbiol 70: 1627 1632.[CrossRef]
128. Lindsay D, von Holy A. 2006. What food safety professionals should know about bacterial biofilms. Brit Food J 108: 27 37.[CrossRef]
129. Lee AK, Lewandowski Z, Okabe S, Characklis WG, Avci R. 1993. Corrosion of mild steel underneath aerobic biofilms containing sulphate-reducing bacteria. Part I. At low dissolved oxygen concentration. Biofouling 7: 197 216.[CrossRef]
130. Kinzler K, Gehrke T, Telegdi J, Sand W. 2003. Bioleaching—a result of interfacial processes caused by extracellular polymeric substances. Hydrometallurgy 71: 83 88.[CrossRef]
131. Beech IB, Sunner J. 2004. Biocorrosion: towards understanding interactions between biofilms and metals. Curr Opin Biotechnol 15: 181 186.[CrossRef]
132. Sand W, Gehrke T. 2006. Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria. Res Microbiol 157: 49 56.[CrossRef]
133. Chan CS, De Stasio G, Welch SA, Girasole M, Frazer BH, Nesterova MV, Fakra S, Banfield JF. 2004. Microbial polysaccharides template assembly of nanocrystal fibers. Science 303: 1656 1658.[CrossRef]
134. Parameswaran P, Zhang HS, Torres CI, Rittmann BE, Krajmalnik-Brown R. 2010. Microbial community structure in a biofilm anode fed with a fermentable substrate: the significance of hydrogen scavengers. Biotechnol Bioeng 105: 69 78.[CrossRef]
135. Kiely PD, Regan JM, Logan BE. 2011. The electric picnic: synergistic requirements for exoelectrogenic microbial communities. Curr Opin Biotechnol 22: 378 385.[CrossRef]
136. Lovley DR. 2012. Long-range electron transport to Fe(III) oxide via pili with metallic-like conductivity. Biochem Soc Transactions 40: 1186 1190.[CrossRef]
137. Tessier A, Fortin D, Belzile N, DeVitre RR, Leppard GG. 1996. Metal sorption to diagenetic iron and manganese oxyhydroxides and associated organic matter: narrowing the gap between field and laboratory measurements. Geochim Cosmochim Acta 60: 387 404.[CrossRef]
138. Webb JS, Taylor MW, Rice S, Thomas T, Rao D, McDougald, Kjelleberg S,. 2007. Biofilms on living surfaces, pp 563 574. In Hurst CJ, Crawford RL, Garland JL, Lipson DA, Mills AL, Stetzenbach LD (eds.), Manual of Environmental Microbiology, 3rd ed. American Society for Microbiology Press, Washington, DC.
139. Norderhaug KM, Fredriksen S, Nygaard K. 2003. Trophic importance of Laminaria hyperborea to kelp forest consumers and the importance of bacterial degradation to food quality. Mar Ecol Prog Ser 255: 135 144.[CrossRef]
140. Schlesinger WH, Lichter J. 2001. Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO 2. Nature 411: 466 469.[CrossRef]
141. Jensen PD, Hardin MY, Clarke WP. 2008. Measurement and quantification of sessile and planktonic microbial populations during the anaerobic digestion of cellulose. Water Sci Technol 57: 465 469.[CrossRef]
142. Morris EJ, Cole OJ. 1987. Relationship between cellulolytic activity and adhesion to cellulose in Ruminococcus albus. J Gen Microbiol 133: 1023 1032.
143. Bayer EA, Lamed R. 1986. Ultrastructure of the cell surface cellulosome of Clostridium thermocellum and its interaction with cellulose. J Bacteriol 167: 828 836.
144. Weimer PJ, Price NPJ, Kroukamp O, Joubert L-M, Wolfaardt GM, Van Zyl WH. 2006. Studies of the extracellular glycocalyx of the anaerobic cellulolytic bacterium Ruminococcus albus 7. Appl Environ Microbiol 72: 7559 7566.[CrossRef]
145. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS. 2002. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66: 506 577.[CrossRef]
146. Bayer EA, Shimon LJW, Shoham Y, Lamed R. 1998. Cellulosomes—structure and ultrastructure. J Structural Biol 124: 221 234.[CrossRef]
147. Dumitrache A, Lynd LR, Liss SN, Wolfaardt GM. 2013. Form and function of Clostridium thermocellum biofilms. Appl Environ Microbiol 79: 231 239.[CrossRef]
148. Rawlins EL, Hogan LM. 2008. Ciliated epithelial cell lifespan in the mouse trachea and lung. Am J Physiol Lung Cell Mol Physiol 295 : L231 L234.[CrossRef]
149. Flemming H-C, Neu TR, Woznial DJ. 2007. The EPS matrix: the “house of biofilm cells.” J Bacteriol 189: 7945 7947.[CrossRef]
150. McAllister TA, Bae HD, Jones GA, Cheng KJ. 1994. Microbial attachment and feed digestion in the rumen. J Anim Sci 72: 3004 3018.
151. Crusz SA, Popat A, Rybtke MT, Cámara M, Givskov M, Tolker-Nielsen T, Diggle SP, William P. 2012. Bursting the bubble on bacterial biofilms: a flow cell methodology. Biofouling 28: 835 842.[CrossRef]
152. Gjaltema A, Griebe T. 1995. Laboratory reactors and on-line monitoring: report of the discussion session. Water Sci Technol 32: 257 261.[CrossRef]
153. Flemming H-C. 2003. Role and levels of real-time monitoring for successful anti-fouling strategies—an overview. Water Sci Technol 47: 1 8.
154. Janknecht P, Melo LF. 2003. Online biofilm monitoring. Rev Environ Sci Biotechnol 2: 269 283.[CrossRef]
155. Wolfaardt GM, Korber DR, Lawrence JR,. 2007. Cultivation of microbial communities, pp 101 111. In Hurst CJ, Crawford RL, Knudsen GR, McInerney MJ, Stetzenbach LD (eds.), Manual of Environmental Microbiology, 3rd ed. ASM Press, Washington, DC.
156. Coenye T, Nelis HJ. 2010. In vitro and in vivo model systems to study microbial biofilm formation. J Microbiol Meth 83: 89 105.[CrossRef]
157. Halan B, Buehler K, Schmid A. 2012. Biofilms as living catalysts in continuous chemical syntheses. Trends Biotechnol 30: 453 465.[CrossRef]
158. McCoy WF, Bryers JD, Robbins J, Costerton JW. 1981. Observations of fouling biofilm formation. Can J Microbiol 27: 910 917.[CrossRef]
159. Nickel JC, Ruseska I, Wrigth JB, Costerton JW. 1985. Tobramycin resistance of Pseudomonas aeruginosa cells growing as a biofilm on urinary catheter material. Antimicrob Agents Chem 27: 619 624.[CrossRef]
160. Cotter JJ, O'Gara JP, Stewart PS, Pitts B, Casey E. 2010. Characterization of a modified rotating disk reactor for the cultivation of Staphylococcus epidermidis biofilm. J Appl Microbiol 109: 2105 2117.[CrossRef]
161. Meyer MT, Roy V, Bentley WE, Ghodssi R. 2011. Development and validation of a microfluidic reactor for biofilm monitoring via optical methods. J Micromech Microeng 21: 1 10.[CrossRef]
162. Kim J, Park H-D, Chung S. 2012. Microfluidic approaches to bacterial biofilm formation. Molecules 17: 9818 9834.[CrossRef]
163. Mosier AP, Kaloyeros AE, Cady NC. 2012. A novel microfluidic device for the in situ optical and mechanical analysis of bacterial biofilms. J Microbiol Meth 91: 198 204.[CrossRef]
164. Benoit MR, Conant CG, Ionescu-Zanetti C, Schwartz M, Matin A. 2010. New device for high-throughput viability screening of flow biofilms. Appl Environ Microbiol 76: 4136 4142.[CrossRef]
165. Cao B, Majors PD, Ahmed B, Renslow RS, Silvia CP, Shi L, Kjelleberg S, Fredrickson JK, Beyenal H. 2012. Biofilm shows spatially stratified metabolic responses to contaminant exposure. Environ Microbiol 14: 2901 2910.[CrossRef]
166. Gutman J, Walker SL, Freger V, Herzberg M. 2012. Bacterial attachment and viscoelasticity: physicochemical and motility effects analyzed using quartz crystal microbalance with dissipation (QCM-D). Environ Sci Technol 47: 398 404.[CrossRef]
167. Caldwell DE, Hirsch P. 1973. Growth of microorganisms in two-dimensional steady-state diffusion gradients. Can J Microbiol 19: 53 58.[CrossRef]
168. Wolfaardt GM, Lawrence JR, Hendry MJ, Robarts RD, Caldwell DE. 1993. Development of steady-state diffusion gradients for the cultivation of degradative microbial consortia. Appl Environ Microbiol 59: 2388 2396.
169. Cao YS, Alaerts GJ. 1995. Influence of reactor type and shear stress on aerobic biofilm morphology, population and kinetics. Water Res 29: 107 118.[CrossRef]
170. Lawrence JR, Swerhone GDW, Neu TR. 2000. Design and evaluation of a simple rotating annular reactor for replicated biofilm studies. J Microbiol Meth 42: 215 224.[CrossRef]
171. Lawrence JR, Kopf G, Headley JV, Neu TR. 2001. Sorption and metabolism of selected herbicides in river biofilm communities. Can J Microbiol 47: 634 641.[CrossRef]
172. Lawrence JR, Chenier MR, Roy R, Beaumier D, Fortin N, Swerhone GDW, Neu TR, Greer CW. 2004. Microscale and molecular assessment of impacts of nickel, nutrients, and oxygen level on structure and function of river biofilm communities. Appl Environ Microbiol 70: 4326 4339.[CrossRef]
173. Manz W, Wendt-Potthoff K, Neu TR, Szewzyk U, Lawrence JR. 1999. Phylogenetic composition, spatial structure, and dynamics of lotic bacterial biofilms investigated by fluorescent in situ hybridization and confocal laser scanning microscopy. Microb Ecol 37: 225 237.[CrossRef]
174. Bott T, Brock TD. 1969. Bacterial growth rates above 90°C in Yellowstone hot springs. Science 20: 1411 1412.[CrossRef]
175. Aloi JE. 1990. A critical review of recent freshwater periphyton field methods. Can J Fish Aquat Sci 47: 656 670.[CrossRef]
176. Cattaneo A, Amireault MC. 1992. How artificial are artificial substrata for periphyton? J North Am Benthol Soc 11 : 244 256.[CrossRef]
177. Hauer FR, Lamberti GA. 2006. Methods in Stream Ecology, 2nd ed. Academic Press/Elsevier, New York, NY.
178. Capps KA, Booth MT, Collins SM, Davison MA, Moslemi JM, El-Sabaawi RW, Simonis JL, Flecker AS. 2011. Nutrient diffusing substrata: a field comparison of commonly used methods to assess nutrient limitation. J North Am Benthol Soc 30: 522 532.[CrossRef]
179. Scrimgeour GJ, Chambers PA. 1997. Development and application of a nutrient-diffusing bioassay for large rivers. Freshw Biol 38: 221 231.[CrossRef]
180. Battin TJ, Kaplan LA, Findlay S, Hopkinson CS, Marti E, Packman AI, Newbold JD, Sabater F. 2008. Biophysical controls on organic carbon fluxes in fluvial networks. Nat Geosci 1: 95 100.[CrossRef]
181. Singer G, Besemer K, Schmitt-Kopplin P, Hodl I, Battin TJ. 2010. Physical heterogeneity increases biofilm resource use and its molecular diversity in stream mesocosms. PLoS One 5.
182. Augspurger C, Karwautz C, Mussmann M, Daims H, Battin TJ. 2010. Drivers of bacterial colonization patterns in stream biofilms. FEMS Microbiol Ecol 72: 47 57.[CrossRef]
183. Davies J-M, Bothwell ML. 2012. Responses of lotic periphyton to pulses of phosphorus: P-flux controlled growth rate. Freshw Biol 57: 2602 2612.[CrossRef]
184. Lawrence JR, Kwong YTJ, Swerhone GDW. 1997. Colonization and weathering of natural sulfide mineral assemblages by Thiobacillus ferrooxidans. Can J Microbiol 43: 68 78.[CrossRef]
185. Scheuerman TR, Camper AK, Hamilton MA. 1998. Effects of substratum topography on bacterial adhesion. J Col Interf Sci 208: 23 33.[CrossRef]
186. Hunt AP, Parry JD. 1998. The effect of substratum roughness and river flow rate on the development of a freshwater biofilm community. Biofouling 12: 287 303.[CrossRef]
187. Lowe RL, Guckert JB, Belanger SE, Davidson DH, Johnson DW. 1996. An evaluation of peryphyton community structure and function on tile and cobble substrata in experimental stream mesocosms. Hydrobiologia 328: 135 146.[CrossRef]
188. Wingender J, Neu TR, Flemming H-C. 1999. Microbial Extracellular Polymeric Substances. Springer, Heidelberg.[CrossRef]
189. Allison DG, Sutherland IW, Neu TR,. 2003. What's in an acronym? Biofilm communities: order from chaos, pp 381 388. In McBain A, Allison DG, Brading M, Rickard A, Verran J, Walker J (eds.). Biofilm communities: order from chaos? BioLin, Cardiff, United Kingdom.
190. Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS. 2002. Extracellular DNA required for bacterial biofilm formation. Science 295: 1487 1487.[CrossRef]
191. Neu TR, Lawrence JR,. 2009. Extracellular polymeric substances in microbial biofilms, pp 735 758. In Moran A, Brenan, P, Holst, O, von Itzstein M (eds.), Microbial Glycobiology: Structures, Relevance and Applications. Elsevier, San Diego, CA.
192. Nielsen PH, Jahn A,. 1999. Extraction of EPS. pp 49 72. In Wingender J, Neu TR, Flemming H-C (eds.), Microbial Extracellular Polymeric Substances. Springer, Berlin.
193. Neu TR, Lawrence JR. 1999. Lectin-binding analysis in biofilm systems. Meth Enzymol 310: 145 152.[CrossRef]
194. Sandford PA, Laskin A. 1977. Extracellular Microbial Polysaccharides. American Chemical Society, Washington, DC.[CrossRef]
195. Jiao Y, Cody GD, Harding AK, Wilmes P, Schrenk M, Wheeler KE, Banfield JF, Thelen MP. 2010. Characterization of extracellular polymeric substances from acidophilic microbial biofilms. Appl Environ Microbiol 76: 2916 2922.[CrossRef]
196. Neu TR, Swerhone GDW, Lawrence JR. 2001. Assessment of lectin-binding analysis for in situ detection of glycoconjugates in biofilm systems. Microbiol 147: 299 313.[CrossRef]
197. Staudt C, Horn H, Hempel DC, Neu TR,. 2003. Screening of lectins for staining lectin-specific glycoconjugates in the EPS of biofilms, pp 308 327. In Lens P, Moran AP, Mahony T, Stoodley P, O'Flaherty V (eds.), Biofilms in Medicine, Industry and Environmental Technology. IWA Publishing, UK.
198. Peltola M, Neu TR, Raulio M, Kolari M, Salkinoja-Salonen MS. 2008. Architecture of Deinococcus geothermalis biofilms on glass and steel: a lectin study. Environ Microbiol 10: 1752 1759.[CrossRef]
199. Neu TR, Marshall KC. 1991. Microbial “footprints”—a new approach to adhesive polymers. Biofouling 3: 101 112.[CrossRef]
200. Berne C, Kysela DT, Brun YV. 2010. A bacterial extracellular DNA inhibits settling of motile progeny cells within a biofilm. Mol Microbiol 77 : 815 829.
201. Zippel B, Neu TR. 2012. Characterization of glycoconjugates of extracellular polymeric substances in tufa-associated biofilms by using fluorescence lectin-binding analysis. Appl Environ Microbiol 77: 505 516.[CrossRef]
202. Staudt C, Horn H, Hempel DC, Neu TR. 2004. Volumetric measurements of bacterial cells and extracellular polymeric substance glycoconjugates in biofilms. Biotechnol Bioeng 88: 585 592.[CrossRef]
203. Larsen P, Nielsen JL, Dueholm MS, Wetzel R, Otzen D, Nielsen PH. 2007. Amyloid adhesins are abundant in natural biofilms. Environ Microbiol 9: 3077 3090.[CrossRef]