Chapter 5.1.3 : Anaerobic Degradation of Aromatic Compounds

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Anaerobic Degradation of Aromatic Compounds, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818821/9781555818821.ch5.1.3-1.gif /docserver/preview/fulltext/10.1128/9781555818821/9781555818821.ch5.1.3-2.gif


The benzene ring moiety is found in biological compounds accounting for ~25% of the land-based organic matter on Earth. Hence, the biosynthesis and biodegradation of aromatic ring compounds constitutes an important part of natural carbon cycle. Microorganisms capable of using aromatic compounds as carbon and energy sources can be found in a range of very different habitats and redox conditions. In anoxic ecosystems where dissolved oxygen is depleted, degradation of aromatic compounds depends on the availability of inorganic electron acceptors such as nitrate, iron, sulfate or carbon dioxide. Developing efficient and effective bioremediation technologies requires an in-depth understanding of the microbial communities responsible for degradation of contaminants. Anaerobic microorganisms use a strategy of attacking the aromatic ring via reductive transformations. Anaerobic degradation of aromatic compounds (e.g. benzene, toluene and xylene (BTX), lignoaromatics, polycyclic aromatic hydrocarbons (PAHs) and halogenated aromatic compounds) has now been demonstrated under different redox conditions. One of the fundamental challenges has been to elucidate the microorganism(s) responsible for degradation of aromatic compounds in anaerobic environments. The recent advancements in molecular techniques have provided an opportunity to unravel the veil of the microbial activity responsible for the anaerobic degradation of aromatic compounds. This chapter provides an overview of some techniques and approaches to elucidate anaerobic degradation of aromatic compounds and how the active microorganisms can be identified, classified and enumerated.

Citation: Sun W, Krumins V, Fennell D, Kerkhof L, Häggblom M. 2016. Anaerobic Degradation of Aromatic Compounds, p 5.1.3-1-5.1.3-14. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch5.1.3
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Harwood CS,, Parales RE. 1996. The β-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol 50 : 553 590.[PubMed][CrossRef]
2. Díaz E,, Ferrández A,, Prieto MaA,, García JL. 2001. Biodegradation of aromatic compounds by Escherichia coli. Microbiol Mol Biol Rev 65 : 523 569.[PubMed][CrossRef]
3. Young LY,, Cerniglia CE. 1995. Microbial Transformation and Degradation of Toxic Organic Chemicals. Wiley-Liss, New York.
4. Gibson DT,, Parales RE. 2000. Aromatic hydrocarbon dioxygenases in environmental biotechnology. Curr Opin Biotechnol 11 : 236 243.[PubMed][CrossRef]
5. Fuchs G. 2008. Anaerobic metabolism of aromatic compounds. Ann NY Acad Sci 1125 : 82 99.[PubMed][CrossRef]
6. Evans WC,, Fuchs G. 1988. Anaerobic degradation of aromatic compounds. Annu Rev Microbiol 42 : 289 317.[PubMed][CrossRef]
7. Berry DF,, Francis AJ,, Bollag J-M. 1987. Microbial metabolism of homocyclic and heterocyclic aromatic compounds under anaerobic conditions. Microbiol Rev 51 : 43.[PubMed]
8. Fuchs G,, Boll M,, Heider J. 2011. Microbial degradation of aromatic compounds—from one strategy to four. Nat Rev Microbiol 9 : 803 816.[PubMed][CrossRef]
9. Kerkhof LJ,, Häggblom MM. 2008. Detecting Active Bacteria Involved in Biodegradation in the Environment. Caister Academic Press, Norfolk, UK.
10. Spain JC. 1995. Biodegradation of nitroaromatic compounds. Annu Rev Microbiol 49 : 523 555.[PubMed][CrossRef]
11. Häggblom MM. 1992. Microbial breakdown of halogenated aromatic pesticides and related compounds. FEMS Microbiol Lett 103 : 29 72.[CrossRef]
12. Daane L,, Harjono I,, Zylstra G,, Häggblom M. 2001. Isolation and characterization of polycyclic aromatic hydrocarbon-degrading bacteria associated with the rhizosphere of salt marsh plants. Appl Environ Microbiol 67 : 2683 2691.[PubMed][CrossRef]
13. Tarvin D,, Buswell A. 1934. The methane fermentation of organic acids and carbohydrates1, 2. J Am Chem Soc 56 : 1751 1755.[CrossRef]
14. Healy J,, Young L. 1979. Anaerobic biodegradation of eleven aromatic compounds to methane. Appl Environ Microbiol 38 : 84 89.[PubMed]
15. Healy J,, Young L,, Reinhard M. 1980. Methanogenic decomposition of ferulic acid, a model lignin derivative. Appl Environ Microbiol 39 : 436 444.[PubMed]
16. Colberg PJ,, Young L. 1982. Biodegradation of lignin-derived molecules under anaerobic conditions. Can J Microbiol 28 : 886 889.[CrossRef]
17. Schink B,, Brune A,, Schnell S,, Winkelmann G,. 1992. Anaerobic degradation of aromatic compounds, p. 219 242. In Winkelmann G (ed), Microbial Degradation of Natural Products. VCH, Weinheim.
18. Gibson J,, Harwood CS. 2002. Metabolic diversity in aromatic compound utilization by anaerobic microbes. Annu Rev Microbiol 56 : 345 369.[PubMed][CrossRef]
19. Miller TL,, Wolin M. 1974. A serum bottle modification of the Hungate technique for cultivating obligate anaerobes. Appl Microbiol 27 : 985.[PubMed]
20. Hungate R. 1969. A roll tube method for cultivation of strict anaerobes. Meth Microbiol 3B : 117.[CrossRef]
21. Macy J,, Snellen J,, Hungate R. 1972. Use of syringe methods for anaerobiosis. Am J Clin Nutr 25 : 1318 1323.[PubMed]
22. Häggblom M,, Rivera M,, Young L. 1993. Influence of alternative electron acceptors on the anaerobic biodegradability of chlorinated phenols and benzoic acids. Appl Environ Microbiol 59 : 1162 1167.[PubMed]
23. Phelps CD,, Young L. 1999. Anaerobic biodegradation of BTEX and gasoline in various aquatic sediments. Biodegradation 10 : 15 25.[PubMed][CrossRef]
24. Kazumi J,, Caldwell M,, Suflita J,, Lovley D,, Young L. 1997. Anaerobic degradation of benzene in diverse anoxic environments. Environ Sci Technol 31 : 813 818.[CrossRef]
25. Häggblom MM,, Bossert ID. 2003. Microbial Processes and Environmental Applications. Springer, New York.
26. Smidt H,, de Vos WM. 2004. Anaerobic microbial dehalogenation. Annu Rev Microbiol 58 : 43 73.[PubMed][CrossRef]
27. Sowers KR,, May HD. 2013. In situ treatment of PCBs by anaerobic microbial dechlorination in aquatic sediment: are we there yet? Curr Opin Biotechnol 24 : 482 488.[PubMed][CrossRef]
28. DeWeerd KA,, Mandelco L,, Tanner RS,, Woese CR,, Suflita JM. 1990. Desulfomonile tiedjei gen. nov. and sp. nov., a novel anaerobic, dehalogenating, sulfate-reducing bacterium. Arch Microbiol 154 : 23 30.[CrossRef]
29. Maymo-Gatell X,, Chien Y-T,, Gossett JM,, Zinder SH. 1997. Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science 276 : 1568 1571.[PubMed][CrossRef]
30. Fennell DE,, Nijenhuis I,, Wilson SF,, Zinder SH,, Häggblom MM. 2004. Dehalococcoides ethenogenes strain 195 reductively dechlorinates diverse chlorinated aromatic pollutants. Environ Sci Technol 38 : 2075 2081.[PubMed][CrossRef]
31. Fung JM,, Morris RM,, Adrian L,, Zinder SH. 2007. Expression of reductive dehalogenase genes in Dehalococcoides ethenogenes strain 195 growing on tetrachloroethene, trichloroethene, or 2, 3-dichlorophenol. Appl Environ Microbiol 73 : 4439 4445.[PubMed][CrossRef]
32. Adrian L,, Hansen SK,, Fung JM,, Görisch H,, Zinder SH. 2007. Growth of Dehalococcoides strains with chlorophenols as electron acceptors. Environ Sci Technol 41 : 2318 2323.[PubMed][CrossRef]
33. Bedard DL,, Ritalahti KM,, Löffler FE. 2007. The Dehalococcoides population in sediment-free mixed cultures metabolically dechlorinates the commercial polychlorinated biphenyl mixture Aroclor 1260. Appl Environ Microbiol 73 : 2513 2521.[PubMed][CrossRef]
34. Kube M,, Beck A,, Zinder SH,, Kuhl H,, Reinhardt R,, Adrian L. 2005. Genome sequence of the chlorinated compound–respiring bacterium Dehalococcoides species strain CBDB1. Nat Biotechnol 23 : 1269 1273.[PubMed][CrossRef]
35. Hölscher T,, Görisch H,, Adrian L. 2003. Reductive dehalogenation of chlorobenzene congeners in cell extracts of Dehalococcoides sp. strain CBDB1. Appl Environ Microbiol 69 : 2999 3001.[PubMed][CrossRef]
36. Jayachandran G,, Görisch H,, Adrian L. 2003. Dehalorespiration with hexachlorobenzene and pentachlorobenzene by Dehalococcoides sp. strain CBDB1. Arch Microbiol 180 : 411 416.[PubMed][CrossRef]
37. Martin-Laurent F,, Philippot L,, Hallet S,, Chaussod R,, Germon J,, Soulas G,, Catroux G. 2001. DNA extraction from soils: old bias for new microbial diversity analysis methods. Appl Environ Microbiol 67 : 2354 2359.[PubMed][CrossRef]
38. Holben WE,, Jansson JK,, Chelm BK,, Tiedje JM. 1988. DNA probe method for the detection of specific microorganisms in the soil bacterial community. Appl Environ Microbiol 54 : 703 711.[PubMed]
39. Jacobsen CS,, Rasmussen OF. 1992. Development and application of a new method to extract bacterial DNA from soil based on separation of bacteria from soil with cation-exchange resin. Appl Environ Microbiol 58 : 2458 2462.[PubMed]
40. Ogram A,, Sayler GS,, Barkay T. 1987. The extraction and purification of microbial DNA from sediments. J Microbiol Meth 7 : 57 66.[CrossRef]
41. Steffan RJ,, Goksøyr J,, Bej A,, Atlas R. 1988. Recovery of DNA from soils and sediments. Appl Environ Microbiol 54 : 2908 2915.[PubMed]
42. Tsai Y-L,, Olson BH. 1991. Rapid method for direct extraction of DNA from soil and sediments. Appl Environ Microbiol 57 : 1070 1074.[PubMed]
43. Zhou J,, Bruns MA,, Tiedje JM. 1996. DNA recovery from soils of diverse composition. Appl Environ Microbiol 62 : 316 322.[PubMed]
44. Leff LG,, Dana JR,, McArthur JV,, Shimkets LJ. 1995. Comparison of methods of DNA extraction from stream sediments. Appl Environ Microbiol 61 : 1141 1143.[PubMed]
45. Kerkhof L,, Ward B. 1993. Comparison of nucleic acid hybridization and fluorometry for measurement of the relationship between RNA/DNA ratio and growth rate in a marine bacterium. Appl Environ Microbiol 59 : 1303 1309.[PubMed]
46. Miller D,, Bryant J,, Madsen E,, Ghiorse W. 1999. Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Appl Environ Microbiol 65 : 4715 4724.[PubMed]
47. Muyzer G,, De Waal EC,, Uitterlinden AG. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59 : 695 700.[PubMed]
48. Knoll G,, Winter J. 1987. Anaerobic degradation of phenol in sewage sludge. Appl Microbiol Biot 25 : 384 391.[CrossRef]
49. Bak F,, Widdel F. 1986. Anaerobic degradation of phenol and phenol derivatives by Desulfobacterium phenolicum sp. nov. Arch Microbiol 146 : 177 180.[CrossRef]
50. Sanford RA,, Cole JR,, Tiedje JM. 2002. Characterization and description of Anaeromyxobacter dehalogenans gen. nov., sp. nov., an aryl-halorespiring facultative anaerobic myxobacterium. Appl Environ Microbiol 68 : 893 900.[PubMed][CrossRef]
51. Milligan PW,, Häggblom MM. 1998. Biodegradation of resorcinol and catechol by denitrifying enrichment cultures. Environ Toxicol Chem 17 : 1456 1461.[CrossRef]
52. Zhang X,, Wiegel J. 1990. Sequential anaerobic degradation of 2, 4-dichlorophenol in freshwater sediments. Appl Environ Microbiol 56 : 1119 1127.[PubMed]
53. Ferry JG,, Wolfe RS. 1976. Anaerobic degradation of benzoate to methane by a microbial consortium. Arch Microbiol 107 : 33 40.[PubMed][CrossRef]
54. Jahn MK,, Haderlein SB,, Meckenstock RU. 2005. Anaerobic degradation of benzene, toluene, ethylbenzene, and o-xylene in sediment-free iron-reducing enrichment cultures. Appl Environ Microbiol 71 : 3355 3358.[PubMed][CrossRef]
55. Evans PJ,, Mang DT,, Young LY. 1991. Degradation of toluene and m-xylene and transformation of o-xylene by denitrifying enrichment cultures. Appl Environ Microbiol 57 : 450 454.[PubMed]
56. Beller H,, Reinhard M,, Grbić-Galić D. 1992. Metabolic by-products of anaerobic toluene degradation by sulfate-reducing enrichment cultures. Appl Environ Microbiol 58 : 3192 3195.[PubMed]
57. Fowler SJ,, Dong X,, Sensen CW,, Suflita JM,, Gieg LM. 2012. Methanogenic toluene metabolism: community structure and intermediates. Environ Microbiol 14 : 754 764.[PubMed][CrossRef]
58. Musat F,, Widdel F. 2008. Anaerobic degradation of benzene by a marine sulfate-reducing enrichment culture, and cell hybridization of the dominant phylotype. Environ Microbiol 10 : 10 19.[PubMed]
59. Kunapuli U,, Griebler C,, Beller HR,, Meckenstock RU. 2008. Identification of intermediates formed during anaerobic benzene degradation by an iron-reducing enrichment culture. Environ Microbiol 10 : 1703 1712.[PubMed][CrossRef]
60. Coates JD,, Chakraborty R,, Lack JG,, O'Connor SM,, Cole KA,, Bender KS,, Achenbach LA. 2001. Anaerobic benzene oxidation coupled to nitrate reduction in pure culture by two strains of Dechloromonas. Nature 411 : 1039 1043.[PubMed][CrossRef]
61. Bedessem ME,, SwobodaColberg NG,, Colberg PJS. 1997. Naphthalene mineralization coupled to sulfate reduction in aquifer-derived enrichments. FEMS Microbiol Lett 152 : 213 218.[CrossRef]
62. Meckenstock RU,, Annweiler E,, Michaelis W,, Richnow HH,, Schink B. 2000. Anaerobic naphthalene degradation by a sulfate-reducing enrichment culture. Appl Environ Microbiol 66 : 2743 2747.[PubMed][CrossRef]
63. Zhang XM,, Sullivan ER,, Young LY. 2000. Evidence for aromatic ring reduction in the biodegradation pathway of carboxylated naphthalene by a sulfate reducing consortium. Biodegradation 11 : 117 124.[PubMed][CrossRef]
64. Zhang X,, Young L. 1997. Carboxylation as an initial reaction in the anaerobic metabolism of naphthalene and phenanthrene by sulfidogenic consortia. Appl Environ Microbiol 63 : 4759 4764.[PubMed]
65. Rockne KJ,, Strand SE. 2001. Anaerobic biodegradation of naphthalene, phenanthrene, and biphenyl by a denitrifying enrichment culture. Water Res 35 : 291 299.[PubMed][CrossRef]
66. Eriksson M,, Sodersten E,, Yu Z,, Dalhammar G,, Mohn WW. 2003. Degradation of polycyclic aromatic hydrocarbons at low temperature under aerobic and nitrate-reducing conditions in enrichment cultures from northern soils. Appl Environ Microbiol 69 : 275 284.[PubMed][CrossRef]
67. Rockne KJ,, Strand SE. 1998. Biodegradation of bicyclic and polycyclic aromatic hydrocarbons in anaerobic enrichments. Environ Sci Technol 32 : 3962 3967.[CrossRef]
68. Quensen JF,, Tiedje JM,, Boyd SA. 1988. Reductive dechlorination of polychlorinated biphenyls by anaerobic microorganisms from sediments. Science 242 : 752 754.[PubMed][CrossRef]
69. Alder AC,, Haggblom MM,, Oppenheimer SR,, Young L. 1993. Reductive dechlorination of polychlorinated biphenyls in anaerobic sediments. Environ Sci Technol 27 : 530 538.[CrossRef]
70. Zhen H,, Du S,, Rodenburg LA,, Mainelis G,, Fennell DE. 2014. Reductive dechlorination of 1,2,3,7,8-pentachlorodibenzo- p-dioxin and aroclor 1260, 1254 and 1242 by a mixed culture containing Dehalococcoides mccartyi strain 195. Water Res 52 : 51 62.[PubMed][CrossRef]
71. Tiedje JM,, Quensen JF III,, Chee-Sanford J,, Schimel JP,, Boyd SA. 1993. Microbial reductive dechlorination of PCBs. Biodegradation 4 : 231 240.[PubMed][CrossRef]
72. Payne RB,, May HD,, Sowers KR. 2011. Enhanced reductive dechlorination of polychlorinated biphenyl impacted sediment by bioaugmentation with a dehalorespiring bacterium. Environ Sci Technol 45 : 8772 8779.[PubMed][CrossRef]
73. Fagervold SK,, Watts JE,, May HD,, Sowers KR. 2011. Effects of bioaugmentation on indigenous PCB dechlorinating activity in sediment microcosms. Water Res 45 : 3899 3907.[PubMed][CrossRef]
74. Liu H,, Park J-W,, Fennell DE,, Rodenburg LA,, Verta M,, Häggblom MM. 2013. Microbially mediated reductive dechlorination of weathered polychlorinated dibenzofurans in Kymijoki sediment mesocosms. Chemosphere 91 : 212 221.[PubMed][CrossRef]
75. Ahn YB,, Liu F,, Fennell DE,, Häggblom MM. 2008. Biostimulation and bioaugmentation to enhance dechlorination of polychlorinated dibenzo- p-dioxins in contaminated sediments. FEMS Microbiol Ecol 66 : 271 281.[PubMed][CrossRef]
76. Krumins V,, Park J-W,, Son E-K,, Rodenburg LA,, Kerkhof LJ,, Häggblom MM,, Fennell DE. 2009. PCB dechlorination enhancement in Anacostia River sediment microcosms. Water Res 43 : 4549 4558.[PubMed][CrossRef]
77. Beaudet R,, Levesque M-J,, Villemur R,, Lanthier M,, Chenier M,, Lépine F,, Bisaillon J-G. 1998. Anaerobic biodegradation of pentachlorophenol in a contaminated soil inoculated with a methanogenic consortium or with Desulfitobacterium frappieri strain PCP-1. Appl Microbiol Biot 50 : 135 141.[CrossRef]
78. Milligan PW,, Häggblom MM. 1999. Biodegradation and biotransformation of dicamba under different reducing conditions. Environ Sci Technol 33 : 1224 1229.[CrossRef]
79. Avaniss-Aghajani E,, Jones K,, Chapman D,, Brunk C. 1994. A molecular technique for identification of bacteria using small subunit ribosomal RNA sequences. BioTechniques 17 : 144 146, 148–149.[PubMed]
80. Schütte UM,, Abdo Z,, Bent SJ,, Shyu C,, Williams CJ,, Pierson JD,, Forney LJ. 2008. Advances in the use of terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes to characterize microbial communities. Appl Microbiol Biot 80 : 365 380.[CrossRef]
81. Marsh TL. 1999. Terminal restriction fragment length polymorphism (T-RFLP): an emerging method for characterizing diversity among homologous populations of amplification products. Curr Opin Microbiol 2 : 323 327.[PubMed][CrossRef]
82. Lukow T,, Dunfield PF,, Liesack W. 2000. Use of the T-RFLP technique to assess spatial and temporal changes in the bacterial community structure within an agricultural soil planted with transgenic and non-transgenic potato plants. FEMS Microbiol Ecol 32 : 241 247.[CrossRef]
83. Ogino A,, Koshikawa H,, Nakahara T,, Uchiyama H. 2001. Succession of microbial communities during a biostimulation process as evaluated by DGGE and clone library analyses. J Appl Microbiol 91 : 625 635.[PubMed][CrossRef]
84. Phelps CD,, Kerkhof LJ,, Young LY. 1998. Molecular characterization of a sulfate-reducing consortium which mineralizes benzene. FEMS Microbiol Ecol 27 : 269 279.[CrossRef]
85. Babcock D,, Wawrik B,, Paul J,, McGuinness L,, Kerkhof L. 2007. Rapid screening of a large insert BAC library for specific 16S rRNA genes using TRFLP. J Microbiol Meth 71 : 156 161.[CrossRef]
86. Muttray AF,, Mohn WW. 1999. Quantitation of the population size and metabolic activity of a resin acid degrading bacterium in activated sludge using slot-blot hybridization to measure the rRNA: rDNA ratio. Microbiol Ecol 38 : 348 357.[CrossRef]
87. Muttray AF,, Yu Z,, Mohn WW. 2001. Population dynamics and metabolic activity of Pseudomonas abietaniphila BKME-9 within pulp mill wastewater microbial communities assayed by competitive PCR and RT-PCR. FEMS Microbiol Ecol 38 : 21 31.[CrossRef]
88. Delbes C,, Moletta R,, Godon JJ. 2000. Monitoring of activity dynamics of an anaerobic digester bacterial community using 16S rRNA polymerase chain reaction-single-strand conformation polymorphism analysis. Environ Microbiol 2 : 506 515.[PubMed][CrossRef]
89. Delbès C,, Moletta R,, Godon JJ. 2001. Bacterial and archaeal 16S rDNA and 16S rRNA dynamics during an acetate crisis in an anaerobic digestor ecosystem. FEMS Microbiol Ecol 35 : 19 26.[PubMed][CrossRef]
90. Fennell DE,, Rhee S-K,, Ahn Y-B,, Häggblom MM,, Kerkhof LJ. 2004. Detection and characterization of a dehalogenating microorganism by terminal restriction fragment length polymorphism fingerprinting of 16S rRNA in a sulfidogenic, 2-bromophenol-utilizing enrichment. Appl Environ Microbiol 70 : 1169 1175.[PubMed][CrossRef]
91. Boschker H,, Middelburg J. 2002. Stable isotopes and biomarkers in microbial ecology. FEMS Microbiol Ecol 40 : 85 95.[PubMed][CrossRef]
92. Boschker H,, Nold S,, Wellsbury P,, Bos D,, De Graaf W,, Pel R,, Parkes R,, Cappenberg T. 1998. Direct linking of microbial populations to specific biogeochemical processes by 13C-labelling of biomarkers. Nature 392 : 801 805.[CrossRef]
93. Dumont MG,, Murrell JC. 2005. Stable isotope probing-linking microbial identity to function. Nat Rev Microbiol 3 : 499 504.[PubMed][CrossRef]
94. Radajewski S,, Ineson P,, Parekh NR,, Murrell JC. 2000. Stable-isotope probing as a tool in microbial ecology. Nature 403 : 646 649.[PubMed][CrossRef]
95. Radajewski S,, Murrell JC. 2002. Stable isotope probing for detection of methanotrophs after enrichment with 13CH 4. Meth. Mol. Biol. 179 : 149 157.
96. Gallagher E,, McGuinness L,, Phelps C,, Young L,, Kerkhof L. 2005. 13C-carrier DNA shortens the incubation time needed to detect benzoate-utilizing denitrifying bacteria by stable-isotope probing. Appl Environ Microbiol 71 : 5192 5196.[PubMed][CrossRef]
97. Singleton DR,, Powell SN,, Sangaiah R,, Gold A,, Ball LM,, Aitken MD. 2005. Stable-isotope probing of bacteria capable of degrading salicylate, naphthalene, or phenanthrene in a bioreactor treating contaminated soil. Appl Environ Microbiol 71 : 1202 1209.[PubMed][CrossRef]
98. Jones MD,, Singleton DR,, Carstensen DP,, Powell SN,, Swanson JS,, Pfaender FK,, Aitken MD. 2008. Effect of incubation conditions on the enrichment of pyrene-degrading bacteria identified by stable-isotope probing in an aged, PAH-contaminated soil. Microbiol Ecol 56 : 341 349.[CrossRef]
99. Jones MD,, Crandell DW,, Singleton DR,, Aitken MD. 2011. Stable-isotope probing of the polycyclic aromatic hydrocarbon-degrading bacterial guild in a contaminated soil. Environ Microbiol 13 : 2623 2632.[PubMed][CrossRef]
100. Bell TH,, Yergeau E,, Martineau C,, Juck D,, Whyte LG,, Greer CW. 2011. Identification of nitrogen-incorporating bacteria in petroleum-contaminated Arctic soils by using 15N DNA-based stable isotope probing and pyrosequencing. Appl Environ Microbiol 77 : 4163 4171.[PubMed][CrossRef]
101. Jones MD,, Singleton DR,, Sun W,, Aitken MD. 2011. Multiple DNA extractions coupled with stable-isotope probing of anthracene-degrading bacteria in contaminated soil. Appl Environ Microbiol 77 : 2984 2991.[PubMed][CrossRef]
102. Winderl C,, Penning H,, von Netzer F,, Meckenstock RU,, Lueders T. 2010. DNA-SIP identifies sulfate-reducing Clostridia as important toluene degraders in tar-oil-contaminated aquifer sediment. ISME J 4 : 1314 1325.[PubMed][CrossRef]
103. Oka A,, Phelps C,, McGuinness L,, Mumford A,, Young L,, Kerkhof L. 2008. Identification of critical members in a sulfidogenic benzene-degrading consortium by DNA stable isotope probing. Appl Environ Microbiol 74 : 6476 6480.[PubMed][CrossRef]
104. Sun WM,, Cupples AM. 2012. Diversity of five anaerobic toluene-degrading microbial communities investigated using stable isotope probing. Appl Environ Microbiol 78 : 972 980.[PubMed][CrossRef]
105. Li M,, Canniffe DP,, Jackson PJ,, Davison PA,, FitzGerald S,, Dickman MJ,, Burgess JG,, Hunter CN,, Huang WE. 2012. Rapid resonance Raman microspectroscopy to probe carbon dioxide fixation by single cells in microbial communities. ISME J 6 : 875 885.[PubMed][CrossRef]
106. Jehmlich N,, Schmidt F,, von Bergen M,, Richnow H-H,, Vogt C. 2008. Protein-based stable isotope probing (Protein-SIP) reveals active species within anoxic mixed cultures. ISME J 2 : 1122 1133.[PubMed][CrossRef]
107. Bombach P,, Chatzinotas A,, Neu TR,, Kästner M,, Lueders T,, Vogt C. 2010. Enrichment and characterization of a sulfate-reducing toluene-degrading microbial consortium by combining in situ microcosms and stable isotope probing techniques. FEMS Microbiol Ecol 71 : 237 246.[PubMed][CrossRef]
108. Kim SJ,, Park SJ,, Cha IT,, Min D,, Kim JS,, Chung WH,, Chae JC,, Jeon CO,, Rhee SK. 2014. Metabolic versatility of toluene-degrading, iron-reducing bacteria in tidal flat sediment, characterized by stable isotope probing-based metagenomic analysis. Environ Microbiol 16 : 189 204.[PubMed][CrossRef]
109. Sun WM,, Sun X,, Cupples AM. 2014. Identification of Desulfosporosinus as toluene-assimilating microorganisms from a methanogenic consortium. Int Biodeterior Biodegrad 88 : 13 19.[CrossRef]
110. Pilloni G,, von Netzer F,, Engel M,, Lueders T. 2011. Electron acceptor-dependent identification of key anaerobic toluene degraders at a tar-oil-contaminated aquifer by Pyro-SIP. FEMS Microbiol Ecol 78 : 165 175.[PubMed][CrossRef]
111. van der Zaan BM,, Saia FT,, Stams AJ,, Plugge CM,, de Vos WM,, Smidt H,, Langenhoff AA,, Gerritse J. 2012. Anaerobic benzene degradation under denitrifying conditions: peptococcaceae as dominant benzene degraders and evidence for a syntrophic process. Environ Microbiol 14 : 1171 1181.[PubMed][CrossRef]
112. Geyer R,, Peacock A,, Miltner A,, Richnow H-H,, White D,, Sublette K,, Kästner M. 2005. In situ assessment of biodegradation potential using biotraps amended with 13C-labeled benzene or toluene. Environ Sci Technol 39 : 4983 4989.[PubMed][CrossRef]
113. Kasai Y,, Takahata Y,, Manefield M,, Watanabe K. 2006. RNA-based stable isotope probing and isolation of anaerobic benzene-degrading bacteria from gasoline-contaminated groundwater. Appl Environ Microbiol 72 : 3586 3592.[PubMed][CrossRef]
114. Kunapuli U,, Lueders T,, Meckenstock RU. 2007. The use of stable isotope probing to identify key iron-reducing microorganisms involved in anaerobic benzene degradation. ISME J 1 : 643 653.[PubMed][CrossRef]
115. Herrmann S,, Kleinsteuber S,, Chatzinotas A,, Kuppardt S,, Lueders T,, Richnow HH,, Vogt C. 2010. Functional characterization of an anaerobic benzene-degrading enrichment culture by DNA stable isotope probing. Environ Microbiol 12 : 401 411.[PubMed][CrossRef]
116. Liou JC,, DeRito C,, Madsen E. 2008. Field-based and laboratory stable isotope probing surveys of the identities of both aerobic and anaerobic benzene-metabolizing microorganisms in freshwater sediment. Environ Microbiol 10 : 1964 1977.[PubMed][CrossRef]
117. Bozinovski D,, Herrmann S,, Richnow HH,, Bergen M,, Seifert J,, Vogt C. 2012. Functional analysis of an anaerobic m-xylene-degrading enrichment culture using protein-based stable isotope probing. FEMS Microbiol Ecol 81 : 134 144.[PubMed][CrossRef]
118. Sueoka K,, Satoh H,, Onuki M,, Mino T. 2009. Microorganisms involved in anaerobic phenol degradation in the treatment of synthetic coke-oven wastewater detected by RNA stable-isotope probing. FEMS Microbiol Lett 291 : 169 174.[PubMed][CrossRef]
119. Gallagher EM,, Young LY,, McGuinness LM,, Kerkhof LJ. 2010. Detection of 2,4,6-trinitrotoluene-utilizing anaerobic bacteria by 15N and 13C incorporation. Appl Environ Microbiol 76 : 1695 1698.[PubMed][CrossRef]
120. Li M,, Huang WE,, Gibson CM,, Fowler PW,, Jousset A. 2013. Stable isotope probing and Raman spectroscopy for monitoring carbon flow in a food chain and revealing metabolic pathway. Anal Chem 85 : 1642 1649.[PubMed][CrossRef]
121. Huang WE,, Stoecker K,, Griffiths R,, Newbold L,, Daims H,, Whiteley AS,, Wagner M. 2007. Raman-FISH: combining stable-isotope Raman spectroscopy and fluorescence in situ hybridization for the single cell analysis of identity and function. Environ Microbiol 9 : 1878 1889.[PubMed][CrossRef]
122. Huang WE,, Ward AD,, Whiteley AS. 2009. Raman tweezers sorting of single microbial cells. Environ Microbiol Rep 1 : 44 49.[PubMed][CrossRef]
123. Beller HR,, Kane SR,, Legler TC,, Alvarez PJ. 2002. A real-time polymerase chain reaction method for monitoring anaerobic, hydrocarbon-degrading bacteria based on a catabolic gene. Environ Sci Technol 36 : 3977 3984.[PubMed][CrossRef]
124. Winderl C,, Schaefer S,, Lueders T. 2007. Detection of anaerobic toluene and hydrocarbon degraders in contaminated aquifers using benzylsuccinate synthase ( bssA) genes as a functional marker. Environ Microbiol 9 : 1035 1046.[PubMed][CrossRef]
125. Callaghan AV,, Davidova IA,, Savage-Ashlock K,, Parisi VA,, Gieg LM,, Suflita JM,, Kukor JJ,, Wawrik B. 2010. Diversity of benzyl-and alkylsuccinate synthase genes in hydrocarbon-impacted environments and enrichment cultures. Environ Sci Technol 44 : 7287 7294.[PubMed][CrossRef]
126. Washer CE,, Edwards EA. 2007. Identification and expression of benzylsuccinate synthase genes in a toluene-degrading methanogenic consortium. Appl Environ Microbiol 73 : 1367 1369.[PubMed][CrossRef]
127. Beller HR,, Kane SR,, Legler TC,, McKelvie JR,, Sherwood Lollar B,, Pearson F,, Balser L,, Mackay DM. 2008. Comparative assessments of benzene, toluene, and xylene natural attenuation by quantitative polymerase chain reaction analysis of a catabolic gene, signature metabolites, and compound-specific isotope analysis. Environ Sci Technol 42 : 6065 6072.[PubMed][CrossRef]
128. Staats M,, Braster M,, Röling WF. 2011. Molecular diversity and distribution of aromatic hydrocarbon-degrading anaerobes across a landfill leachate plume. Environ Microbiol 13 : 1216 1227.[PubMed][CrossRef]
129. Sun WM,, Sun X,, Cupples AM. 2013. Presence, diversity and enumeration of functional genes ( bssA and bamA) relating to toluene degradation across a range of redox conditions and inoculum sources. Biodegradation 25 : 189 203.[PubMed][CrossRef]
130. Kuntze K,, Shinoda Y,, Moutakki H,, McInerney MJ,, Vogt C,, Richnow HH,, Boll M. 2008. 6-Oxocyclohex-1-ene-1-carbonyl-coenzyme A hydrolases from obligately anaerobic bacteria: characterization and identification of its gene as a functional marker for aromatic compounds degrading anaerobes. Environ Microbiol 10 : 1547 1556.[PubMed][CrossRef]
131. Porter AW,, Young LY. 2013. The bamA gene for anaerobic ring fission is widely distributed in the environment. Front Microbiol 4 : 302.[PubMed][CrossRef]
132. Li YN,, Porter A,, Mumford A,, Zhao XH,, Young L. 2012. Bacterial community structure and bamA gene diversity in anaerobic degradation of toluene and benzoate under denitrifying conditions. J Appl Microbiol 112 : 269 279.[PubMed][CrossRef]
133. Hosoda A,, Kasai Y,, Hamamura N,, Takahata Y,, Watanabe K. 2005. Development of a PCR method for the detection and quantification of benzoyl-CoA reductase genes and its application to monitored natural attenuation. Biodegradation 16 : 591 601.[PubMed][CrossRef]
134. Song B,, Ward BB. 2005. Genetic diversity of benzoyl coenzyme A reductase genes detected in denitrifying isolates and estuarine sediment communities. Appl Environ Microbiol 71 : 2036 2045.[PubMed][CrossRef]
135. Löffler C,, Kuntze K,, Vazquez JR,, Rugor A,, Kung JW,, Böttcher A,, Boll M. 2011. Occurrence, genes and expression of the W/Se-containing class II benzoyl-coenzyme A reductases in anaerobic bacteria. Environ Microbiol 13 : 696 709.[PubMed][CrossRef]
136. Kuntze K,, Vogt C,, Richnow H-H,, Boll M. 2011. Combined application of PCR-based functional assays for the detection of aromatic-compound-degrading anaerobes. Appl Environ Microbiol 77 : 5056 5061.[PubMed][CrossRef]
137. Benninghoven A,, Rüdenauer FG,, Werner HW. 1987. Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications, and Trends. John Wiley and Sons, New York.
138. Herrmann AM,, Ritz K,, Nunan N,, Clode PL,, Pett-Ridge J,, Kilburn MR,, Murphy DV,, O'Donnell AG,, Stockdale EA. 2007. Nano-scale secondary ion mass spectrometry-a new analytical tool in biogeochemistry and soil ecology: a review article. Soil Biol Biochem 39 : 1835 1850.[CrossRef]
139. Pett-Ridge J,, Weber PK. 2012. NanoSIP: NanoSIMS applications for microbial biology. Meth Mol Biol 881 : 375 408.[CrossRef]
140. Kuypers MM. 2007. Sizing up the uncultivated majority. Science 317 : 1510 1511.[PubMed][CrossRef]
141. Li T,, Wu TD,, Mazéas L,, Toffin L,, Guerquin-Kern JL,, Leblon G,, Bouchez T. 2008. Simultaneous analysis of microbial identity and function using NanoSIMS. Environ Microbiol 10 : 580 588.[PubMed][CrossRef]
142. Wagner M. 2009. Single-cell ecophysiology of microbes as revealed by Raman microspectroscopy or secondary ion mass spectrometry imaging. Annu Rev Microbiol 63 : 411 429.[PubMed][CrossRef]
143. Musat N,, Foster R,, Vagner T,, Adam B,, Kuypers MM. 2012. Detecting metabolic activities in single cells, with emphasis on nanoSIMS. FEMS Microbiol Rev 36 : 486 511.[PubMed][CrossRef]
144. Foster RA,, Sztejrenszus S,, Kuypers MMM. 2013. Measuring carbon and N 2 fixation in field populations of colonial and free-living unicellular cyanobacteria using nanometer-scale secondary ion mass spectrometry. J Phycol 49 : 502 516.[CrossRef]
145. Morono Y,, Terada T,, Nishizawa M,, Ito M,, Hillion F,, Takahata N,, Sano Y,, Inagaki F. 2011. Carbon and nitrogen assimilation in deep subseafloor microbial cells. Proc Natl Acad Sci USA 108 : 18295 18300.[PubMed][CrossRef]
146. Ploug H,, Adam B,, Musat N,, Kalvelage T,, Lavik G,, Wolf-Gladrow D,, Kuypers MMM. 2011. Carbon, nitrogen and O 2 fluxes associated with the cyanobacterium Nodularia spumigena in the Baltic Sea. ISME J 5 : 1549 1558.[PubMed][CrossRef]
147. Ploug H,, Musat N,, Adam B,, Moraru CL,, Lavik G,, Vagner T,, Bergman B,, Kuypers MMM. 2010. Carbon and nitrogen fluxes associated with the cyanobacterium Aphanizomenon sp. in the Baltic Sea. ISME J 4 : 1215 1223.[PubMed][CrossRef]
148. Dekas AE,, Poretsky RS,, Orphan VJ. 2009. Deep-sea archaea fix and share nitrogen in methane-consuming microbial consortia. Science 326 : 422 426.[PubMed][CrossRef]
149. Halm H,, Musat N,, Lam P,, Langlois R,, Musat F,, Peduzzi S,, Lavik G,, Schubert CJ,, Sinha B,, LaRoche J,, Kuypers MMM. 2009. Co-occurrence of denitrification and nitrogen fixation in a meromictic lake, Lake Cadagno (Switzerland). Environ Microbiol 11 : 1945 1958.[PubMed][CrossRef]
150. Finzi-Hart JA,, Pett-Ridge J,, Weber PK,, Popa R,, Fallon SJ,, Gunderson T,, Hutcheon ID,, Nealson KH,, Capone DG. 2009. Fixation and fate of C and N in the cyanobacterium Trichodesmium using nanometer-scale secondary ion mass spectrometry (vol 106, pg 6345, 2009). Proc Natl Acad Sci USA 106 : 9931 9931.[CrossRef]
151. Popa R,, Weber PK,, Pett-Ridge J,, Finzi JA,, Fallon SJ,, Hutcheon ID,, Nealson KH,, Capone DG. 2007. Carbon and nitrogen fixation and metabolite exchange in and between individual cells of Anabaena oscillarioides. ISME J 1 : 354 360.[PubMed]
152. Eybe T,, Audinot JN,, Bohn T,, Guignard C,, Migeon HN,, Hoffmann L. 2008. NanoSIMS 50 elucidation of the natural element composition in structures of cyanobacteria and their exposure to halogen compounds. J Appl Microbiol 105 : 1502 1510.[PubMed][CrossRef]
153. Jaekel U,, Musat N,, Adam B,, Kuypers M,, Grundmann O,, Musat F. 2013. Anaerobic degradation of propane and butane by sulfate-reducing bacteria enriched from marine hydrocarbon cold seeps. ISME J 7 : 885 895.[PubMed][CrossRef]
154. Morales SE,, Holben WE. 2011. Linking bacterial identities and ecosystem processes: can “omic” analyses be more than the sum of their parts? FEMS Microbiol Ecol 75 : 2 16.[PubMed][CrossRef]
155. Siggins A,, Gunnigle E,, Abram F. 2012. Exploring mixed microbial community functioning: recent advances in metaproteomics. FEMS Microbiol Ecol 80 : 265 280.[PubMed][CrossRef]
156. Zhang W,, Li F,, Nie L. 2010. Integrating multiple “omics” analysis for microbial biology: application and methodologies. Microbiology 156 : 287 301.[PubMed][CrossRef]
157. Hug LA,, Beiko RG,, Rowe AR,, Richardson RE,, Edwards EA. 2012. Comparative metagenomics of three Dehalococcoides-containing enrichment cultures: the role of the non-dechlorinating community. BMC Genomics 13 : 327.[PubMed][CrossRef]
158. Rochfort S. 2005. Metabolomics reviewed: a new “omics” platform technology for systems biology and implications for natural products research. J Nat Prod 68 : 1813 1820.[PubMed][CrossRef]
159. Xu J. 2006. Invited review: microbial ecology in the age of genomics and metagenomics: concepts, tools, and recent advances. Mol Ecol 15 : 1713 1731.[PubMed][CrossRef]
160. Bundy JG,, Davey MP,, Viant MR. 2009. Environmental metabolomics: a critical review and future perspectives. Metabolomics 5 : 3 21.[CrossRef]
161. Vilchez-Vargas R,, Junca H,, Pieper DH. 2010. Metabolic networks, microbial ecology and “omics” technologies: towards understanding in situ biodegradation processes. Environ Microbiol 12 : 3089 3104.[PubMed][CrossRef]
162. de Menezes A,, Clipson N,, Doyle E. 2012. Comparative metatranscriptomics reveals widespread community responses during phenanthrene degradation in soil. Environ Microbiol 14 : 2577 2588.[PubMed][CrossRef]
163. Mason OU,, Hazen TC,, Borglin S,, Chain PS,, Dubinsky EA,, Fortney JL,, Han J,, Holman H-YN,, Hultman J,, Lamendella R. 2012. Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to Deepwater Horizon oil spill. ISME J 6 : 1715 1727.[PubMed][CrossRef]
164. Morris R,, Fung J,, Rahm B,, Zhang S,, Freedman D,, Zinder S,, Richardson R. 2007. Comparative proteomics of Dehalococcoides spp. reveals strain-specific peptides associated with activity. Appl Environ Microbiol 73 : 320 326.[PubMed][CrossRef]
165. Schiffmann CL,, Jehmlich N,, Otto W,, Hansen R,, Nielsen PH,, Adrian L,, Seifert J,, von Bergen M. 2014. Proteome profile and proteogenomics of the organohalide-respiring bacterium Dehalococcoides mccartyi strain CBDB1 grown on hexachlorobenzene as electron acceptor. J Proteomics 98 : 59 64.[PubMed][CrossRef]
166. Chen Y,, Murrell JC. 2010. When metagenomics meets stable-isotope probing: progress and perspectives. Trends Microbiol 18 : 157 163.[PubMed][CrossRef]
167. Lee PK,, Warnecke F,, Brodie EL,, Macbeth TW,, Conrad ME,, Andersen GL,, Alvarez-Cohen L. 2011. Phylogenetic microarray analysis of a microbial community performing reductive dechlorination at a TCE-contaminated site. Environ Sci Technol 46 : 1044 1054.[PubMed][CrossRef]
168. He Z,, Gentry TJ,, Schadt CW,, Wu L,, Liebich J,, Chong SC,, Huang Z,, Wu W,, Gu B,, Jardine P. 2007. GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes. ISME J 1 : 67 77.[PubMed][CrossRef]
169. Liang Y,, Van Nostrand JD,, Deng Y,, He Z,, Wu L,, Zhang X,, Li G,, Zhou J. 2011. Functional gene diversity of soil microbial communities from five oil-contaminated fields in China. ISME J 5 : 403 413.[PubMed][CrossRef]


Generic image for table

Examples of studies describing degradation/transformation of aromatic compounds by anaerobic enrichment cultures.

Citation: Sun W, Krumins V, Fennell D, Kerkhof L, Häggblom M. 2016. Anaerobic Degradation of Aromatic Compounds, p 5.1.3-1-5.1.3-14. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch5.1.3
Generic image for table

Examples of studies using stable isotope probing to identify anaerobic microorganisms that degrade aromatic compounds

Citation: Sun W, Krumins V, Fennell D, Kerkhof L, Häggblom M. 2016. Anaerobic Degradation of Aromatic Compounds, p 5.1.3-1-5.1.3-14. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch5.1.3
Generic image for table

Detection of functional genes associated with anaerobic degradation of aromatic compounds

Citation: Sun W, Krumins V, Fennell D, Kerkhof L, Häggblom M. 2016. Anaerobic Degradation of Aromatic Compounds, p 5.1.3-1-5.1.3-14. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818821.ch5.1.3

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error