Chapter 18 : Genetics of Mycobacterial Trehalose Metabolism

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Genetics of Mycobacterial Trehalose Metabolism, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818845/9781555818838_Chap18-1.gif /docserver/preview/fulltext/10.1128/9781555818845/9781555818838_Chap18-2.gif


Trehalose is a natural nonreducing glucose disaccharide comprising an α,α-1,1-glycosidic linkage [α--glucopyranosyl-(1→1)-α--glucopyranoside]. The discovery of trehalose is credited to H. A. L. Wiggers (1832), who isolated a nonreducing sugar-like substance from the ergot fungus () of rye. Later this sugar was chemically characterized by Mitscherlich (1857), who termed it “mycose.” About the same time (1858), the French chemist M. Berthelot isolated and characterized a sugar substance from “trehala manna,” the sweet-tasting cocoon from the lepidopterous beetle , and coined the term “trehalose.” In 1876, M. A. Müntz found that trehalose and mycose were identical (see reference for an overview of the historical perspective). Since then, it has become clear that trehalose is a truly ubiquitous molecule that is synthesized by many different organisms including bacteria, yeasts, fungi, plants, and invertebrates. In the early days, trehalose was believed to exclusively serve as a carbon storage compound. Trehalose is nontoxic and, thus, accumulation to high intracellular concentrations is well tolerated. From this depot, glucose can rapidly be mobilized by hydrolysis mediated by the enzyme trehalase.

Citation: Kalscheuer R, Koliwer-brandl H. 2014. Genetics of Mycobacterial Trehalose Metabolism, p 361-375. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0002-2013
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Trehalose biosynthesis pathways in mycobacteria. Trehalose is synthesized either from glycolytic intermediates via the OtsA-OtsB pathway or from alpha-glucans via the TreY-TreZ pathway. UDP-glucose is formed from glucose-1-phosphate by the UTP-glucose-1-phosphate uridylyltransferase GalU (not depicted). This reaction, however, is not specific for trehalose biosynthesis.

Citation: Kalscheuer R, Koliwer-brandl H. 2014. Genetics of Mycobacterial Trehalose Metabolism, p 361-375. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0002-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Structure of the cord factor trehalose-6,6′-dimycolate. In this example, cyclopropanated alpha- and ketomycolates are illustrated.

Citation: Kalscheuer R, Koliwer-brandl H. 2014. Genetics of Mycobacterial Trehalose Metabolism, p 361-375. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0002-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Biosynthesis of the major sulfolipid SL-1 and of polyacyltrehalose (PAT). The synthesis of SL-1 and PAT is initiated by sulfation or acylation, respectively, at the 2-position of trehalose. The proposed reaction steps are depicted. Molecular organization of the SL-1 and PAT biosynthesis gene clusters in .

Citation: Kalscheuer R, Koliwer-brandl H. 2014. Genetics of Mycobacterial Trehalose Metabolism, p 361-375. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0002-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Model of trehalose as a carrier molecule for mycolic acids in the fomation of the mycobacterial cell wall. Mycolic acids synthesized in the cytoplasm are first conjugated to trehalose and then exported as TMM via the transporter MmpL3. Extracellularly, TMM serves as the substrate of the antigen 85 complex comprising the mycolyltransferases FbpA-C, which transfer the mycolate moiety either to the arabinogalactan layer or to another TMM molecule, yielding cell-wall-bound mycolates or TDM, respectively. The released trehalose moiety of TMM is recycled by the ABC transporter LpqY-SugABC. A putative porin might facilitate transport across the mycomembrane for uptake of exogenous trehalose.

Citation: Kalscheuer R, Koliwer-brandl H. 2014. Genetics of Mycobacterial Trehalose Metabolism, p 361-375. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0002-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Conversion of trehalose to alpha-glucans. Trehalose is reversibly interconverted by the trehalose synthase TreS to α-maltose, which is subsequently phosphorylated to α-maltose-1-phosphate by the maltokinase Pep2. Maltose-1-phosphate serves as the activated donor substrate for the maltosyltransferase GlgE producing linear α-1,4-glucans by elongating the nonreducing end of an α-glucan acceptor molecule. Finally, the branching enzyme GlgB introduces α-1,6-linked branches into the linear molecule.

Citation: Kalscheuer R, Koliwer-brandl H. 2014. Genetics of Mycobacterial Trehalose Metabolism, p 361-375. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0002-2013
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Harding TS . 1923. History of trehalose, its discovery and methods of preparation. Sugar 25 : 476 478.
2. Arguelles JC . 2000. Physiological roles of trehalose in bacteria and yeasts: a comparative analysis. Arch Microbiol 174 : 217 224.[PubMed][CrossRef]
3. Elbein AD,, Pan YT,, Pastuszak I,, Carroll D . 2003. New insights on trehalose: a multifunctional molecule. Glycobiology 13 : 17R 27R.[PubMed][CrossRef]
4. Jain NK,, Roy I . 2009. Effect of trehalose on protein structure. Protein Sci 18 : 24 36.[PubMed]
5. Paul MJ,, Primavesi LF,, Jhurreea D,, Zhang Y . 2008. Trehalose metabolism and signaling. Annu Rev Plant Biol 59 : 417 441.[PubMed][CrossRef]
6. Vanin S,, Bubacco L,, Beltramini M . 2008. Seasonal variation of trehalose and glycerol concentrations in winter snow-active insects. Cryo Lett 29 : 485 491.
7. Elbein AD,, Mitchell M . 1973. Levels of glycogen and trehalose in Mycobacterium smegmatis and the purification and properties of the glycogen synthetase. J Bacteriol 113 : 863 873.[PubMed]
8. Murphy HN,, Stewart GR,, Mischenko VV,, Apt AS,, Harris R,, McAlister MS,, Driscoll PC,, Young DB,, Robertson DB . 2005. The OtsAB pathway is essential for trehalose biosynthesis in Mycobacterium tuberculosis. J Biol Chem 280 : 14524 14529.[PubMed][CrossRef]
9. Woodruff PJ,, Carlson BL,, Siridechadilok B,, Pratt MR,, Senaratne RH,, Mougous JD,, Riley LW,, Williams SJ,, Bertozzi CR . 2004. Trehalose is required for growth of Mycobacterium smegmatis. J Biol Chem 279 : 28835 28843.[PubMed][CrossRef]
10. Ofer N,, Wishkautzan M,, Meijler M,, Wang Y,, Speer A,, Niederweis M,, Gur E . 2012. Ectoine biosynthesis in Mycobacterium smegmatis. Appl Environ Microbiol 78 : 7483 7486.[PubMed][CrossRef]
11. Avonce N,, Mendoza-Vargas A,, Morett E,, Iturriaga G . 2006. Insights on the evolution of trehalose biosynthesis. BMC Evol Biol 6 : 109. [PubMed][CrossRef]
12. Zaparty M,, Tjaden B,, Hensel R,, Siebers B . 2008. The central carbohydrate metabolism of the hyperthermophilic crenarchaeote Thermoproteus tenax: pathways and insights into their regulation. Arch Microbiol 190 : 231 245.[PubMed][CrossRef]
13. Eis C,, Nidetzky B . 1999. Characterization of trehalose phosphorylase from Schizophyllum commune. Biochem J 341( Pt 2) : 385 393.[PubMed][CrossRef]
14. Eis C,, Watkins M,, Prohaska T,, Nidetzky B . 2001. Fungal trehalose phosphorylase: kinetic mechanism, pH-dependence of the reaction and some structural properties of the enzyme from Schizophyllum commune. Biochem J 356 : 757 767.[PubMed][CrossRef]
15. Wannet WJ,, Aben EM,, van der Drift C,, Van Griensven LJ,, Vogels GD,, Op den Camp HJ . 1999. Trehalose phosphorylase activity and carbohydrate levels during axenic fruiting in three Agaricus bisporus strains. Curr Microbiol 39 : 205 210.[PubMed][CrossRef]
16. Wannet WJ,, Op den Camp HJ,, Wisselink HW,, van der Drift C,, Van Griensven LJ,, Vogels GD . 1998. Purification and characterization of trehalose phosphorylase from the commercial mushroom Agaricus bisporus. Biochim Biophys Acta 1425 : 177 188.[PubMed][CrossRef]
17. Belocopitow E,, Marechal LR . 1970. Trehalose phosphorylase from Euglena gracilis. Biochim Biophys Acta 198 : 151 154.[PubMed][CrossRef]
18. Maruta K,, Mitsuzumi H,, Nakada T,, Kubota M,, Chaen H,, Fukuda S,, Sugimoto T,, Kurimoto M . 1996. Cloning and sequencing of a cluster of genes encoding novel enzymes of trehalose biosynthesis from thermophilic archaebacterium Sulfolobus acidocaldarius. Biochim Biophys Acta 1291 : 177 181.[PubMed][CrossRef]
19. Nishimoto T,, Nakano M,, Nakada T,, Chaen H,, Fukuda S,, Sugimoto T,, Kurimoto M,, Tsujisaka Y . 1996. Purification and properties of a novel enzyme, trehalose synthase, from Pimelobacter sp. R48. Biosci Biotechnol Biochem 60 : 640 644.[PubMed][CrossRef]
20. Tsusaki K,, Nishimoto T,, Nakada T,, Kubota M,, Chaen H,, Sugimoto T,, Kurimoto M . 1996. Cloning and sequencing of trehalose synthase gene from Pimelobacter sp. R48. Biochim Biophys Acta 1290 : 1 3.[PubMed][CrossRef]
21. Qu Q,, Lee SJ,, Boos W . 2004. TreT, a novel trehalose glycosyltransferring synthase of the hyperthermophilic archaeon Thermococcus litoralis. J Biol Chem 279 : 47890 47897.[PubMed][CrossRef]
22. De Smet KA,, Weston A,, Brown IN,, Young DB,, Robertson BD . 2000. Three pathways for trehalose biosynthesis in mycobacteria. Microbiology 146( Pt 1) : 199 208.[PubMed]
23. Kalscheuer R,, Syson K,, Veeraraghavan U,, Weinrick B,, Biermann KE,, Liu Z,, Sacchettini JC,, Besra G,, Bornemann S,, Jacobs WR Jr . 2010. Self-poisoning of Mycobacterium tuberculosis by targeting GlgE in an alpha-glucan pathway. Nat Chem Biol 6 : 376 384.[PubMed][CrossRef]
24. Miah F,, Koliwer-Brandl H,, Rejzek M,, Field RA,, Kalscheuer R,, Bornemann S . 2013. Flux through trehalose synthase flows from trehalose to the alpha anomer of maltose in mycobacteria. Chem Biol 20 : 487 493.[PubMed][CrossRef]
25. Chandra G,, Chater KF,, Bornemann S . 2011. Unexpected and widespread connections between bacterial glycogen and trehalose metabolism. Microbiology 157 : 1565 1572.[PubMed][CrossRef]
26. Syson K,, Stevenson CE,, Rejzek M,, Fairhurst SA,, Nair A,, Bruton CJ,, Field RA,, Chater KF,, Lawson DM,, Bornemann S . 2011. Structure of Streptomyces maltosyltransferase GlgE, a homologue of a genetically validated anti-tuberculosis target. J Biol Chem 286 : 38298 38310.[PubMed][CrossRef]
27. Mendes V,, Maranha A,, Lamosa P,, da Costa MS,, Empadinhas N . 2010. Biochemical characterization of the maltokinase from Mycobacterium bovis BCG. BMC Biochem 11 : 21. [PubMed][CrossRef]
28. Tzvetkov M,, Klopprogge C,, Zelder O,, Liebl W . 2003. Genetic dissection of trehalose biosynthesis in Corynebacterium glutamicum: inactivation of trehalose production leads to impaired growth and an altered cell wall lipid composition. Microbiology 149 : 1659 1673.[PubMed][CrossRef]
29. Wolf A,, Kramer R,, Morbach S . 2003. Three pathways for trehalose metabolism in Corynebacterium glutamicum ATCC13032 and their significance in response to osmotic stress. Mol Microbiol 49 : 1119 1134.[PubMed][CrossRef]
30. Kalscheuer R,, Weinrick B,, Veeraraghavan V,, Besra GS,, Jacobs WR Jr . 2010. Trehalose-recycling ABC transporter LpqY-SugA-SugB-SugC is essential for virulence of Mycobacterium tuberculosis. Proc Natl Acad Sci USA 107 : 21761 21766.[PubMed][CrossRef]
31. Carroll JD,, Pastuszak I,, Edavana VK,, Pan YT,, Elbein AD . 2007. A novel trehalase from Mycobacterium smegmatis: purification, properties, requirements. FEBS J 274 : 1701 1714.[PubMed][CrossRef]
32. Swarts BM,, Holsclaw CM,, Jewett JC,, Alber M,, Fox DM,, Siegrist MS,, Leary JA,, Kalscheuer R,, Bertozzi CR . 2012. Probing the mycobacterial trehalome with bioorthogonal chemistry. J Am Chem Soc 134 : 16123 16126.[PubMed][CrossRef]
33. Middlebrook G,, Dubos RJ,, Pierce C . 1947. Virulence and morphological characteristics of mammalian tubercle bacilli. J Exp Med 86 : 175 184.[PubMed][CrossRef]
34. Noll H,, Bloch H,, Asselineau J,, Lederer E . 1956. The chemical structure of the cord factor of Mycobacterium tuberculosis. Biochim Biophys Acta 20 : 299 309.[PubMed][CrossRef]
35. Hoffmann C,, Leis A,, Niederweis M,, Plitzko JM,, Engelhardt H . 2008. Disclosure of the mycobacterial outer membrane: cryo-electron tomography and vitreous sections reveal the lipid bilayer structure. Proc Natl Acad Sci USA 105 : 3963 3967.[PubMed][CrossRef]
36. Zuber B,, Chami M,, Houssin C,, Dubochet J,, Griffiths G,, Daffe M . 2008. Direct visualization of the outer membrane of mycobacteria and corynebacteria in their native state. J Bacteriol 190 : 5672 5680.[PubMed][CrossRef]
37. Besra GS,, Sievert T,, Lee R,, Slayden RA,, Brennan PJ,, Takayama K . 1994. Identification of the apparent carrier in mycolic acid synthesis. Proc Natl Acad Sci USA 91 : 12735 12739.[PubMed][CrossRef]
38. Takayama K,, Wang C,, Besra GS . 2005. Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. Clin Microbiol Rev 18 : 81 101.[PubMed][CrossRef]
39. Tahlan K,, Wilson R,, Kastrinsky DB,, Arora K,, Nair V,, Fischer E,, Barnes SW,, Walker JR,, Alland D,, Barry CE 3rd,, Boshoff HI . 2012. SQ109 targets MmpL3, a membrane transporter of trehalose monomycolate involved in mycolic acid donation to the cell wall core of Mycobacterium tuberculosis. Antimicrob Agents Chemother 56 : 1797 1809.[PubMed][CrossRef]
40. Grzegorzewicz AE,, Pham H,, Gundi VA,, Scherman MS,, North EJ,, Hess T,, Jones V,, Gruppo V,, Born SE,, Kordulakova J,, Chavadi SS,, Morisseau C,, Lenaerts AJ,, Lee RE,, McNeil MR,, Jackson M . 2012. Inhibition of mycolic acid transport across the Mycobacterium tuberculosis plasma membrane. Nat Chem Biol 8 : 334 341.[PubMed][CrossRef]
41. Varela C,, Rittmann D,, Singh A,, Krumbach K,, Bhatt K,, Eggeling L,, Besra GS,, Bhatt A . 2012. MmpL genes are associated with mycolic acid metabolism in mycobacteria and corynebacteria. Chem Biol 19 : 498 506.
42. Belisle JT,, Vissa VD,, Sievert T,, Takayama K,, Brennan PJ,, Besra GS . 1997. Role of the major antigen of Mycobacterium tuberculosis in cell wall biogenesis. Science 276 : 1420 1422.[PubMed][CrossRef]
43. Puech V,, Guilhot C,, Perez E,, Tropis M,, Armitige LY,, Gicquel B,, Daffe M . 2002. Evidence for a partial redundancy of the fibronectin-binding proteins for the transfer of mycoloyl residues onto the cell wall arabinogalactan termini of Mycobacterium tuberculosis. Mol Microbiol 44 : 1109 1122.[PubMed][CrossRef]
44. Wiker HG,, Harboe M . 1992. The antigen 85 complex: a major secretion product of Mycobacterium tuberculosis. Microbiol Rev 56 : 648 661.[PubMed]
45. Jackson M,, Raynaud C,, Laneelle MA,, Guilhot C,, Laurent-Winter C,, Ensergueix D,, Gicquel B,, Daffe M . 1999. Inactivation of the antigen 85C gene profoundly affects the mycolate content and alters the permeability of the Mycobacterium tuberculosis cell envelope. Mol Microbiol 31 : 1573 1587.[PubMed][CrossRef]
46. Armitige LY,, Jagannath C,, Wanger AR,, Norris SJ . 2000. Disruption of the genes encoding antigen 85A and antigen 85B of Mycobacterium tuberculosis H37Rv: effect on growth in culture and in macrophages. Infect Immun 68 : 767 778.[PubMed][CrossRef]
47. Mougous JD,, Petzold CJ,, Senaratne RH,, Lee DH,, Akey DL,, Lin FL,, Munchel SE,, Pratt MR,, Riley LW,, Leary JA,, Berger JM,, Bertozzi CR . 2004. Identification, function and structure of the mycobacterial sulfotransferase that initiates sulfolipid-1 biosynthesis. Nat Struct Mol Biol 11 : 721 729.[PubMed][CrossRef]
48. Kumar P,, Schelle MW,, Jain M,, Lin FL,, Petzold CJ,, Leavell MD,, Leary JA,, Cox JS,, Bertozzi CR . 2007. PapA1 and PapA2 are acyltransferases essential for the biosynthesis of the Mycobacterium tuberculosis virulence factor sulfolipid-1. Proc Natl Acad Sci USA 104 : 11221 11226.[PubMed][CrossRef]
49. Sirakova TD,, Thirumala AK,, Dubey VS,, Sprecher H,, Kolattukudy PE . 2001. The Mycobacterium tuberculosis pks2 gene encodes the synthase for the hepta- and octamethyl-branched fatty acids required for sulfolipid synthesis. J Biol Chem 276 : 16833 16839.[PubMed][CrossRef]
50. Seeliger JC,, Holsclaw CM,, Schelle MW,, Botyanszki Z,, Gilmore SA,, Tully SE,, Niederweis M,, Cravatt BF,, Leary JA,, Bertozzi CR . 2012. Elucidation and chemical modulation of sulfolipid-1 biosynthesis in Mycobacterium tuberculosis. J Biol Chem 287 : 7990 8000.[PubMed][CrossRef]
51. Converse SE,, Mougous JD,, Leavell MD,, Leary JA,, Bertozzi CR,, Cox JS . 2003. MmpL8 is required for sulfolipid-1 biosynthesis and Mycobacterium tuberculosis virulence. Proc Natl Acad Sci USA 100 : 6121 6126.[PubMed][CrossRef]
52. Rousseau C,, Turner OC,, Rush E,, Bordat Y,, Sirakova TD,, Kolattukudy PE,, Ritter S,, Orme IM,, Gicquel B,, Jackson M . 2003. Sulfolipid deficiency does not affect the virulence of Mycobacterium tuberculosis H37Rv in mice and guinea pigs. Infect Immun 71 : 4684 4690.[PubMed][CrossRef]
53. Domenech P,, Reed MB,, Dowd CS,, Manca C,, Kaplan G,, Barry CE 3rd . 2004. The role of MmpL8 in sulfatide biogenesis and virulence of Mycobacterium tuberculosis. J Biol Chem 279 : 21257 21265.[PubMed][CrossRef]
54. Lemassu A,, Laneelle MS,, Daffe M . 1991. Revised structure of a trehalose-containing immunoreactive glycolipid of Mycobacterium tuberculosis. FEMS Microbiol Lett 62 : 171 175.[PubMed][CrossRef]
55. Besra GS,, Bolton RC,, McNeil MR,, Ridell M,, Simpson KE,, Glushka J,, van Halbeek H,, Brennan PJ,, Minnikin DE . 1992. Structural elucidation of a novel family of acyltrehaloses from Mycobacterium tuberculosis. Biochemistry 31 : 9832 9837.[PubMed][CrossRef]
56. Munoz M,, Laneelle MA,, Luquin M,, Torrelles J,, Julian E,, Ausina V,, Daffe M . 1997. Occurrence of an antigenic triacyl trehalose in clinical isolates and reference strains of Mycobacterium tuberculosis. FEMS Microbiol Lett 157 : 251 259.[PubMed][CrossRef]
57. Minnikin DE,, Dobson G,, Sesardic D,, Ridell M . 1985. Mycolipenates and mycolipanolates of trehalose from Mycobacterium tuberculosis. J Gen Microbiol 131 : 1369 1374.[PubMed]
58. Daffe M,, Lacave C,, Laneelle MA,, Gillois M,, Laneelle G . 1988. Polyphthienoyl trehalose, glycolipids specific for virulent strains of the tubercle bacillus. Eur J Biochem 172 : 579 584.[PubMed][CrossRef]
59. Hatzios SK,, Schelle MW,, Holsclaw CM,, Behrens CR,, Botyanszki Z,, Lin FL,, Carlson BL,, Kumar P,, Leary JA,, Bertozzi CR . 2009. PapA3 is an acyltransferase required for polyacyltrehalose biosynthesis in Mycobacterium tuberculosis. J Biol Chem 284 : 12745 12751.[PubMed][CrossRef]
60. Dubey VS,, Sirakova TS,, Kolattukudy PE . 2002. Disruption of msl3 abolishes the synthesis of mycolipanoic and mycolipenic acids required for polyacyltrehalose synthesis in Mycobacterium tuberculosis H37Rv and causes cell aggregation. Mol Microbiol 45 : 1451 1459.[PubMed][CrossRef]
61. Domenech P,, Reed MB,, Barry CE 3rd . 2005. Contribution of the Mycobacterium tuberculosis MmpL protein family to virulence and drug resistance. Infect Immun 73 : 3492 3501.[PubMed][CrossRef]
62. Brodin P,, Poquet Y,, Levillain F,, Peguillet I,, Larrouy-Maumus G,, Gilleron M,, Ewann F,, Christophe T,, Fenistein D,, Jang J,, Jang MS,, Park SJ,, Rauzier J,, Carralot JP,, Shrimpton R,, Genovesio A,, Gonzalo-Asensio JA,, Puzo G,, Martin C,, Brosch R,, Stewart GR,, Gicquel B,, Neyrolles O . 2010. High content phenotypic cell-based visual screen identifies Mycobacterium tuberculosis acyltrehalose-containing glycolipids involved in phagosome remodeling. PLoS Pathog 6 : e1001100. [PubMed][CrossRef]
63. Ren H,, Dover LG,, Islam ST,, Alexander DC,, Chen JM,, Besra GS,, Liu J . 2007. Identification of the lipooligosaccharide biosynthetic gene cluster from Mycobacterium marinum. Mol Microbiol 63 : 1345 1359.[PubMed][CrossRef]
64. Hunter SW,, Jardine I,, Yanagihara DL,, Brennan PJ . 1985. Trehalose-containing lipooligosaccharides from mycobacteria: structures of the oligosaccharide segments and recognition of a unique N-acylkanosamine-containing epitope. Biochemistry 24 : 2798 2805.[PubMed][CrossRef]
65. Gilleron M,, Puzo G . 1995. Lipooligosaccharidic antigens from Mycobacterium kansasii and Mycobacterium gastri. Glycoconj J 12 : 298 308.[PubMed][CrossRef]
66. Hunter SW,, Murphy RC,, Clay K,, Goren MB,, Brennan PJ . 1983. Trehalose-containing lipooligosaccharides. A new class of species-specific antigens from Mycobacterium. J Biol Chem 258 : 10481 10487.[PubMed]
67. Burguiere A,, Hitchen PG,, Dover LG,, Kremer L,, Ridell M,, Alexander DC,, Liu J,, Morris HR,, Minnikin DE,, Dell A,, Besra GS . 2005. LosA, a key glycosyltransferase involved in the biosynthesis of a novel family of glycosylated acyltrehalose lipooligosaccharides from Mycobacterium marinum. J Biol Chem 280 : 42124 42133.[PubMed][CrossRef]
68. Daffe M,, McNeil M,, Brennan PJ . 1991. Novel type-specific lipooligosaccharides from Mycobacterium tuberculosis. Biochemistry 30 : 378 388.[PubMed][CrossRef]
69. van Soolingen D,, Hoogenboezem T,, de Haas PE,, Hermans PW,, Koedam MS,, Teppema KS,, Brennan PJ,, Besra GS,, Portaels F,, Top J,, Schouls LM,, van Embden JD . 1997. A novel pathogenic taxon of the Mycobacterium tuberculosis complex, Canetti: characterization of an exceptional isolate from Africa. Int J Syst Bacteriol 47 : 1236 1245.[PubMed][CrossRef]
70. Sarkar D,, Sidhu M,, Singh A,, Chen J,, Lammas DA,, van der Sar AM,, Besra GS,, Bhatt A . 2011. Identification of a glycosyltransferase from Mycobacterium marinum involved in addition of a caryophyllose moiety in lipooligosaccharides. J Bacteriol 193 : 2336 2340.[PubMed][CrossRef]
71. Pan YT,, Carroll JD,, Asano N,, Pastuszak I,, Edavana VK,, Elbein AD . 2008. Trehalose synthase converts glycogen to trehalose. FEBS J 275 : 3408 3420.[PubMed][CrossRef]
72. Leiba J,, Syson K,, Baronian G,, Zanella-Cleon I,, Kalscheuer R,, Kremer L,, Bornemann S,, Molle V . 2013. Mycobacterium tuberculosis maltosyltransferase GlgE, a genetically validated antituberculosis target, is negatively regulated by Ser/Thr phosphorylation. J Biol Chem 288 : 16546 16556.[PubMed][CrossRef]
73. Dinadayala P,, Sambou T,, Daffe M,, Lemassu A . 2008. Comparative structural analyses of the alpha-glucan and glycogen from Mycobacterium bovis. Glycobiology 18 : 502 508.[PubMed][CrossRef]
74. Sambou T,, Dinadayala P,, Stadthagen G,, Barilone N,, Bordat Y,, Constant P,, Levillain F,, Neyrolles O,, Gicquel B,, Lemassu A,, Daffe M,, Jackson M . 2008. Capsular glucan and intracellular glycogen of Mycobacterium tuberculosis: biosynthesis and impact on the persistence in mice. Mol Microbiol 70 : 762 774.[PubMed][CrossRef]
75. Sani M,, Houben EN,, Geurtsen J,, Pierson J,, de Punder K,, van Zon M,, Wever B,, Piersma SR,, Jimenez CR,, Daffe M,, Appelmelk BJ,, Bitter W,, van der Wel N,, Peters PJ . 2010. Direct visualization by cryo-EM of the mycobacterial capsular layer: a labile structure containing ESX-1-secreted proteins. PLoS Pathog 6 : e1000794. [PubMed][CrossRef]
76. Stadthagen G,, Sambou T,, Guerin M,, Barilone N,, Boudou F,, Kordulakova J,, Charles P,, Alzari PM,, Lemassu A,, Daffe M,, Puzo G,, Gicquel B,, Riviere M,, Jackson M . 2007. Genetic basis for the biosynthesis of methylglucose lipopolysaccharides in Mycobacterium tuberculosis. J Biol Chem 282 : 27270 27276.[PubMed][CrossRef]
77. Kalscheuer R,, Jacobs WR Jr . 2010. The significance of GlgE as a new target for tuberculosis. Drug News Perspect 23 : 619 624.[PubMed][CrossRef]

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error