Chapter 20 : Energetics of Respiration and Oxidative Phosphorylation in Mycobacteria

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Energetics of Respiration and Oxidative Phosphorylation in Mycobacteria, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818845/9781555818838_Chap20-1.gif /docserver/preview/fulltext/10.1128/9781555818845/9781555818838_Chap20-2.gif


The genus comprises a group of obligately aerobic bacteria that have adapted to inhabit a wide range of intracellular and extracellular environments. A fundamental feature in this adaptation is the ability to respire and generate energy from variable sources or to sustain metabolism in the absence of growth. Early studies on respiration demonstrated that H37Rv, grown in the lungs of infected mice, had high rates of endogenous respiration that were not stimulated by exogenous substrates (e.g., acetate, pyruvate, glucose, glycerol, lactate) ( ). In contrast, cells grown respired these substrates at high rates. Fatty acids, however, stimulated the respiration of –grown , suggesting for the first time that switches to different energy sources in host tissues to fuel respiration. These early studies pointed to the fact that electron donor utilization and respiration are precisely controlled in , not only in response to growth rate, but also in response to the carbon and energy sources used for growth. The pioneering work of Brodie and colleagues on established much of the primary information on the electron transport chain and oxidative phosphorylation system in mycobacteria (reviewed in reference ).

Citation: Cook G, Hards K, Vilchèze C, Hartman T, Berney M. 2014. Energetics of Respiration and Oxidative Phosphorylation in Mycobacteria, p 389-409. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0015-2013
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Organization and components of the electron transport chain in mycobacteria.

Citation: Cook G, Hards K, Vilchèze C, Hartman T, Berney M. 2014. Energetics of Respiration and Oxidative Phosphorylation in Mycobacteria, p 389-409. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0015-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

The core respiratory chain of mycobacteria and components upregulated under energy-limiting conditions. During exponential growth, mycobacteria use a classical respiratory chain composed of a type I NADH:menaquinone oxidoreductase (Nuo), succinate:menaquinone oxidoreductase 1 (SDH1), cytochrome supercomplex (Qcr-Cta), and FF-ATPase. Menaquinone (MQ) is the only quinone present in mycobacterial membranes, and reverse electron transport driven by the PMF is proposed to facilitate the function of SDH1 and similar enzymes (see text). Components in light blue are upregulated in response to energy-limiting conditions ( ). Catalysis and electron flow are indicated by arrows. Abbreviations: Cox, carbon monoxide dehydrogenase; Hyd, hydrogenase; DH, dehydrogenase; A, unidentified electron acceptor.

Citation: Cook G, Hards K, Vilchèze C, Hartman T, Berney M. 2014. Energetics of Respiration and Oxidative Phosphorylation in Mycobacteria, p 389-409. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0015-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

The preferential respiratory chain of an oxygen-limited mycobacterial cell. Under low-oxygen conditions, a diverse response utilizing alternate electron donors and acceptors, energy-conserving enzymes, and a high-affinity terminal oxidase permits survival under hypoxic conditions. Components in red are upregulated under microaerobic conditions ( ). Catalysis and electron flow are indicated by arrows. The possible PMF-driven reverse electron flow of Sdh2 is not shown, for clarity. Abbreviations: Mqo, malate:menaquinone oxidoreductase; Ndh, type II NADH:menaquinone oxidoreductase; Sdh2, succinate:menaquinone oxidoreductase 2; Nar, nitrate reductase; Cyd, cytochrome oxidase; Frd, FRD; Hyd, hydrogenase; MQ, menaquinone; A, unidentified electron acceptor.

Citation: Cook G, Hards K, Vilchèze C, Hartman T, Berney M. 2014. Energetics of Respiration and Oxidative Phosphorylation in Mycobacteria, p 389-409. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0015-2013
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Segal W,, Bloch H . 1956. Biochemical differentiation of Mycobacterium tuberculosis grown in vivo and in vitro. J Bacteriol 72 : 132 141.[PubMed]
2. Brodie AF,, Gutnik DL, . 1972. Electron transport and oxidative phosphorylation in microbial systems, p 599 681. In King TE,, Klingenberg M (ed), Electron and Coupled Energy Transfer Systems, vol. 1B. Marcel Dekker, New York.
3. Russell JB,, Cook GM . 1995. Energetics of bacterial growth: balance of anabolic and catabolic reactions. Microbiol Rev 59 : 48 62.[PubMed]
4. Rao M,, Streur TL,, Aldwell FE,, Cook GM . 2001. Intracellular pH regulation by Mycobacterium smegmatis and Mycobacterium bovis BCG. Microbiology 147 : 1017 1024.[PubMed]
5. Ishaque M . 1992. Energy generation mechanisms in the in vitro-grown Mycobacterium lepraemurium. Int J Lepr Other Mycobact Dis 60 : 61 70.[PubMed]
6. Rao SP,, Alonso S,, Rand L,, Dick T,, Pethe K . 2008. The protonmotive force is required for maintaining ATP homeostasis and viability of hypoxic, nonreplicating Mycobacterium tuberculosis. Proc Natl Acad Sci USA 105 : 11945 11950.[PubMed][CrossRef]
7. Berney M,, Weimar MR,, Heikal A,, Cook GM . 2012. Regulation of proline metabolism in mycobacteria and its role in carbon metabolism under hypoxia. Mol Microbiol 84 : 664 681.[PubMed][CrossRef]
8. Dimroth P,, Cook GM . 2004. Bacterial Na+ - or H+ -coupled ATP synthases operating at low electrochemical potential. Adv Microb Physiol 49 : 175 218.[PubMed][CrossRef]
9. Haagsma AC,, Driessen NN,, Hahn MM,, Lill H,, Bald D . 2010. ATP synthase in slow- and fast-growing mycobacteria is active in ATP synthesis and blocked in ATP hydrolysis direction. FEMS Microbiol Lett 313 : 68 74.[PubMed][CrossRef]
10. Higashi T,, Kalra VK,, Lee SH,, Bogin E,, Brodie AF . 1975. Energy-transducing membrane-bound coupling factor-ATPase from Mycobacterium phlei. I. Purification, homogeneity, and properties. J Biol Chem 250 : 6541 6548.[PubMed]
11. Kerscher S,, Drose S,, Zickermann V,, Brandt U . 2008. The three families of respiratory NADH dehydrogenases. Results Probl Cell Differ 45 : 185 222.[PubMed][CrossRef]
12. Weinstein EA,, Yano T,, Li LS,, Avarbock D,, Avarbock A,, Helm D,, McColm AA,, Duncan K,, Lonsdale JT,, Rubin H . 2005. Inhibitors of type II NADH:menaquinone oxidoreductase represent a class of antitubercular drugs. Proc Natl Acad Sci USA 102 : 4548 4553.[PubMed][CrossRef]
13. Cole ST,, Eiglmeier K,, Parkhill J,, James KD,, Thomson NR,, Wheeler PR,, Honore N,, Garnier T,, Churcher C,, Harris D,, Mungall K,, Basham D,, Brown D,, Chillingworth T,, Connor R,, Davies RM,, Devlin K,, Duthoy S,, Feltwell T,, Fraser A,, Hamlin N,, Holroyd S,, Hornsby T,, Jagels K,, Lacroix C,, Maclean J,, Moule S,, Murphy L,, Oliver K,, Quail MA,, Rajandream MA,, Rutherford KM,, Rutter S,, Seeger K,, Simon S,, Simmonds M,, Skelton J,, Squares R,, Squares S,, Stevens K,, Taylor K,, Whitehead S,, Woodward JR,, Barrell BG . 2001. Massive gene decay in the leprosy bacillus. Nature 409 : 1007 1011.[PubMed][CrossRef]
14. Miesel L,, Weisbrod TR,, Marcinkeviciene JA,, Bittman R,, Jacobs WR Jr . 1998. NADH dehydrogenase defects confer isoniazid resistance and conditional lethality in Mycobacterium smegmatis. J Bacteriol 180 : 2459 2467.[PubMed]
15. Vilcheze C,, Weisbrod TR,, Chen B,, Kremer L,, Hazbon MH,, Wang F,, Alland D,, Sacchettini JC,, Jacobs WR Jr . 2005. Altered NADH/NAD+ ratio mediates coresistance to isoniazid and ethionamide in mycobacteria. Antimicrob Agents Chemother 49 : 708 720.[PubMed][CrossRef]
16. Berney M,, Cook GM . 2010. Unique flexibility in energy metabolism allows mycobacteria to combat starvation and hypoxia. PLoS One 5 : e8614. [PubMed][CrossRef]
17. Velmurugan K,, Chen B,, Miller JL,, Azogue S,, Gurses S,, Hsu T,, Glickman M,, Jacobs WR Jr,, Porcelli SA,, Briken V . 2007. Mycobacterium tuberculosis nuoG is a virulence gene that inhibits apoptosis of infected host cells. PLoS Pathog 3 : e110. [PubMed][CrossRef]
18. Shi L,, Sohaskey CD,, Kana BD,, Dawes S,, North RJ,, Mizrahi V,, Gennaro ML . 2005. Changes in energy metabolism of Mycobacterium tuberculosis in mouse lung and under in vitro conditions affecting aerobic respiration. Proc Natl Acad Sci USA 102 : 15629 15634.[PubMed][CrossRef]
19. Schnappinger D,, Ehrt S,, Voskuil MI,, Liu Y,, Mangan JA,, Monahan IM,, Dolganov G,, Efron B,, Butcher PD,, Nathan C,, Schoolnik GK . 2003. Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J Exp Med 198 : 693 704.[PubMed][CrossRef]
20. Betts JC,, Lukey PT,, Robb LC,, McAdam RA,, Duncan K . 2002. Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol Microbiol 43 : 717 731.[PubMed][CrossRef]
21. Unden G,, Bongaerts J . 1997. Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors. Biochim Biophys Acta 1320 : 217 234.[CrossRef]
22. Iwata M,, Lee Y,, Yamashita T,, Yagi T,, Iwata S,, Cameron AD,, Maher MJ . 2012. The structure of the yeast NADH dehydrogenase (Ndi1) reveals overlapping binding sites for water- and lipid-soluble substrates. Proc Natl Acad Sci USA 109 : 15247 15252.[PubMed][CrossRef]
23. Feng Y,, Li WF,, Li J,, Wang JW,, Ge JP,, Xu D,, Liu YJ,, Wu KQ,, Zeng QY,, Wu JW,, Tian CL,, Zhou B,, Yang MJ . 2012. Structural insight into the type-II mitochondrial NADH dehydrogenases. Nature 491 : 478 482.[PubMed][CrossRef]
24. Melo AMP,, Bandeiras TM,, Teixeira M . 2004. New insights into type II NAD(P)H : quinone oxidoreductases. Microbiol Mol Biol Rev 68 : 603 616.[PubMed][CrossRef]
25. Lin SS,, Gross U,, Bohne W . 2011. Two internal type II NADH dehydrogenases of Toxoplasma gondii are both required for optimal tachyzoite growth. Mol Microbiol 82 : 209 221.[PubMed][CrossRef]
26. Griffin JE,, Gawronski JD,, Dejesus MA,, Ioerger TR,, Akerley BJ,, Sassetti CM . 2011. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. PLoS Pathog 7 : e1002251. [PubMed][CrossRef]
27. Yano T,, Li LS,, Weinstein E,, Teh JS,, Rubin H . 2006. Steady-state kinetics and inhibitory action of antitubercular phenothiazines on Mycobacterium tuberculosis type-II NADH-menaquinone oxidoreductase (NDH-2). J Biol Chem 281 : 11456 11463.[PubMed][CrossRef]
28. McAdam RA,, Quan S,, Smith DA,, Bardarov S,, Betts JC,, Cook FC,, Hooker EU,, Lewis AP,, Woollard P,, Everett MJ,, Lukey PT,, Bancroft GJ,, Jacobs WR Jr,, Duncan K . 2002. Characterization of a Mycobacterium tuberculosis H37Rv transposon library reveals insertions in 351 ORFs and mutants with altered virulence. Microbiology 148 : 2975 2986.[PubMed]
29. Sassetti CM,, Boyd DH,, Rubin EJ . 2003. Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48 : 77 84.[PubMed][CrossRef]
30. Warman AJ,, Rito TS,, Fisher NE,, Moss DM,, Berry NG,, O’Neill PM,, Ward SA,, Biagini GA . 2013. Antitubercular pharmacodynamics of phenothiazines. J Antimicrob Chemother 68 : 869 880.[PubMed][CrossRef]
31. Teh JS,, Yano T,, Rubin H . 2007. Type II NADH: menaquinone oxidoreductase of Mycobacterium tuberculosis. Infectious Disorders Drug Targets 7 : 169 181.[PubMed][CrossRef]
32. Biagini GA,, Viriyavejakul P,, O’Neill PM,, Bray PG,, Ward SA . 2006. Functional characterization and target validation of alternative complex I of Plasmodium falciparum mitochondria. Antimicrob Agents Chemother 50 : 1841 1851.[PubMed][CrossRef]
33. Shirude PS,, Paul P,, Choudhury NR,, Kedari C,, Bandodkar B,, Ugarkar BG . 2012. Quinolinyl pyrimidines: potent inhibitors of NDH-2 as a novel class of anti-TB agents. ACS Med Chem Lett 3 : 736 740.[CrossRef]
34. Ordway D,, Viveiros M,, Leandro C,, Bettencourt R,, Almeida J,, Martins M,, Kristiansen JE,, Molnar J,, Amaral L . 2003. Clinical concentrations of thioridazine kill intracellular multidrug-resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother 47 : 917 922.[PubMed][CrossRef]
35. Amaral L,, Kristiansen JE,, Abebe LS,, Millett W . 1996. Inhibition of the respiration of multi-drug resistant clinical isolates of Mycobacterium tuberculosis by thioridazine: potential use for initial therapy of freshly diagnosed tuberculosis. J Antimicrob Chemother 38 : 1049 1053.[PubMed][CrossRef]
36. Mogi T,, Matsushita K,, Murase Y,, Kawahara K,, Miyoshi H,, Ui H,, Shiomi K,, Omura S,, Kita K . 2009. Identification of new inhibitors for alternative NADH dehydrogenase (NDH-II). FEMS Microbiol Lett 291 : 157 161.[PubMed][CrossRef]
37. Tian J,, Bryk R,, Itoh M,, Suematsu M,, Nathan C . 2005. Variant tricarboxylic acid cycle in Mycobacterium tuberculosis: identification of alpha-ketoglutarate decarboxylase. Proc Natl Acad Sci USA 102 : 10670 10675.[PubMed][CrossRef]
38. Youmans AS,, Millman I,, Youmans GP . 1956. The oxidation of compounds related to the tricarboxylic acid cycle by whole cells and enzyme preparations of Mycobacterium tuberculosis var. hominis. J Bacteriol 71 : 565 570.[PubMed]
39. Cecchini G,, Schroder I,, Gunsalus RP,, Maklashina E . 2002. Succinate dehydrogenase and fumarate reductase from Escherichia coli. Biochimica Biophysica Acta 1553 : 140 157.[CrossRef]
40. Baek SH,, Li AH,, Sassetti CM . 2011. Metabolic regulation of mycobacterial growth and antibiotic sensitivity. PLoS Biol 9 : e1001065. [PubMed][CrossRef]
41. Unden G,, Schirawski J . 1997. The oxygen-responsive transcriptional regulator FNR of Escherichia coli: the search for signals and reactions. Mol Microbiol 25 : 205 210.[CrossRef]
42. Watanabe S,, Zimmermann M,, Goodwin MB,, Sauer U,, Barry CE 3rd,, Boshoff HI . 2011. Fumarate reductase activity maintains an energized membrane in anaerobic Mycobacterium tuberculosis. PLoS Pathog 7 : e1002287. [PubMed][CrossRef]
43. Eoh H,, Rhee KY . 2013. Multifunctional essentiality of succinate metabolism in adaptation to hypoxia in Mycobacterium tuberculosis. Proc Natl Acad Sci USA 110 : 6554 6559.[PubMed][CrossRef]
44. Bacon J,, James BW,, Wernisch L,, Williams A,, Morley KA,, Hatch GJ,, Mangan JA,, Hinds J,, Stoker NG,, Butcher PD,, Marsh PD . 2004. The influence of reduced oxygen availability on pathogenicity and gene expression in Mycobacterium tuberculosis. Tuberculosis (Edinb) 84 : 205 217.[PubMed][CrossRef]
45. Beste DJ,, Laing E,, Bonde B,, Avignone-Rossa C,, Bushell ME,, McFadden JJ . 2007. Transcriptomic analysis identifies growth rate modulation as a component of the adaptation of mycobacteria to survival inside the macrophage. J Bacteriol 189 : 3969 3976.[PubMed][CrossRef]
46. Tanner JJ . 2008. Structural biology of proline catabolism. Amino Acids 35 : 719 730.[PubMed][CrossRef]
47. Menzel R,, Roth J . 1981. Purification of the putA gene product. A bifunctional membrane-bound protein from Salmonella typhimurium responsible for the two-step oxidation of proline to glutamate. J Biol Chem 256 : 9755 9761.[PubMed]
48. Weigoldt M,, Meens J,, Bange FC,, Pich A,, Gerlach GF,, Goethe R . 2013. Metabolic adaptation of Mycobacterium avium subsp. paratuberculosis to the gut environment. Microbiology 159 : 380 391.[PubMed][CrossRef]
49. Smith DA,, Parish T,, Stoker NG,, Bancroft GJ . 2001. Characterization of auxotrophic mutants of Mycobacterium tuberculosis and their potential as vaccine candidates. Infect Immun 69 : 1142 1150.[PubMed][CrossRef]
50. Vignais PM,, Colbeau A . 2004. Molecular biology of microbial hydrogenases. Curr Issues Mol Biol 6 : 159 188.[PubMed]
51. Tamagnini P,, Leitao E,, Oliveira P,, Ferreira D,, Pinto F,, Harris DJ,, Heidorn T,, Lindblad P . 2007. Cyanobacterial hydrogenases: diversity, regulation and applications. FEMS Microbiol Rev 31 : 692 720.[PubMed][CrossRef]
52. Constant P,, Chowdhury SP,, Hesse L,, Pratscher J,, Conrad R . 2011. Genome data mining and soil survey for the novel group 5 [NiFe]-hydrogenase to explore the diversity and ecological importance of presumptive high-affinity H(2)-oxidizing bacteria. Appl Environ Microbiol 77 : 6027 6035.[PubMed][CrossRef]
53. Constant P,, Chowdhury SP,, Pratscher J,, Conrad R . 2010. Streptomycetes contributing to atmospheric molecular hydrogen soil uptake are widespread and encode a putative high-affinity [NiFe]-hydrogenase. Environ Microbiol 12 : 821 829.[PubMed][CrossRef]
54. King GM . 2003. Uptake of carbon monoxide and hydrogen at environmentally relevant concentrations by mycobacteria. Appl Environ Microbiol 69 : 7266 7272.[PubMed][CrossRef]
55. Kim YM,, Hegeman GD . 1983. Oxidation of carbon monoxide by bacteria. Int Rev Cytol 81 : 1 32.[PubMed][CrossRef]
56. Park SW,, Hwang EH,, Park H,, Kim JA,, Heo J,, Lee KH,, Song T,, Kim E,, Ro YT,, Kim SW,, Kim YM . 2003. Growth of mycobacteria on carbon monoxide and methanol. J Bacteriol 185 : 142 147.[PubMed][CrossRef]
57. Schryvers A,, Lohmeier E,, Weiner JH . 1978. Chemical and functional properties of the native and reconstituted forms of the membrane-bound, aerobic glycerol-3-phosphate dehydrogenase of Escherichia coli. J Biol Chem 253 : 783 788.[PubMed]
58. Boos W . 1998. Binding protein-dependent ABC transport system for glycerol 3-phosphate of Escherichia coli. Methods Enzymol 292 : 40 51.[PubMed][CrossRef]
59. Molenaar D,, van der Rest ME,, Drysch A,, Yucel R . 2000. Functions of the membrane-associated and cytoplasmic malate dehydrogenases in the citric acid cycle of Corynebacterium glutamicum. J Bacteriol 182 : 6884 6891.[PubMed][CrossRef]
60. Molenaar D,, van der Rest ME,, Petrovic S . 1998. Biochemical and genetic characterization of the membrane-associated malate dehydrogenase (acceptor) from Corynebacterium glutamicum. Eur J Biochem 254 : 395 403.[PubMed][CrossRef]
61. Prasada Reddy TL,, Suryanarayana Murthy P,, Venkitasubramanian TA . 1975. Respiratory chains of Mycobacterium smegmatis. Indian J Biochem Biophys 12 : 255 259.[PubMed]
62. Prasada Reddy TL,, Suryanarayana Murthy P,, Venkitasubramanian TA . 1975. Variations in the pathways of malate oxidation and phosphorylation in different species of mycobacteria. Biochim Biophys Acta 376 : 210 218.[PubMed][CrossRef]
63. D’Mello R,, Hill S,, Poole RK . 1995. The oxygen affinity of cytochrome bo' in Escherichia coli determined by the deoxygenation of oxyleghemoglobin and oxymyoglobin: Km values for oxygen are in the submicromolar range. J Bacteriol 177 : 867 870.[PubMed]
64. D’Mello R,, Hill S,, Poole RK . 1996. The cytochrome bd quinol oxidase in Escherichia coli has an extremely high oxygen affinity and two oxygen-binding haems: implications for regulation of activity in vivo by oxygen inhibition. Microbiology 142 : 755 763.[PubMed][CrossRef]
65. Cotter PA,, Melville SB,, Albrecht JA,, Gunsalus RP . 1997. Aerobic regulation of cytochrome d oxidase ( cydAB) operon expression in Escherichia coli: roles of Fnr and ArcA in repression and activation. Mol Microbiol 25 : 605 615.[PubMed][CrossRef]
66. Tseng CP,, Hansen AK,, Cotter P,, Gunsalus RP . 1994. Effect of cell growth rate on expression of the anaerobic respiratory pathway operons frdABCD, dmsABC, and narGHJI of Escherichia coli. J Bacteriol 176 : 6599 6605.[PubMed]
67. Kana BD,, Weinstein EA,, Avarbock D,, Dawes SS,, Rubin H,, Mizrahi V . 2001. Characterization of the cydAB-encoded cytochrome bd oxidase from Mycobacterium smegmatis. J Bacteriol 183 : 7076 7086.[PubMed][CrossRef]
68. Voskuil MI,, Visconti KC,, Schoolnik GK . 2004. Mycobacterium tuberculosis gene expression during adaptation to stationary phase and low-oxygen dormancy. Tuberculosis (Edinb) 84 : 218 227.[PubMed][CrossRef]
69. Boshoff HI,, Barry CE 3rd . 2005. Tuberculosis: metabolism and respiration in the absence of growth. Nat Rev Microbiol 3 : 70 80.[PubMed][CrossRef]
70. Matsoso LG,, Kana BD,, Crellin PK,, Lea-Smith DJ,, Pelosi A,, Powell D,, Dawes SS,, Rubin H,, Coppel RL,, Mizrahi V . 2005. Function of the cytochrome bc 1-aa 3 branch of the respiratory network in mycobacteria and network adaptation occurring in response to its disruption. J Bacteriol 187 : 6300 6308.[PubMed][CrossRef]
71. Megehee JA,, Hosler JP,, Lundrigan MD . 2006. Evidence for a cytochrome bcc-aa 3 interaction in the respiratory chain of Mycobacterium smegmatis. Microbiology 152 : 823 829.[PubMed][CrossRef]
72. Niebisch A,, Bott M . 2001. Molecular analysis of the cytochrome bc 1-aa 3 branch of the Corynebacterium glutamicum respiratory chain containing an unusual diheme cytochrome c 1. Arch Microbiol 175 : 282 294.[CrossRef]
73. Abrahams KA,, Cox JA,, Spivey VL,, Loman NJ,, Pallen MJ,, Constantinidou C,, Fernandez R,, Alemparte C,, Remuinan MJ,, Barros D,, Ballell L,, Besra GS . 2012. Identification of novel imidazo[1,2-a]pyridine inhibitors targeting M. tuberculosis QcrB. PLoS One 7 : e52951. [PubMed][CrossRef]
74. Niebisch A,, Bott M . 2003. Purification of a cytochrome bc-aa 3 supercomplex with quinol oxidase activity from Corynebacterium glutamicum. Identification of a fourth subunity of cytochrome aa 3 oxidase and mutational analysis of diheme cytochrome c 1. J Biol Chem 278 : 4339 4346.[PubMed][CrossRef]
75. Berry EA,, Trumpower BL . 1985. Isolation of ubiquinol oxidase from Paracoccus denitrificans and resolution into cytochrome bc1 and cytochrome c-aa 3 complexes. J Biol Chem 260 : 2458 2467.[PubMed]
76. Sone N,, Sekimachi M,, Kutoh E . 1987. Identification and properties of a quinol oxidase super-complex composed of a bc 1 complex and cytochrome oxidase in the thermophilic bacterium PS3. J Biol Chem 262 : 15386 15391.[PubMed]
77. Poole RK,, Cook GM . 2000. Redundancy of aerobic respiratory chains in bacteria? Routes, reasons and regulation. Adv Microb Physiol 43 : 165 224.[PubMed][CrossRef]
78. Borisov VB,, Murali R,, Verkhovskaya ML,, Bloch DA,, Han H,, Gennis RB,, Verkhovsky MI . 2011. Aerobic respiratory chain of Escherichia coli is not allowed to work in fully uncoupled mode. Proc Natl Acad Sci USA 108 : 17320 17324.[PubMed][CrossRef]
79. Goldman BS,, Gabbert KK,, Kranz RG . 1996. The temperature-sensitive growth and survival phenotypes of Escherichia coli cydDC and cydAB strains are due to deficiencies in cytochrome bd and are corrected by exogenous catalase and reducing agents. J Bacteriol 178 : 6348 6351.[PubMed]
80. Pittman MS,, Robinson HC,, Poole RK . 2005. A bacterial glutathione transporter ( Escherichia coli CydDC) exports reductant to the periplasm. J Biol Chem 280 : 32254 32261.[PubMed][CrossRef]
81. Dhar N,, McKinney JD . 2010. Mycobacterium tuberculosis persistence mutants identified by screening in isoniazid-treated mice. Proc Natl Acad Sci USA 107 : 12275 12280.[PubMed][CrossRef]
82. Rowe JJ,, Ubbink-Kok T,, Molenaar D,, Konings WN,, Driessen AJ . 1994. NarK is a nitrite-extrusion system involved in anaerobic nitrate respiration by Escherichia coli. Mol Microbiol 12 : 579 586.[PubMed][CrossRef]
83. Clegg S,, Yu F,, Griffiths L,, Cole JA . 2002. The roles of the polytopic membrane proteins NarK, NarU and NirC in Escherichia coli K-12: two nitrate and three nitrite transporters. Mol Microbiol 44 : 143 155.[PubMed][CrossRef]
84. Jia W,, Cole JA . 2005. Nitrate and nitrite transport in Escherichia coli. Biochem Soc Trans 33 : 159 161.[PubMed][CrossRef]
85. Sohaskey CD,, Wayne LG . 2003. Role of narK2X and narGHJI in hypoxic upregulation of nitrate reduction by Mycobacterium tuberculosis. J Bacteriol 185 : 7247 7256.[CrossRef]
86. Sohaskey CD . 2005. Regulation of nitrate reductase activity in Mycobacterium tuberculosis by oxygen and nitric oxide. Microbiology 151 : 3803 3810.[PubMed][CrossRef]
87. Moir JW,, Wood NJ . 2001. Nitrate and nitrite transport in bacteria. Cell Mol Life Sci 58 : 215 224.[PubMed][CrossRef]
88. Kumar A,, Deshane JS,, Crossman DK,, Bolisetty S,, Yan BS,, Kramnik I,, Agarwal A,, Steyn AJ . 2008. Heme oxygenase-1-derived carbon monoxide induces the Mycobacterium tuberculosis dormancy regulon. J Biol Chem 283 : 18032 18039.[PubMed][CrossRef]
89. Ohno H,, Zhu G,, Mohan VP,, Chu D,, Kohno S,, Jacobs WR Jr,, Chan J . 2003. The effects of reactive nitrogen intermediates on gene expression in Mycobacterium tuberculosis. Cell Microbiol 5 : 637 648.[PubMed][CrossRef]
90. Voskuil MI,, Schnappinger D,, Visconti KC,, Harrell MI,, Dolganov GM,, Sherman DR,, Schoolnik GK . 2003. Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program. J Exp Med 198 : 705 713.[PubMed][CrossRef]
91. Sohaskey CD . 2008. Nitrate enhances the survival of Mycobacterium tuberculosis during inhibition of respiration. J Bacteriol 190 : 2981 2986.[PubMed][CrossRef]
92. Tan MP,, Sequeira P,, Lin WW,, Phong WY,, Cliff P,, Ng SH,, Lee BH,, Camacho L,, Schnappinger D,, Ehrt S,, Dick T,, Pethe K,, Alonso S . 2010. Nitrate respiration protects hypoxic Mycobacterium tuberculosis against acid- and reactive nitrogen species stresses. PLoS One 5 : e13356. [PubMed][CrossRef]
93. Pinto R,, Harrison JS,, Hsu T,, Jacobs WR Jr,, Leyh TS . 2007. Sulfite reduction in mycobacteria. J Bacteriol 189 : 6714 6722.[PubMed][CrossRef]
94. Kuhn M,, Steinbuchel A,, Schlegel HG . 1984. Hydrogen evolution by strictly aerobic hydrogen bacteria under anaerobic conditions. J Bacteriol 159 : 633 639.[PubMed]
95. Fontan P,, Aris V,, Ghanny S,, Soteropoulos P,, Smith I . 2008. Global transcriptional profile of Mycobacterium tuberculosis during THP-1 human macrophage infection. Infect Immun 76 : 717 725.[PubMed][CrossRef]
96. Park HD,, Guinn KM,, Harrell MI,, Liao R,, Voskuil MI,, Tompa M,, Schoolnik GK,, Sherman DR . 2003. Rv3133c/dosR is a transcription factor that mediates the hypoxic response of Mycobacterium tuberculosis. Mol Microbiol 48 : 833 843.[PubMed][CrossRef]
97. Sherman DR,, Voskuil M,, Schnappinger D,, Liao R,, Harrell MI,, Schoolnik GK . 2001. Regulation of the Mycobacterium tuberculosis hypoxic response gene encoding alpha-crystallin. Proc Natl Acad Sci USA 98 : 7534 7539.[PubMed][CrossRef]
98. Mnatsakanyan N,, Bagramyan K,, Trchounian A . 2004. Hydrogenase 3 but not hydrogenase 4 is major in hydrogen gas production by Escherichia coli formate hydrogenlyase at acidic pH and in the presence of external formate. Cell Biochem Biophys 41 : 357 366.[PubMed][CrossRef]
99. Coppi MV . 2005. The hydrogenases of Geobacter sulfurreducens: a comparative genomic perspective. Microbiology 151 : 1239 1254.[PubMed][CrossRef]
100. Marreiros BC,, Batista AP,, Duarte AM,, Pereira MM . 2013. A missing link between complex I and group 4 membrane-bound [NiFe] hydrogenases. Biochimica Biophysica Acta 1827 : 198 209.[PubMed][CrossRef]
101. He H,, Bretl DJ,, Penoske RM,, Anderson DM,, Zahrt TC . 2011. Components of the Rv0081-Rv0088 locus, which encodes a predicted formate hydrogenlyase complex, are coregulated by Rv0081, MprA, and DosR in Mycobacterium tuberculosis. J Bacteriol 193 : 5105 5118.[PubMed][CrossRef]
102. von Ballmoos C,, Cook GM,, Dimroth P . 2008. Unique rotary ATP synthase and its biological diversity. Annu Rev Biophys 37 : 43 64.[PubMed][CrossRef]
103. Tran SL,, Cook GM . 2005. The F 1F 0-ATP synthase of Mycobacterium smegmatis is essential for growth. J Bacteriol 187 : 5023 5028.[PubMed][CrossRef]
104. Friedl P,, Hoppe J,, Gunsalus RP,, Michelsen O,, von Meyenburg K,, Schairer HU . 1983. Membrane integration and function of the three F 0 subunits of the ATP synthase of Escherichia coli K12. EMBO J 2 : 99 103.[PubMed]
105. Santana M,, Ionescu MS,, Vertes A,, Longin R,, Kunst F,, Danchin A,, Glaser P . 1994. Bacillus subtilis F 0F 1 ATPase: DNA sequence of the atp operon and characterization of atp mutants. J Bacteriol 176 : 6802 6811.[PubMed]
106. Cox RA,, Cook GM . 2007. Growth regulation in the mycobacterial cell. Curr Mol Med 7 : 231 245.[PubMed][CrossRef]
107. Tran SL,, Rao M,, Simmers C,, Gebhard S,, Olsson K,, Cook GM . 2005. Mutants of Mycobacterium smegmatis unable to grow at acidic pH in the presence of the protonophore carbonyl cyanide m-chlorophenylhydrazone. Microbiology 151 : 665 672.[PubMed][CrossRef]
108. Koch-Koerfges A,, Kabus A,, Ochrombel I,, Marin K,, Bott M . 2012. Physiology and global gene expression of a Corynebacterium glutamicum DeltaF 1F 0-ATP synthase mutant devoid of oxidative phosphorylation. Biochimica Biophysica Acta 1817 : 370 380.[PubMed][CrossRef]
109. Andries K,, Verhasselt P,, Guillemont J,, Gohlmann HW,, Neefs JM,, Winkler H,, Van Gestel J,, Timmerman P,, Zhu M,, Lee E,, Williams P,, de Chaffoy D,, Huitric E,, Hoffner S,, Cambau E,, Truffot-Pernot C,, Lounis N,, Jarlier V . 2005. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 307 : 223 227.[PubMed][CrossRef]
110. Dhiman RK,, Mahapatra S,, Slayden RA,, Boyne ME,, Lenaerts A,, Hinshaw JC,, Angala SK,, Chatterjee D,, Biswas K,, Narayanasamy P,, Kurosu M,, Crick DC . 2009. Menaquinone synthesis is critical for maintaining mycobacterial viability during exponential growth and recovery from non-replicating persistence. Mol Microbiol 72 : 85 97.[PubMed][CrossRef]
111. Koul A,, Dendouga N,, Vergauwen K,, Molenberghs B,, Vranckx L,, Willebrords R,, Ristic Z,, Lill H,, Dorange I,, Guillemont J,, Bald D,, Andries K . 2007. Diarylquinolines target subunit c of mycobacterial ATP synthase. Nat Chem Biol 3 : 323 324.[PubMed][CrossRef]
112. Koul A,, Vranckx L,, Dendouga N,, Balemans W,, Van den Wyngaert I,, Vergauwen K,, Gohlmann HW,, Willebrords R,, Poncelet A,, Guillemont J,, Bald D,, Andries K . 2008. Diarylquinolines are bactericidal for dormant mycobacteria as a result of disturbed ATP homeostasis. J Biol Chem 283 : 25273 25280.[PubMed][CrossRef]
113. Huitric E,, Verhasselt P,, Andries K,, Hoffner SE . 2007. In vitro antimycobacterial spectrum of a diarylquinoline ATP synthase inhibitor. Antimicrob Agents Chemother 51 : 4202 4204.[PubMed][CrossRef]
114. Huitric E,, Verhasselt P,, Koul A,, Andries K,, Hoffner S,, Andersson DI . 2010. Rates and mechanisms of resistance development in Mycobacterium tuberculosis to a novel diarylquinoline ATP synthase inhibitor. Antimicrob Agents Chemother 54 : 1022 1028.[PubMed][CrossRef]
115. de Jonge MR,, Koymans LH,, Guillemont JE,, Koul A,, Andries K . 2007. A computational model of the inhibition of Mycobacterium tuberculosis ATPase by a new drug candidate R207910. Proteins 67 : 971 980.[PubMed][CrossRef]
116. Haagsma AC,, Podasca I,, Koul A,, Andries K,, Guillemont J,, Lill H,, Bald D . 2011. Probing the interaction of the diarylquinoline TMC207 with its target mycobacterial ATP synthase. PLoS One 6 : e23575. [PubMed][CrossRef]
117. Frampton R,, Aggio RB,, Villas-Boas SG,, Arcus VL,, Cook GM . 2012. Toxin-antitoxin systems of Mycobacterium smegmatis are essential for cell survival. J Biol Chem 287 : 5340 5356.[PubMed][CrossRef]
118. Lounis N,, Gevers T,, Van den Berg J,, Vranckx L,, Andries K . 2009. ATP synthase inhibition of Mycobacterium avium is not bactericidal. Antimicrob Agents Chemother 53 : 4927 4929.[PubMed][CrossRef]
119. Wayne LG,, Sohaskey CD . 2001. Nonreplicating persistence of mycobacterium tuberculosis. Annu Rev Microbiol 55 : 139 163.[PubMed][CrossRef]
120. Shiloh MU,, Manzanillo P,, Cox JS . 2008. Mycobacterium tuberculosis senses host-derived carbon monoxide during macrophage infection. Cell Host Microbe 3 : 323 330.[PubMed][CrossRef]
121. Singh A,, Guidry L,, Narasimhulu KV,, Mai D,, Trombley J,, Redding KE,, Giles GI,, Lancaster JR Jr,, Steyn AJ . 2007. Mycobacterium tuberculosis WhiB3 responds to O 2 and nitric oxide via its [4Fe-4S] cluster and is essential for nutrient starvation survival. Proc Natl Acad Sci USA 104 : 11562 11567.[PubMed][CrossRef]
122. Crack J,, Green J,, Thomson AJ . 2004. Mechanism of oxygen sensing by the bacterial transcription factor fumarate-nitrate reduction (FNR). J Biol Chem 279 : 9278 9286.[PubMed][CrossRef]
123. Suhail Alam M,, Agrawal P . 2008. Matrix-assisted refolding and redox properties of WhiB3/Rv3416 of Mycobacterium tuberculosis H37Rv. Protein Expr Purif 61 : 83 91.[PubMed][CrossRef]
124. Steyn AJ,, Collins DM,, Hondalus MK,, Jacobs WR Jr,, Kawakami RP,, Bloom BR . 2002. Mycobacterium tuberculosis WhiB3 interacts with RpoV to affect host survival but is dispensable for in vivo growth. Proc Natl Acad Sci USA 99 : 3147 3152.[PubMed][CrossRef]
125. Rustad TR,, Harrell MI,, Liao R,, Sherman DR . 2008. The enduring hypoxic response of Mycobacterium tuberculosis. PLoS One 3 : e1502.
126. Gazdik MA,, McDonough KA . 2005. Identification of cyclic AMP-regulated genes in Mycobacterium tuberculosis complex bacteria under low-oxygen conditions. J Bacteriol 187 : 2681 2692.[PubMed][CrossRef]
127. Roberts G,, Vadrevu IS,, Madiraju MV,, Parish T . 2011. Control of CydB and GltA1 expression by the SenX3 RegX3 two component regulatory system of Mycobacterium tuberculosis. PLoS One 6 : e21090. [PubMed][CrossRef]
128. Rickman L,, Scott C,, Hunt DM,, Hutchinson T,, Menendez MC,, Whalan R,, Hinds J,, Colston MJ,, Green J,, Buxton RS . 2005. A member of the cAMP receptor protein family of transcription regulators in Mycobacterium tuberculosis is required for virulence in mice and controls transcription of the rpfA gene coding for a resuscitation promoting factor. Mol Microbiol 56 : 1274 1286.[PubMed][CrossRef]
129. Zhang YJ,, Ioerger TR,, Huttenhower C,, Long JE,, Sassetti CM,, Sacchettini JC,, Rubin EJ . 2012. Global assessment of genomic regions required for growth in Mycobacterium tuberculosis. PLoS Pathog 8 : e1002946. [PubMed][CrossRef]


Generic image for table
Table 1

Electron transport chain components and energy-generating machinery of mycobacteria

Citation: Cook G, Hards K, Vilchèze C, Hartman T, Berney M. 2014. Energetics of Respiration and Oxidative Phosphorylation in Mycobacteria, p 389-409. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0015-2013

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error