Chapter 23 : The Molecular Genetics of Fluoroquinolone Resistance in

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

The Molecular Genetics of Fluoroquinolone Resistance in , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818845/9781555818838_Chap23-1.gif /docserver/preview/fulltext/10.1128/9781555818845/9781555818838_Chap23-2.gif


The fluoroquinolones (FQs) are among the most widely prescribed antibiotics globally and until very recently were the only new antibiotics accepted for use against tuberculosis (TB) in the past 40 years. They are an important component of drug regimens for curing strains resistant to other antibiotics, especially multidrug-resistant TB (MDR-TB)—strains resistant to at least isoniazid and rifampin ( ). They are also being proposed as first-line agents to reduce the duration of treatment for pan-susceptible strains, particularly when given in new combinations with other recently developed drugs ( ). A major problem with the FQs is the development of resistant strains. MDR strains that have developed resistance to the FQs and also to any of the injectable drugs are termed extensively drug-resistant (XDR-TB)—strains that are extremely difficult to treat ( ), with studies showing from 65% ( ) to less than 50% having favorable outcomes ( ). For the best chance of curing XDR-TB, resistance to FQs should be identified promptly so that alternative or additional antibiotics can be prescribed. So while there is intellectual interest in investigating the mechanisms and mutations through which develops FQ resistance, and the hope that this information will eventually lead to the design of more effective FQs or quinolone derivatives that are less susceptible to these resistance mechanisms, there is also an urgent need to define the mutations conferring resistance so they can be incorporated into rapid molecular tests to identify FQ-resistant strains.

Citation: Mayer C, Takiff H. 2014. The Molecular Genetics of Fluoroquinolone Resistance in , p 455-478. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0009-2013
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Chemical structures of FQs.

Citation: Mayer C, Takiff H. 2014. The Molecular Genetics of Fluoroquinolone Resistance in , p 455-478. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0009-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Schematic representation of the sequence and domain organization of type IIA topoisomerases formed by the association of two subunits, A and B. Bacterial type IIA topoisomerases are AB heterotetramers. The names of the four conserved domains are indicated. ( Proposed atomic and schematic model of the type IIA topoisomerase architecture. The three gates are indicated.

Citation: Mayer C, Takiff H. 2014. The Molecular Genetics of Fluoroquinolone Resistance in , p 455-478. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0009-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Structure of the DNA gyrase catalytic core in complex with DNA and moxifloxacin in ribbon representation. Side view and top view of the molecular surface of the catalytic core. The Toprim domain is represented in red, the BRD in blue, the 35-base-pair DNA oligonucleotide in orange, and the moxifloxacin in green. Localization of the QRDR is indicated in pink and light blue (residues 500 to 538 for QRDR-B and 74 to 108 for QRDR-A). Close view of the structure of the intercalated moxifloxacin (magenta) in the broken DNA double helix (green). The catalytic tyrosine (Y129 in the DNA gyrase sequence) is shown in green outside the DNA helix. Close view of both moxifloxacin molecules in the broken DNA showing the 4 base pairs in between the two bound fluoroquinolones. Both catalytic tyrosines of each monomer are shown in green in the DNA major groove.

Citation: Mayer C, Takiff H. 2014. The Molecular Genetics of Fluoroquinolone Resistance in , p 455-478. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0009-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

The schematic diagram in the center shows the arrangement of the and genes, encoding the GyrA and GyrB subunits of the DNA gyrase. Also shown are the locations of the TOPRIM region of GyrB, the BRD of GyrA, and the sites of the QRDRs of both subunits, QRDR-B or QRDR-A. Above the diagram is an alignment of the region of GyrB containing QRDR-B, illustrating that this region is highly conserved in the B subunits of the gyrases and the B subunits of the topoisomerase IV enzymes (ParE), as illustrated by the Gram-positive and the Gram-negative Below the diagram is the alignment of segments including the QRDR-A for the A subunits of the gyrase and topoisomerase IV from the same bacteria. The underlined letters in bold indicate amino acids where mutations confer FQ resistance. The blue Y in the GyrA alignment indicates the tyrosine that is covalently bound to the cleaved G segment DNA (see text). On the top and bottom of the figure are the nucleotide and amino acid sequences of the QRDR-A and QRDR-B regions, with the amino acid substitutions shown to confer FQ resistance. Amino acid 95 of the QRDR-A is polymorphic and can be either serine or threonine depending upon the phylogeny of the strain, but has not been implicated in FQ resistance ( ). Below the sequence of the QRDR-B are the amino acid numbers in both the old and new numbering systems.

Citation: Mayer C, Takiff H. 2014. The Molecular Genetics of Fluoroquinolone Resistance in , p 455-478. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0009-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Close view of the quinolone-binding pocket. The DNA-protein complex is represented in transparent molecular surface and moxifloxacin, in sticks (color code is the same as in Fig. 3 ). The residues of the QRDR-B (Toprim) belonging to the QBP are indicated in pink, purple, and yellow. Residue A90 of the QRDR-B is represented in light green in the background of the pocket. Effect of the substitution of A90 (QRDR-A) on the geometry of the quinolone-binding pocket. (Left) Quinolone-binding pocket of the wild-type DNA gyrase. The A90 is colored in yellow. (Middle) Substitution of A90 to serine (S90 is represented in green). (Right) Substitution of A90 to valine (V90 is represented in magenta).

Citation: Mayer C, Takiff H. 2014. The Molecular Genetics of Fluoroquinolone Resistance in , p 455-478. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0009-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

The sequence of the QRDR-A region from the initial patient isolate shows a wild-type GAC encoding aspartic acid at codon 94. In an isolate taken after 7 months of FQ therapy, the QRDR-A sequence shows that two mutant bacilli populations were present, one with a GCC encoding an alanine at codon 94 and one with GGC encoding glycine at codon 94. By month 10 the bacteria containing the D94G substitution predominated, and the population with the D94A substitution was no longer detected by sequencing. Figure modified from reference .

Citation: Mayer C, Takiff H. 2014. The Molecular Genetics of Fluoroquinolone Resistance in , p 455-478. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0009-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

Side and top views of the MfpA dimer shown in Cα trace (PDB code 2BM5). Top and side views showing how MfpA mimics a 30-base pair B-form DNA. Model of the interaction between the DNA gyrase catalytic core (represented in blue molecular surface) and MfpA (represented in magenta cartoon).

Citation: Mayer C, Takiff H. 2014. The Molecular Genetics of Fluoroquinolone Resistance in , p 455-478. In Hatfull G, Jacobs W (ed), Molecular Genetics of Mycobacteria, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MGM2-0009-2013
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Chan ED,, Laurel V,, Strand MJ,, Chan JF,, Huynh ML,, Goble M,, Iseman MD . 2004. Treatment and outcome analysis of 205 patients with multidrug-resistant tuberculosis. Am J Respir Crit Care Med 169 : 1103 1109.[PubMed][CrossRef]
2. Tahaoglu K,, Torun T,, Sevim T,, Atac G,, Kir A,, Karasulu L,, Ozmen I,, Kapakli N . 2001. The treatment of multidrug-resistant tuberculosis in Turkey. N Engl J Med 345 : 170 174.[PubMed][CrossRef]
3. Nuermberger E,, Tyagi S,, Tasneen R,, Williams KN,, Almeida D,, Rosenthal I,, Grosset JH . 2008. Powerful bactericidal and sterilizing activity of a regimen containing PA-824, moxifloxacin, and pyrazinamide in a murine model of tuberculosis. Antimicrob Agents Chemother 52 : 1522 1524.[PubMed][CrossRef]
4. Veziris N,, Ibrahim M,, Lounis N,, Andries K,, Jarlier V . 2011. Sterilizing activity of second-line regimens containing TMC207 in a murine model of tuberculosis. PLoS One 6 : e17556. [PubMed][CrossRef]
5. Takiff H,, Guerrero E . 2011. Current prospects for the fluoroquinolones as first-line TB therapy. Antimicrob Agents Chemother 55 : 5412 5419.[PubMed][CrossRef]
6. Gandhi NR,, Nunn P,, Dheda K,, Schaaf HS,, Zignol M,, van Soolingen D,, Jensen P,, Bayona J . 2010. Multidrug-resistant and extensively drug-resistant tuberculosis: a threat to global control of tuberculosis. Lancet 375 : 1830 1843.[CrossRef]
7. Sotgiu G,, Ferrara G,, Matteelli A,, Richardson MD,, Centis R,, Ruesch-Gerdes S,, Toungoussova O,, Zellweger JP,, Spanevello A,, Cirillo D,, Lange C,, Migliori GB . 2009. Epidemiology and clinical management of XDR-TB: a systematic review by TBNET. Eur Respir J 33 : 871 881.[PubMed][CrossRef]
8. Jacobson KR,, Tierney DB,, Jeon CY,, Mitnick CD,, Murray MB . 2010. Treatment outcomes among patients with extensively drug-resistant tuberculosis: systematic review and meta-analysis. Clin Infect Dis 51 : 6 14.[PubMed][CrossRef]
9. Lesher GY,, Froelich EJ,, Gruett MD,, Bailey JH,, Brundage RP . 1962. 1,8-Naphthyridine derivatives. A new class of chemotherapeutic agents. J Med Pharm Chem 91 : 1063 1065.[CrossRef]
10. Emmerson AM,, Jones AM . 2003. The quinolones: decades of development and use. J Antimicrob Chemother 51( Suppl 1) : 13 20.[PubMed][CrossRef]
11. Bouza E,, Garcia-Garrote F,, Cercenado E,, Marin M,, Diaz MS . 1999. Pseudomonas aeruginosa: a survey of resistance in 136 hospitals in Spain. The Spanish Pseudomonas aeruginosa Study Group. Antimicrob Agents Chemother 43 : 981 982.[PubMed]
12. Blumberg HM,, Rimland D,, Carroll DJ,, Terry P,, Wachsmuth IK . 1991. Rapid development of ciprofloxacin resistance in methicillin-susceptible and -resistant Staphylococcus aureus. J Infect Dis 163 : 1279 1285.[PubMed][CrossRef]
13. Livermore DM,, Nichols T,, Lamagni TL,, Potz N,, Reynolds R,, Duckworth G . 2003. Ciprofloxacin-resistant Escherichia coli from bacteraemias in England; increasingly prevalent and mostly from men. J Antimicrob Chemother 52 : 1040 1042.[PubMed][CrossRef]
14. Drlica K,, Zhao X . 2007. Mutant selection window hypothesis updated. Clin Infect Dis 44 : 681 688.[PubMed][CrossRef]
15. Almeida D,, Nuermberger E,, Tyagi S,, Bishai WR,, Grosset J . 2007. In vivo validation of the mutant selection window hypothesis with moxifloxacin in a murine model of tuberculosis. Antimicrob Agents Chemother 51 : 4261 4266.[PubMed][CrossRef]
16. Ginsburg AS,, Grosset JH,, Bishai WR . 2003. Fluoroquinolones, tuberculosis, and resistance. Lancet Infect Dis 3 : 432 442.[CrossRef]
17. Sullivan EA,, Kreiswirth BN,, Palumbo L,, Kapur V,, Musser JM,, Ebrahimzadeh A,, Frieden TR . 1995. Emergence of fluoroquinolone-resistant tuberculosis in New York City. Lancet 345 : 1148 1150.[CrossRef]
18. Fenlon CH,, Cynamon MH . 1986. Comparative in vitro activities of ciprofloxacin and other 4-quinolones against Mycobacterium tuberculosis and Mycobacterium intracellulare. Antimicrob Agents Chemother 29 : 386 388.[CrossRef]
19. Neu HC,, Fang W,, Gu JW,, Chin NX . 1992. In vitro activity of OPC-17116. Antimicrob Agents Chemother 36 : 1310 1315.[PubMed][CrossRef]
20. Takiff HE,, Salazar L,, Guerrero C,, Philipp W,, Huang WM,, Kreiswirth B,, Cole ST,, Jacobs WR Jr,, Telenti A . 1994. Cloning and nucleotide sequence of Mycobacterium tuberculosis gyrA and gyrB genes and detection of quinolone resistance mutations. Antimicrob Agents Chemother 38 : 773 780.[CrossRef]
21. Angeby KA,, Jureen P,, Giske CG,, Chryssanthou E,, Sturegard E,, Nordvall M,, Johansson AG,, Werngren J,, Kahlmeter G,, Hoffner SE,, Schon T . 2010. Wild-type MIC distributions of four fluoroquinolones active against Mycobacterium tuberculosis in relation to current critical concentrations and available pharmacokinetic and pharmacodynamic data. J Antimicrob Chemother 65 : 946 952.[PubMed][CrossRef]
22. Shandil RK,, Jayaram R,, Kaur P,, Gaonkar S,, Suresh BL,, Mahesh BN,, Jayashree R,, Nandi V,, Bharath S,, Balasubramanian V . 2007. Moxifloxacin, ofloxacin, sparfloxacin, and ciprofloxacin against Mycobacterium tuberculosis: evaluation of in vitro and pharmacodynamic indices that best predict in vivo efficacy. Antimicrob Agents Chemother 51 : 576 582.[PubMed][CrossRef]
23. Park SK,, Lee WC,, Lee DH,, Mitnick CD,, Han L,, Seung KJ . 2004. Self-administered, standardized regimens for multidrug-resistant tuberculosis in South Korea. Int J Tuberc Lung Dis 8 : 361 368.[PubMed]
24. Yew WW,, Chan CK,, Leung CC,, Chau CH,, Tam CM,, Wong PC,, Lee J . 2003. Comparative roles of levofloxacin and ofloxacin in the treatment of multidrug-resistant tuberculosis: preliminary results of a retrospective study from Hong Kong. Chest 124 : 1476 1481.[PubMed][CrossRef]
25. Renau TE,, Gage JW,, Dever JA,, Roland GE,, Joannides ET,, Shapiro MA,, Sanchez JP,, Gracheck SJ,, Domagala JM,, Jacobs MR,, Reynolds RC . 1996. Structure-activity relationships of quinolone agents against mycobacteria: effect of structural modifications at the 8 position. Antimicrob Agents Chemother 40 : 2363 2368.[PubMed]
26. Dawe RS,, Ibbotson SH,, Sanderson JB,, Thomson EM,, Ferguson J . 2003. A randomized controlled trial (volunteer study) of sitafloxacin, enoxacin, levofloxacin and sparfloxacin phototoxicity. Br J Dermatol 149 : 1232 1241.[PubMed][CrossRef]
27. Yadav V,, Deopujari K . 2006. Gatifloxacin and dysglycemia in older adults. N Engl J Med 354 : 2725 2726.[PubMed][CrossRef]
28. Champoux JJ . 2001. DNA topoisomerases: structure, function, and mechanism. Annu Rev Biochem 70 : 369 413.[PubMed][CrossRef]
29. Forterre P,, Gribaldo S,, Gadelle D,, Serre MC . 2007. Origin and evolution of DNA topoisomerases. Biochimie 89 : 427 446.[PubMed][CrossRef]
30. Levine C,, Hiasa H,, Marians KJ . 1998. DNA gyrase and topoisomerase IV: biochemical activities, physiological roles during chromosome replication, and drug sensitivities. Biochim Biophys Acta 1400 : 29 43.[CrossRef]
31. Mdluli K,, Ma Z . 2007. Mycobacterium tuberculosis DNA gyrase as a target for drug discovery. Infect Disord Drug Targets 7 : 159 168.[CrossRef]
32. Forterre P,, Gadelle D . 2009. Phylogenomics of DNA topoisomerases: their origin and putative roles in the emergence of modern organisms. Nucleic Acids Res 37 : 679 692.[PubMed][CrossRef]
33. Aravind L,, Leipe DD,, Koonin EV . 1998. Toprim: a conserved catalytic domain in type IA and II topoisomerases, DnaG-type primases, OLD family nucleases and RecR proteins. Nucleic Acids Res 26 : 4205 4213.[PubMed][CrossRef]
34. Schoeffler AJ,, Berger JM . 2008. DNA topoisomerases: harnessing and constraining energy to govern chromosome topology. Q Rev Biophys 41 : 41 101.[PubMed][CrossRef]
35. Hooper DC . 2002. Fluoroquinolone resistance among Gram-positive cocci. Lancet Infect Dis 2 : 530 538.[CrossRef]
36. Piton J,, Petrella S,, Delarue M,, Andre-Leroux G,, Jarlier V,, Aubry A,, Mayer C . 2010. Structural insights into the quinolone resistance mechanism of Mycobacterium tuberculosis DNA gyrase. PLoS One 5 : e12245. [PubMed][CrossRef]
37. Pan XS,, Yague G,, Fisher LM . 2001. Quinolone resistance mutations in Streptococcus pneumoniae GyrA and ParC proteins: mechanistic insights into quinolone action from enzymatic analysis, intracellular levels, and phenotypes of wild-type and mutant proteins. Antimicrob Agents Chemother 45 : 3140 3147.[PubMed][CrossRef]
38. Pestova E,, Millichap JJ,, Noskin GA,, Peterson LR . 2000. Intracellular targets of moxifloxacin: a comparison with other fluoroquinolones. J Antimicrob Chemother 45 : 583 590.[PubMed][CrossRef]
39. Yin X,, Yu Z . 2010. Mutation characterization of gyrA and gyrB genes in levofloxacin-resistant Mycobacterium tuberculosis clinical isolates from Guangdong Province in China. J Infect 61 : 150 154.[PubMed][CrossRef]
40. Ginsburg AS,, Woolwine SC,, Hooper N,, Benjamin WH Jr,, Bishai WR,, Dorman SE,, Sterling TR . 2003. The rapid development of fluoroquinolone resistance in M. tuberculosis. N Engl J Med 349 : 1977 1978.[PubMed][CrossRef]
41. Lau RW,, Ho PL,, Kao RY,, Yew WW,, Lau TC,, Cheng VC,, Yuen KY,, Tsui SK,, Chen X,, Yam WC . 2011. Molecular characterization of fluoroquinolone resistance in Mycobacterium tuberculosis: functional analysis of gyrA mutation at position 74. Antimicrob Agents Chemother 55 : 608 614.[PubMed][CrossRef]
42. Feng Y,, Liu S,, Wang Q,, Wang L,, Tang S,, Wang J,, Lu W . 2013. Rapid diagnosis of drug resistance to fluoroquinolones, amikacin, capreomycin, kanamycin and ethambutol using genotype MTBDRsl assay: a meta-analysis. PLoS One 8 : e55292. [PubMed][CrossRef]
43. Kocagoz T,, Hackbarth CJ,, Unsal I,, Rosenberg EY,, Nikaido H,, Chambers HF . 1996. Gyrase mutations in laboratory-selected, fluoroquinolone-resistant mutants of Mycobacterium tuberculosis H37Ra. Antimicrob Agents Chemother 40 : 1768 1774.[PubMed]
44. Cui Z,, Wang J,, Lu J,, Huang X,, Hu Z . 2011. Association of mutation patterns in gyrA/B genes and ofloxacin resistance levels in Mycobacterium tuberculosis isolates from East China in 2009. BMC Infect Dis 11 : 78. [PubMed][CrossRef]
45. Malik S,, Willby M,, Sikes S,, Tsodikov OV,, Posey JE . 2012. New insights into fluoroquinolone resistance in Mycobacterium tuberculosis: functional genetic analysis of gyrA and gyrB mutations. PLoS One 7 : e39754. [PubMed][CrossRef]
46. Pantel A,, Petrella S,, Veziris N,, Brossier F,, Bastian S,, Jarlier V,, Mayer C,, Aubry A . 2012. Extending the definition of the GyrB quinolone resistance-determining region in Mycobacterium tuberculosis DNA gyrase for assessing fluoroquinolone resistance in M. tuberculosis. Antimicrob Agents Chemother 56 : 1990 1996.[PubMed][CrossRef]
47. Kim H,, Nakajima C,, Yokoyama K,, Rahim Z,, Kim YU,, Oguri H,, Suzuki Y . 2011. Impact of the E540V amino acid substitution in GyrB of Mycobacterium tuberculosis on quinolone resistance. Antimicrob Agents Chemother 55 : 3661 3667.[PubMed][CrossRef]
48. Maruri F,, Sterling TR,, Kaiga AW,, Blackman A,, van der Heijden YF,, Mayer C,, Cambau E,, Aubry A . 2012. A systematic review of gyrase mutations associated with fluoroquinolone-resistant Mycobacterium tuberculosis and a proposed gyrase numbering system. J Antimicrob Chemother 67 : 819 831.[PubMed][CrossRef]
49. Aubry A,, Veziris N,, Cambau E,, Truffot-Pernot C,, Jarlier V,, Fisher LM . 2006. Novel gyrase mutations in quinolone-resistant and -hypersusceptible clinical isolates of Mycobacterium tuberculosis: functional analysis of mutant enzymes. Antimicrob Agents Chemother 50 : 104 112.[PubMed][CrossRef]
50. Suzuki Y,, Nakajima C,, Tamaru A,, Kim H,, Matsuba T,, Saito H . 2012. Sensitivities of ciprofloxacin-resistant Mycobacterium tuberculosis clinical isolates to fluoroquinolones: role of mutant DNA gyrase subunits in drug resistance. Int J Antimicrob Agents 39 : 435 439.[PubMed][CrossRef]
51. Von Groll A,, Martin A,, Jureen P,, Hoffner S,, Vandamme P,, Portaels F,, Palomino JC,, da Silva PA . 2009. Fluoroquinolone resistance in Mycobacterium tuberculosis and mutations in gyrA and gyrB. Antimicrob Agents Chemother 53 : 4498 4500.[PubMed][CrossRef]
52. Sirgel FA,, Warren RM,, Streicher EM,, Victor TC,, van Helden PD,, Bottger EC . 2012. gyrA mutations and phenotypic susceptibility levels to ofloxacin and moxifloxacin in clinical isolates of Mycobacterium tuberculosis. J Antimicrob Chemother 67 : 1088 1093.[PubMed][CrossRef]
53. Aubry A,, Fisher LM,, Jarlier V,, Cambau C . 2006. First functional characterization of a singly expressed bacterial type II topoisomerase: the enzyme from Mycobacterium tuberculosis. Biochem Biophys Res Commun 348 : 158 165.[PubMed][CrossRef]
54. Aubry A,, Pan XS,, Fisher LM,, Jarlier V,, Cambau E . 2004. Mycobacterium tuberculosis DNA gyrase: interaction with quinolones and correlation with antimycobacterial drug activity. Antimicrob Agents Chemother 48 : 1281 1288.[PubMed][CrossRef]
55. Matrat S,, Aubry A,, Mayer C,, Jarlier V,, Cambau E . 2008. Mutagenesis in the alpha3alpha4 GyrA helix and in the Toprim domain of GyrB refines the contribution of Mycobacterium tuberculosis DNA gyrase to intrinsic resistance to quinolones. Antimicrob Agents Chemother 52 : 2909 2914.[PubMed][CrossRef]
56. Matrat S,, Veziris N,, Mayer C,, Jarlier V,, Truffot-Pernot C,, Camuset J,, Bouvet E,, Cambau E,, Aubry A . 2006. Functional analysis of DNA gyrase mutant enzymes carrying mutations at position 88 in the A subunit found in clinical strains of Mycobacterium tuberculosis resistant to fluoroquinolones. Antimicrob Agents Chemother 50 : 4170 4173.[PubMed][CrossRef]
57. Mokrousov I,, Otten T,, Manicheva O,, Potapova Y,, Vishnevsky B,, Narvskaya O,, Rastogi N . 2008. Molecular characterization of ofloxacin-resistant Mycobacterium tuberculosis strains from Russia. Antimicrob Agents Chemother 52 : 2937 2939.[PubMed][CrossRef]
58. Rohs R,, West SM,, Sosinsky A,, Liu P,, Mann RS,, Honig B . 2009. The role of DNA shape in protein-DNA recognition. Nature 461 : 1248 1253.[PubMed][CrossRef]
59. Chernyaeva E,, Fedorova E,, Zhemkova G,, Korneev Y,, Kozlov A . 2013. Characterization of multiple and extensively drug resistant Mycobacterium tuberculosis isolates with different ofloxacin-resistance levels. Tuberculosis (Edinb) 93 : 291 295.[PubMed][CrossRef]
60. Gilpin C . 2012. Summary of outcomes from the WHO Expert Group Meeting on Drug Susceptibility Testing. World Health Organization, Geneva, Switzerland. http://www.finddiagnostics.org/export/sites/default/resource-centre/presentations/find_fifth_symposium_iuatld2012/04_ChristopherGilpin_WHO-ExpertGroupMeeting-DST.pdf.
61. World Health Organization Stop TB Dept . 2008. Policy guidance on drug-susceptibility testing (DST) of second-line antituberculosis drugs. World Health Organization, Geneva, Switzerland. http://whqlibdoc.who.int/hq/2008/WHO_HTM_TB_2008.392_eng.pdf.
62. Van Deun A,, Martin A,, Palomino JC . 2010. Diagnosis of drug-resistant tuberculosis: reliability and rapidity of detection. Int J Tuberc Lung Dis 14 : 131 140.[PubMed]
63. Jain P,, Hartman TE,, Eisenberg N,, O’Donnell MR,, Kriakov J,, Govender K,, Makume M,, Thaler DS,, Hatfull GF,, Sturm AW,, Larsen MH,, Moodley P,, Jacobs WR Jr . 2012. phi(2)GFP10, a high-intensity fluorophage, enables detection and rapid drug susceptibility testing of Mycobacterium tuberculosis directly from sputum samples. J Clin Microbiol 50 : 1362 1369.[PubMed][CrossRef]
64. Boehme CC,, Nabeta P,, Hillemann D,, Nicol MP,, Shenai S,, Krapp F,, Allen J,, Tahirli R,, Blakemore R,, Rustomjee R,, Milovic A,, Jones M,, O’Brien SM,, Persing DH,, Ruesch-Gerdes S,, Gotuzzo E,, Rodrigues C,, Alland D,, Perkins MD . 2010. Rapid molecular detection of tuberculosis and rifampin resistance. N Engl J Med 363 : 1005 1015.[PubMed][CrossRef]
65. Chang KC,, Yew WW,, Chan RC . 2010. Rapid assays for fluoroquinolone resistance in Mycobacterium tuberculosis: a systematic review and meta-analysis. J Antimicrob Chemother 65 : 1551 1561.[PubMed][CrossRef]
66. Folkvardsen DB,, Svensson E,, Thomsen VO,, Rasmussen EM,, Bang D,, Werngren J,, Hoffner S,, Hillemann D,, Rigouts L . 2013. Can molecular methods detect 1% isoniazid resistance in Mycobacterium tuberculosis? J Clin Microbiol 51 : 4220 4222.[PubMed][CrossRef]
67. Heep M,, Brandstatter B,, Rieger U,, Lehn N,, Richter E,, Rusch-Gerdes S,, Niemann S . 2001. Frequency of rpoB mutations inside and outside the cluster I region in rifampin-resistant clinical Mycobacterium tuberculosis isolates. J Clin Microbiol 39 : 107 110.[PubMed][CrossRef]
68. Hofmann-Thiel S,, van Ingen J,, Feldmann K,, Turaev L,, Uzakova GT,, Murmusaeva G,, van Soolingen D,, Hoffmann H . 2009. Mechanisms of heteroresistance to isoniazid and rifampin of Mycobacterium tuberculosis in Tashkent, Uzbekistan. Eur Respir J 33 : 368 374.[PubMed][CrossRef]
69. de Oliveira MM,, da Silva Rocha A,, Cardoso Oelemann M,, Gomes HM,, Fonseca L,, Werneck-Barreto AM,, Valim AM,, Rossetti ML,, Rossau R,, Mijs W,, Vanderborght B,, Suffys P . 2003. Rapid detection of resistance against rifampicin in isolates of Mycobacterium tuberculosis from Brazilian patients using a reverse-phase hybridization assay. J Microbiol Methods 53 : 335 342.[CrossRef]
70. Cooksey RC,, Morlock GP,, Holloway BP,, Mazurek GH,, Abaddi S,, Jackson LK,, Buzard GS,, Crawford JT . 1998. Comparison of two nonradioactive, single-strand conformation polymorphism electrophoretic methods for identification of rpoB mutations in rifampin-resistant isolates of Mycobacterium tuberculosis. Mol Diagn 3 : 73 79.[CrossRef]
71. Chakravorty S,, Aladegbami B,, Thoms K,, Lee JS,, Lee EG,, Rajan V,, Cho EJ,, Kim H,, Kwak H,, Kurepina N,, Cho SN,, Kreiswirth B,, Via LE,, Barry CE 3rd,, Alland D . 2011. Rapid detection of fluoroquinolone-resistant and heteroresistant Mycobacterium tuberculosis by use of sloppy molecular beacons and dual melting-temperature codes in a real-time PCR assay. J Clin Microbiol 49 : 932 940.[PubMed][CrossRef]
72. Pholwat S,, Stroup S,, Foongladda S,, Houpt E . 2013. Digital PCR to detect and quantify heteroresistance in drug resistant Mycobacterium tuberculosis. PLoS One 8 : e57238. [PubMed][CrossRef]
73. Blaas SH,, Mutterlein R,, Weig J,, Neher A,, Salzberger B,, Lehn N,, Naumann L . 2008. Extensively drug resistant tuberculosis in a high income country: a report of four unrelated cases. BMC Infect Dis 8 : 60. [PubMed][CrossRef]
74. Tolani MP,, D'souza DTB,, Mistry NF . 2012. Drug resistance mutations and heteroresistance detected using the GenoType MTBDRPlus assay and their implication for treatment outcomes in patients from Mumbai, India. BMC Infect Dis 12 : 9. [PubMed][CrossRef]
75. Adjers-Koskela K,, Katila ML . 2003. Susceptibility testing with the manual mycobacteria growth indicator tube (MGIT) and the MGIT 960 system provides rapid and reliable verification of multidrug-resistant tuberculosis. J Clin Microbiol 41 : 1235 1239.[CrossRef]
76. Rinder H,, Mieskes KT,, Loscher T . 2001. Heteroresistance in Mycobacterium tuberculosis. Int J Tuberc Lung Dis 5 : 339 345.[PubMed]
77. Nikolayevskyy V,, Balabanova Y,, Timak T,, Malomanova N,, Fedorin I,, Drobniewski F . 2009. Performance of the Genotype MTBDRPlus assay in the diagnosis of tuberculosis and drug resistance in Samara, Russian Federation. BMC Clin Pathol 9 : 2. [PubMed][CrossRef]
78. Streicher EM,, Bergval I,, Dheda K,, Bottger EC,, Gey van Pittius NC,, Bosman M,, Coetzee G,, Anthony RM,, van Helden PD,, Victor TC,, Warren RM . 2012. Mycobacterium tuberculosis population structure determines the outcome of genetics-based second-line drug resistance testing. Antimicrob Agents Chemother 56 : 2420 2427.[PubMed][CrossRef]
79. Zhang X,, Zhao B,, Liu L,, Zhu Y,, Zhao Y,, Jin Q . 2012. Subpopulation analysis of heteroresistance to fluoroquinolone in Mycobacterium tuberculosis isolates from Beijing, China. J Clin Microbiol 50 : 1471 1474.[PubMed][CrossRef]
80. Blakemore R,, Story E,, Helb D,, Kop J,, Banada P,, Owens MR,, Chakravorty S,, Jones M,, Alland D . 2010. Evaluation of the analytical performance of the Xpert MTB/RIF assay. J Clin Microbiol 48 : 2495 2501.[PubMed][CrossRef]
81. Gori A,, Bandera A,, Marchetti G,, Degli Esposti A,, Catozzi L,, Nardi GP,, Gazzola L,, Ferrario G,, van Embden JD,, van Soolingen D,, Moroni M,, Franzetti F . 2005. Spoligotyping and Mycobacterium tuberculosis. Emerg Infect Dis 11 : 1242 1248.[PubMed][CrossRef]
82. Woodford N,, Ellington MJ . 2007. The emergence of antibiotic resistance by mutation. Clin Microbiol Infect 13 : 5 18.[PubMed][CrossRef]
83. Chen TC,, Lu PL,, Lin CY,, Lin WR,, Chen YH . 2011. Fluoroquinolones are associated with delayed treatment and resistance in tuberculosis: a systematic review and meta-analysis. Int J Infect Dis 15 : e211 e216.[PubMed][CrossRef]
84. Cox HS,, Sibilia K,, Feuerriegel S,, Kalon S,, Polonsky J,, Khamraev AK,, Rusch-Gerdes S,, Mills C,, Niemann S . 2008. Emergence of extensive drug resistance during treatment for multidrug-resistant tuberculosis. N Engl J Med 359 : 2398 2400.[PubMed][CrossRef]
85. Calver AD,, Falmer AA,, Murray M,, Strauss OJ,, Streicher EM,, Hanekom M,, Liversage T,, Masibi M,, van Helden PD,, Warren RM,, Victor TC . 2010. Emergence of increased resistance and extensively drug-resistant tuberculosis despite treatment adherence, South Africa. Emerg Infect Dis 16 : 264 271.[PubMed][CrossRef]
86. Cullen MM,, Sam NE,, Kanduma EG,, McHugh TD,, Gillespie SH . 2006. Direct detection of heteroresistance in Mycobacterium tuberculosis using molecular techniques. J Med Microbiol 55 : 1157 1158.[PubMed][CrossRef]
87. Chigutsa E,, Meredith S,, Wiesner L,, Padayatchi N,, Harding J,, Moodley P,, Mac Kenzie WR,, Weiner M,, McIlleron H,, Kirkpatrick CM . 2012. Population pharmacokinetics and pharmacodynamics of ofloxacin in South African patients with multidrug-resistant tuberculosis. Antimicrob Agents Chemother 56 : 3857 3863.[PubMed][CrossRef]
88. Ginsburg AS,, Hooper N,, Parrish N,, Dooley KE,, Dorman SE,, Booth J,, Diener-West M,, Merz WG,, Bishai WR,, Sterling TR . 2003. Fluoroquinolone resistance in patients with newly diagnosed tuberculosis. Clin Infect Dis 37 : 1448 1452.[PubMed][CrossRef]
89. Wang JY,, Hsueh PR,, Jan IS,, Lee LN,, Liaw YS,, Yang PC,, Luh KT . 2006. Empirical treatment with a fluoroquinolone delays the treatment for tuberculosis and is associated with a poor prognosis in endemic areas. Thorax 61 : 903 908.[PubMed][CrossRef]
90. Piddock LJ . 2006. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin Microbiol Rev 19 : 382 402.[PubMed][CrossRef]
91. Poole K . 2005. Efflux-mediated antimicrobial resistance. J Antimicrob Chemother 56 : 20 51.[PubMed][CrossRef]
92. Vilcheze C,, Wang F,, Arai M,, Hazbon MH,, Colangeli R,, Kremer L,, Weisbrod TR,, Alland D,, Sacchettini JC,, Jacobs WR Jr . 2006. Transfer of a point mutation in Mycobacterium tuberculosis inhA resolves the target of isoniazid. Nat Med 12 : 1027 1029.[PubMed][CrossRef]
93. Meier I,, Wray LV,, Hillen W . 1988. Differential regulation of the Tn10-encoded tetracycline resistance genes tetA and tetR by the tandem tet operators O1 and O2. Embo J 7 : 567 572.[PubMed]
94. Kern WV,, Oethinger M,, Jellen-Ritter AS,, Levy SB . 2000. Non-target gene mutations in the development of fluoroquinolone resistance in Escherichia coli. Antimicrob Agents Chemother 44 : 814 820.[PubMed][CrossRef]
95. Abouzeed YM,, Baucheron B,, Cloeckaert A . 2008. ramR mutations involved in efflux-mediated multidrug resistance in Salmonella enterica serovar Typhimurium. Antimicrob Agents Chemother 52 : 2428 2434.[PubMed][CrossRef]
96. Fluman N,, Bibi E . 2009. Bacterial multidrug transport through the lens of the major facilitator superfamily. Biochim Biophys Acta 1794 : 738 747.[PubMed][CrossRef]
97. Godreuil S,, Galimand M,, Gerbaud G,, Jacquet C,, Courvalin P . 2003. Efflux pump Lde is associated with fluoroquinolone resistance in Listeria monocytogenes. Antimicrob Agents Chemother 47 : 704 708.[PubMed][CrossRef]
98. Van Bambeke F,, Michot JM,, Van Eldere J,, Tulkens PM . 2005. Quinolones in 2005: an update. Clin Microbiol Infect 11 : 256 280.[PubMed][CrossRef]
99. Piddock LJ,, Jin YF,, Griggs DJ . 2001. Effect of hydrophobicity and molecular mass on the accumulation of fluoroquinolones by Staphylococcus aureus. J Antimicrob Chemother 47 : 261 270.[PubMed][CrossRef]
100. Truong-Bolduc QC,, Dunman PM,, Strahilevitz J,, Projan SJ,, Hooper DC . 2005. MgrA is a multiple regulator of two new efflux pumps in Staphylococcus aureus. J Bacteriol 187 : 2395 2405.[PubMed][CrossRef]
101. Truong-Bolduc QC,, Hsing LC,, Villet R,, Bolduc GR,, Estabrooks Z,, Taguezem GF,, Hooper DC . 2012. Reduced aeration affects the expression of the NorB efflux pump of Staphylococcus aureus by posttranslational modification of MgrA. J Bacteriol 194 : 1823 1834.[PubMed][CrossRef]
102. El Garch F,, Lismond A,, Piddock LJ,, Courvalin P,, Tulkens PM,, Van Bambeke F . 2010. Fluoroquinolones induce the expression of patA and patB, which encode ABC efflux pumps in Streptococcus pneumoniae. J Antimicrob Chemother 65 : 2076 2082.[PubMed][CrossRef]
103. Poissy J,, Aubry A,, Fernandez C,, Lott MC,, Chauffour A,, Jarlier V,, Farinotti R,, Veziris N . 2010. Should moxifloxacin be used for the treatment of extensively drug-resistant tuberculosis? An answer from a murine model. Antimicrob Agents Chemother 54 : 4765 4771.[PubMed][CrossRef]
104. Schmalstieg AM,, Srivastava S,, Belkaya S,, Deshpande D,, Meek C,, Leff R,, van Oers NS,, Gumbo T . 2012. The antibiotic resistance arrow of time: efflux pump induction is a general first step in the evolution of mycobacterial drug resistance. Antimicrob Agents Chemother 56 : 4806 4815.[PubMed][CrossRef]
105. Adams KN,, Takaki K,, Connolly LE,, Wiedenhoft H,, Winglee K,, Humbert O,, Edelstein PH,, Cosma CL,, Ramakrishnan L . 2011. Drug tolerance in replicating mycobacteria mediated by a macrophage-induced efflux mechanism. Cell 145 : 39 53.[PubMed][CrossRef]
106. Louw GE,, Warren RM,, Gey van Pittius NC,, Leon R,, Jimenez A,, Pando RH,, McEvoy CR,, Grobbelaar M,, Murray M,, van Helden PD,, Victor TC . 2011. Rifampicin reduces susceptibility to ofloxacin in rifampicin resistant Mycobacterium tuberculosis through efflux. Am J Respir Crit Care Med 184 : 269 276.[PubMed][CrossRef]
107. Jumbe NL,, Louie A,, Miller MH,, Liu W,, Deziel MR,, Tam VH,, Bachhawat R,, Drusano GL . 2006. Quinolone efflux pumps play a central role in emergence of fluoroquinolone resistance in Streptococcus pneumoniae. Antimicrob Agents Chemother 50 : 310 317.[PubMed][CrossRef]
108. Gillespie SH,, Basu S,, Dickens AL,, O'sullivan DM,, McHugh TD . 2005. Effect of subinhibitory concentrations of ciprofloxacin on Mycobacterium fortuitum mutation rates. J Antimicrob Chemother 56 : 344 348.[PubMed][CrossRef]
109. Takiff HE,, Cimino M,, Musso MC,, Weisbrod T,, Martinez R,, Delgado MB,, Salazar L,, Bloom BR,, Jacobs WR Jr . 1996. Efflux pump of the proton antiporter family confers low-level fluoroquinolone resistance in Mycobacterium smegmatis. Proc Natl Acad Sci USA 93 : 362 366.[PubMed][CrossRef]
110. Liu J,, Takiff HE,, Nikaido H . 1996. Active efflux of fluoroquinolones in Mycobacterium smegmatis mediated by LfrA, a multidrug efflux pump. J Bacteriol 178 : 3791 3795.[PubMed]
111. Li XZ,, Zhang L,, Nikaido H . 2004. Efflux pump-mediated intrinsic drug resistance in Mycobacterium smegmatis. Antimicrob Agents Chemother 48 : 2415 2423.[PubMed][CrossRef]
112. Buroni S,, Manina G,, Guglierame P,, Pasca MR,, Riccardi G,, De Rossi E . 2006. LfrR is a repressor that regulates expression of the efflux pump LfrA in Mycobacterium smegmatis. Antimicrob Agents Chemother 50 : 4044 4052.[PubMed][CrossRef]
113. Bellinzoni M,, Buroni S,, Schaeffer F,, Riccardi G,, De Rossi E,, Alzari PM . 2009. Structural plasticity and distinct drug-binding modes of LfrR, a mycobacterial efflux pump regulator. J Bacteriol 191 : 7531 7537.[PubMed][CrossRef]
114. Sander P,, De Rossi E,, Boddinghaus B,, Cantoni R,, Branzoni M,, Bottger EC,, Takiff H,, Rodriquez R,, Lopez G,, Riccardi G . 2000. Contribution of the multidrug efflux pump LfrA to innate mycobacterial drug resistance. FEMS Microbiol Lett 193 : 19 23.[PubMed][CrossRef]
115. Esteban J,, Martin-de-Hijas NZ,, Ortiz A,, Kinnari TJ,, Bodas Sanchez A,, Gadea I,, Fernandez-Roblas R . 2009. Detection of lfrA and tap efflux pump genes among clinical isolates of non-pigmented rapidly growing mycobacteria. Int J Antimicrob Agents 34 : 454 456.[PubMed][CrossRef]
116. Jiang X,, Zhang W,, Zhang Y,, Gao F,, Lu C,, Zhang X,, Wang H . 2008. Assessment of efflux pump gene expression in a clinical isolate Mycobacterium tuberculosis by real-time reverse transcription PCR. Microb Drug Resist 14 : 7 11.[PubMed][CrossRef]
117. Siddiqi N,, Das R,, Pathak N,, Banerjee S,, Ahmed N,, Katoch VM,, Hasnain SE . 2004. Mycobacterium tuberculosis isolate with a distinct genomic identity overexpresses a tap-like efflux pump. Infection 32 : 109 111.[PubMed][CrossRef]
118. Ramon-Garcia S,, Mick V,, Dainese E,, Martin C,, Thompson CJ,, De Rossi E,, Manganelli R,, Ainsa JA . 2012. Functional and genetic characterization of the tap efflux pump in Mycobacterium bovis BCG. Antimicrob Agents Chemother 56 : 2074 2083.[PubMed][CrossRef]
119. da Silva PE,, Von Groll A,, Martin A,, Palomino JC . 2011. Efflux as a mechanism for drug resistance in Mycobacterium tuberculosis. FEMS Immunol Med Microbiol 63 : 1 9.[PubMed][CrossRef]
120. De Rossi E,, Ainsa JA,, Riccardi G . 2006. Role of mycobacterial efflux transporters in drug resistance: an unresolved question. FEMS Microbiol Rev 30 : 36 52.[PubMed][CrossRef]
121. De Rossi E,, Arrigo P,, Bellinzoni M,, Silva PA,, Martin C,, Ainsa JA,, Guglierame P,, Riccardi G . 2002. The multidrug transporters belonging to major facilitator superfamily in Mycobacterium tuberculosis. Mol Med 8 : 714 724.[PubMed]
122. Pasca MR,, Guglierame P,, Arcesi F,, Bellinzoni M,, De Rossi E,, Riccardi G . 2004. Rv2686c-Rv2687c-Rv2688c, an ABC fluoroquinolone efflux pump in Mycobacterium tuberculosis. Antimicrob Agents Chemother 48 : 3175 3178.[PubMed][CrossRef]
123. Choudhuri BS,, Bhakta S,, Barik R,, Basu J,, Kundu M,, Chakrabarti P . 2002. Overexpression and functional characterization of an ABC (ATP-binding cassette) transporter encoded by the genes drrA and drrB of Mycobacterium tuberculosis. Biochem J 367 : 279 285.[PubMed][CrossRef]
124. Chakraborti PK,, Bhatt K,, Banerjee SK,, Misra P . 1999. Role of an ABC importer in mycobacterial drug resistance. Biosci Rep 19 : 293 300.[PubMed][CrossRef]
125. Banerjee SK,, Bhatt K,, Misra P,, Chakraborti PK . 2000. Involvement of a natural transport system in the process of efflux-mediated drug resistance in Mycobacterium smegmatis. Mol Gen Genet 262 : 949 956.[PubMed][CrossRef]
126. Bhatt K,, Banerjee SK,, Chakraborti PK . 2000. Evidence that phosphate specific transporter is amplified in a fluoroquinolone resistant Mycobacterium smegmatis. Eur J Biochem 267 : 4028 4032.[PubMed][CrossRef]
127. Escribano I,, Rodriguez JC,, Llorca B,, Garcia-Pachon E,, Ruiz M,, Royo G . 2007. Importance of the efflux pump systems in the resistance of Mycobacterium tuberculosis to fluoroquinolones and linezolid. Chemotherapy 53 : 397 401.[PubMed][CrossRef]
128. Sarathy J,, Dartois V,, Dick T,, Gengenbacher M . 2013. Reduced drug uptake in phenotypically resistant nutrient-starved nonreplicating Mycobacterium tuberculosis. Antimicrob Agents Chemother 57 : 1648 1653.[PubMed][CrossRef]
129. Danilchanka O,, Pavlenok M,, Niederweis M . 2008. Role of porins for uptake of antibiotics by Mycobacterium smegmatis. Antimicrob Agents Chemother 52 : 3127 3134.[PubMed][CrossRef]
130. Siroy A,, Mailaender C,, Harder D,, Koerber S,, Wolschendorf F,, Danilchanka O,, Wang Y,, Heinz C,, Niederweis M . 2008. Rv1698 of Mycobacterium tuberculosis represents a new class of channel-forming outer membrane proteins. J Biol Chem 283 : 17827 17837.[PubMed][CrossRef]
131. Brennan PJ,, Nikaido H . 1995. The envelope of mycobacteria. Annu Rev Biochem 64 : 29 63.[PubMed][CrossRef]
132. Montero C,, Mateu G,, Rodriguez R,, Takiff H . 2001. Intrinsic resistance of Mycobacterium smegmatis to fluoroquinolones may be influenced by new pentapeptide protein MfpA. Antimicrob Agents Chemother 45 : 3387 3392.[PubMed][CrossRef]
133. Jacoby GA,, Hooper DC . 2013. Phylogenetic analysis of chromosomally determined qnr and related proteins. Antimicrob Agents Chemother 57 : 1930 1934.[PubMed][CrossRef]
134. Bateman A,, Murzin AG,, Teichmann SA . 1998. Structure and distribution of pentapeptide repeats in bacteria. Protein Sci 7 : 1477 1480.[PubMed][CrossRef]
135. Vetting MW,, Hegde SS,, Fajardo JE,, Fiser A,, Roderick SL,, Takiff HE,, Blanchard JS . 2006. Pentapeptide repeat proteins. Biochemistry 45 : 1 10.[PubMed][CrossRef]
136. Buchko GW,, Ni S,, Robinson H,, Welsh EA,, Pakrasi HB,, Kennedy MA . 2006. Characterization of two potentially universal turn motifs that shape the repeated five-residues fold--crystal structure of a lumenal pentapeptide repeat protein from Cyanothece 51142. Protein Sci 15 : 2579 2595.[PubMed][CrossRef]
137. Poirel L,, Cattoir V,, Nordmann P . 2012. Plasmid-mediated quinolone resistance; interactions between human, animal, and environmental ecologies. Front Microbiol 3 : 24. [PubMed][CrossRef]
138. Vetting MW,, Hegde SS,, Blanchard JS . 2009. Crystallization of a pentapeptide-repeat protein by reductive cyclic pentylation of free amines with glutaraldehyde. Acta Crystallogr D Biol Crystallogr 65 : 462 469.[PubMed][CrossRef]
139. Rodriguez-Martinez JM,, Velasco C,, Garcia I,, Cano ME,, Martinez-Martinez L,, Pascual A . 2007. Mutant prevention concentrations of fluoroquinolones for Enterobacteriaceae expressing the plasmid-carried quinolone resistance determinant qnrA1. Antimicrob Agents Chemother 51 : 2236 2239.[PubMed][CrossRef]
140. Buchko GW,, Robinson H,, Pakrasi HB,, Kennedy MA . 2008. Insights into the structural variation between pentapeptide repeat proteins--crystal structure of Rfr23 from Cyanothece 51142. J Struct Biol 162 : 184 192.[PubMed][CrossRef]
141. Hegde SS,, Vetting MW,, Roderick SL,, Mitchenall LA,, Maxwell A,, Takiff HE,, Blanchard JS . 2005. A fluoroquinolone resistance protein from Mycobacterium tuberculosis that mimics DNA. Science 308 : 1480 1483.[PubMed][CrossRef]
142. Tran JH,, Jacoby GA,, Hooper DC . 2005. Interaction of the plasmid-encoded quinolone resistance protein Qnr with Escherichia coli DNA gyrase. Antimicrob Agents Chemother 49 : 118 125.[PubMed][CrossRef]
143. Vetting MW,, Hegde SS,, Wang M,, Jacoby GA,, Hooper DC,, Blanchard JS . 2011. Structure of QnrB1, a plasmid-mediated fluoroquinolone resistance factor. J Biol Chem 286 : 25265 25273.[PubMed][CrossRef]
144. Tao J,, Han J,, Wu H,, Hu X,, Deng J,, Fleming J,, Maxwell A,, Bi L,, Mi K . 2013. Mycobacterium fluoroquinolone resistance protein B, a novel small GTPase, is involved in the regulation of DNA gyrase and drug resistance. Nucleic Acids Res 41 : 2370 2381.[PubMed][CrossRef]
145. Yang K,, Han L,, He J,, Wang L,, Vining LC . 2001. A repressor-response regulator gene pair controlling jadomycin B production in Streptomyces venezuelae ISP5230. Gene 279 : 165 173.[CrossRef]
146. Miertzschke M,, Koerner C,, Vetter IR,, Keilberg D,, Hot E,, Leonardy S,, Sogaard-Andersen L,, Wittinghofer A . 2011. Structural analysis of the Ras-like G protein MglA and its cognate GAP MglB and implications for bacterial polarity. Embo J 30 : 4185 4197.[PubMed][CrossRef]
147. Garrido MC,, Herrero M,, Kolter R,, Moreno F . 1988. The export of the DNA replication inhibitor Microcin B17 provides immunity for the host cell. Embo J 7 : 1853 1862.[PubMed]
148. Vetting MW,, Hegde SS,, Zhang Y,, Blanchard JS . 2011. Pentapeptide-repeat proteins that act as topoisomerase poison resistance factors have a common dimer interface. Acta Crystallogr Sect F Struct Biol Cryst Commun 67 : 296 302.[PubMed][CrossRef]
149. Hashimi SM,, Wall MK,, Smith AB,, Maxwell A,, Birch RG . 2007. The phytotoxin albicidin is a novel inhibitor of DNA gyrase. Antimicrob Agents Chemother 51 : 181 187.[PubMed][CrossRef]
150. World Health Organization . 2011. Global tuberculosis control: WHO report 2011. World Health Organization, Geneva.
151. Zhou J,, Dong Y,, Zhao X,, Lee S,, Amin A,, Ramaswamy S,, Domagala J,, Musser JM,, Drlica K . 2000. Selection of antibiotic-resistant bacterial mutants: allelic diversity among fluoroquinolone-resistant mutations. J Infect Dis 182 : 517 525.[PubMed][CrossRef]
152. Kam KM,, Yip CW,, Cheung TL,, Tang HS,, Leung OC,, Chan MY . 2006. Stepwise decrease in moxifloxacin susceptibility amongst clinical isolates of multidrug-resistant Mycobacterium tuberculosis: correlation with ofloxacin susceptibility. Microb Drug Resist 12 : 7 11.[PubMed][CrossRef]
153. Wikipedia . Moxifloxacin. http://en.wikipedia.org/wiki/Moxifloxacin.
154. Gomez C,, Ponien P,, Serradji N,, Lamouri A,, Pantel A,, Capton E,, Jarlier V,, Anquetin G,, Aubry A . 2013. Synthesis of gatifloxacin derivatives and their biological activities against Mycobacterium leprae and Mycobacterium tuberculosis. Bioorg Med Chem 21 : 948 956.[PubMed][CrossRef]
155. Sreevatsan S,, Pan X,, Stockbauer KE,, Connell ND,, Kreiswirth BN,, Whittam TS,, Musser JM . 1997. Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionarily recent global dissemination. Proc Natl Acad Sci USA 94 : 9869 9874.[PubMed][CrossRef]
156. Komatsu M,, Takano H,, Hiratsuka T,, Ishigaki Y,, Shimada K,, Beppu T,, Ueda K . 2006. Proteins encoded by the conservon of Streptomyces coelicolor A3(2) comprise a membrane-associated heterocomplex that resembles eukaryotic G protein-coupled regulatory system. Mol Microbiol 62 : 1534 1546.[PubMed][CrossRef]

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error