Chapter 13 : Enteric Pathogens Exploit the Microbiota-generated Nutritional Environment of the Gut

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Enteric Pathogens Exploit the Microbiota-generated Nutritional Environment of the Gut, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818883/9781555818869_Chap13-1.gif /docserver/preview/fulltext/10.1128/9781555818883/9781555818869_Chap13-2.gif


The mammalian gastrointestinal (GI) tract harbors a diverse collection of indigenous bacteria known as the microbiota. The number of bacterial cells within our bodies exceeds the number of our cells by one order of magnitude ( ). Homeostasis of the microbiota is maintained by differential nutrient utilization and physical separation from the gut mucosa ( ). However, environmental perturbations such as antibiotic treatment, changes in diet, and infection lead to substantial alterations in composition and structure of the microbiota, referred to as ( ).

Citation: Pacheco A, Sperandio V. 2015. Enteric Pathogens Exploit the Microbiota-generated Nutritional Environment of the Gut, p 279-296. In Conway T, Cohen P (ed), Metabolism and Bacterial Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MBP-0001-2014
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Nutritional cues regulate the locus of enterocyte effacement (LEE) gene expression in enterohemorrhagic (EHEC). Glycophagic members of the microbiota such as make fucose from mucin accessible to EHEC, and EHEC interprets this information to recognize that it is in the lumen, where expression of its LEE-encoded type III secretion system (TTSS) is onerous and not advantageous. Using yet another nutrient-based environmental cue, EHEC also times LEE expression through recognition of glycolytic and gluconeogenic environments. The lumen is more glycolytic due to predominant glycophagic members of the microbiota degrading complex polysaccharides into monosaccharides that can be readily utilized by nonglycophagic bacterial species such as and . In contrast, the tight mucus layer between the lumen and the epithelial interface in the gastrointestinal (GI) tract is devoid of microbiota; it is known as a “zone of clearance.” At the epithelial interface, the environment is regarded as gluconeogenic. Hence, the coupling of LEE regulation to optimal expression under gluconeogenic and low-fucose conditions mirrors the interface with the epithelial layer environment in the GI tract, ensuring that EHEC will express only LEE at optimal levels to promote attaching and effacing lesion formation at the epithelial interface.

Citation: Pacheco A, Sperandio V. 2015. Enteric Pathogens Exploit the Microbiota-generated Nutritional Environment of the Gut, p 279-296. In Conway T, Cohen P (ed), Metabolism and Bacterial Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MBP-0001-2014
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Kamada N,, Kim YG,, Sham HP,, Vallance BA,, Puente JL,, Martens EC,, Nunez G . 2012. Regulated virulence controls the ability of a pathogen to compete with the gut microbiota. Science 336 : 1325 1329.[PubMed] [CrossRef]
2. Thiennimitr P,, Winter SE,, Baumler AJ . 2011. Salmonella, the host and its microbiota. Curr Opin Microbiol 15 : 108 114.[PubMed] [CrossRef]
3. Gill SR,, Pop M,, Deboy RT,, Eckburg PB,, Turnbaugh PJ,, Samuel BS,, Gordon GL,, Relman DA,, Fraser-Liggett CM,, Nelson KE . 2006. Metagenomic analysis of the human distal gut microbiome. Science 312 : 1355 1359.[PubMed] [CrossRef]
4. Vaishnava S,, Yamamoto M,, Severson KM,, Ruhn KA,, Yu X,, Koren O,, Ley R,, Wakeland EK,, Hooper LV . 2011. The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine. Science 334 : 255 258.[PubMed] [CrossRef]
5. Stecher B,, Maier L,, Hardt WD . 2013. ‘Blooming’ in the gut: how dysbiosis might contribute to pathogen evolution. Nat Rev Microbiol 11 : 277 284.[PubMed] [CrossRef]
6. Lupp C,, Robertson ML,, Wickham ME,, Sekirov I,, Champion OL,, Gaynor EC,, Finlay BB . 2007. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe 2 : 204. [PubMed] [CrossRef]
7. Stecher B,, Robbiani R,, Walker AW,, Westendorf AM,, Barthel M,, Kremer M,, Chaffron S,, Macpherson AJ,, Buer J,, Parkhill J,, Dougan G,, von Mering C,, Hardt WD . 2007. Salmonella enterica serovar typhimurium exploits inflammation to compete with the intestinal microbiota. PLoS Biol 5 : 2177 2189.[PubMed] [CrossRef]
8. Sekirov I,, Tam NM,, Jogova M,, Robertson ML,, Li Y,, Lupp C,, Finlay BB . 2008. Antibiotic-induced perturbations of the intestinal microbiota alter host susceptibility to enteric infection. Infect Immun 76 : 4726 4736.[PubMed] [CrossRef]
9. Freter R,, Brickner H,, Botney M,, Cleven D,, Aranki A . 1983. Mechanisms that control bacterial populations in continuous-flow culture models of mouse large intestinal flora. Infect Immun 39 : 676 685.[PubMed]
10. Lamont JT . 1992. Mucus: the front line of intestinal mucosal defense. Ann N Y Acad Sci 664 : 190 201.[PubMed] [CrossRef]
11. McGuckin MA,, Linden SK,, Sutton P,, Florin TH . 2011. Mucin dynamics and enteric pathogens. Nat Rev Microbiol 9 : 265 278.[PubMed] [CrossRef]
12. Jarvis KG,, Giron JA,, Jerse AE,, McDaniel EK,, Donnenberg MS,, Kaper JB . 1995. Enteropathogenic Escherichia coli contains a putative type III secretion system necessary for the export of proteins involved in attaching and effacing lesion formation. Proc Natl Acad Sci U S A 92 : 7996 8000.[PubMed] [CrossRef]
13. Sperandio V,, Mellies JL,, Nguyen W,, Shin S,, Kaper JB . 1999. Quorum sensing controls expression of the type III secretion gene transcription and protein secretion in enterohemorrhagic and enteropathogenic Escherichia coli. Proc Natl Acad Sci U S A 96 : 15196 15201.[PubMed] [CrossRef]
14. Harrington SM,, Sheikh J,, Henderson LR,, Ruiz-Perez F,, Cohen PS,, Nataro JP . 2009. The Pic protease of enteroaggregative Escherichia coli promotes intestinal colonization and growth in the presence of mucin. Infect Immun 77 : 2465 2473.[PubMed] [CrossRef]
15. O’Brien AD,, LaVeck GD,, Griffin DE,, Thompson MR . 1980. Characterization of Shigella dysenteriae 1 (Shiga) toxin purified by anti-Shiga toxin affinity chromatography. Infect Immun 30 : 170 179.[PubMed]
16. Weinstein DL,, Carsiotis M,, Lissner CR,, O’Brien AD . 1984. Flagella help Salmonella typhimurium survive within murine macrophages. Infect Immun 46 : 819 825.[PubMed]
17. Finlay BB,, Falkow S . 1990. Salmonella interactions with polarized human intestinal Caco-2 epithelial cells. J Infect Dis 162 : 1096 1106.[PubMed] [CrossRef]
18. Ley RE,, Hamady M,, Lozupone C,, Turnbaugh PJ,, Ramey RR,, Bircher JS,, Schlegel ML,, Tucker TA,, Schrenzel MD,, Knight R,, Gordon JL . 2008. Evolution of mammals and their gut microbes. Science 320 : 1647 1651.[PubMed] [CrossRef]
19. Savage DC . 1977. Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol 31 : 107 133.[PubMed] [CrossRef]
20. Eckburg PB,, Bik EM,, Bernstein CN,, Purdom E,, Dethlefsen L,, Sargent M,, Gill SR,, Nelson KE,, Relman DA . 2005. Diversity of the human intestinal microbial flora. Science 308 : 1635 1638.[PubMed] [CrossRef]
21. Qin J,, Li R,, Raes J,, Arumugam M,, Burgdorf KS,, Manichanh C,, Nielsen T,, Pons N,, Levenez F,, Yamada T,, Mende DR,, Li J,, Xu J,, Li S,, Li D,, Cao J,, Wang B,, Liang H,, Zheng H,, Xie Y,, Tap J,, Lepage P,, Bertalan M,, Batto JM,, Hansen T,, Le Paslier D,, Linneberg A,, Nielsen HB,, Pelletier E,, Renault P,, Sicheritz-Ponten T,, Turner K,, Zhu H,, Yu C,, Jian M,, Zhou Y,, Li Y,, Zhang X,, Qin N,, Yang H,, Wang J,, Brunak S,, Dore J,, Guarner F,, Kristiansen K,, Pedersen O,, Parkhill J,, Weissenbach J,, Bork P,, Ehrlich SD . 2010. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464 : 59 65.[PubMed] [CrossRef]
22. Stewart JA,, Chadwick VS,, Murray A . 2005. Investigations into the influence of host genetics on the predominant eubacteria in the faecal microflora of children. J Med Microbiol 54 : 1239 1242.[PubMed] [CrossRef]
23. Benson AK,, Kelly SA,, Legge R,, Ma F,, Low SJ,, Kim J,, Zhang M,, Oh PL,, Nehrenberg D,, Hua K,, Kachman SD,, Moriyama EN,, Walter J,, Peterson DA,, Pomp D . 2010. Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc Natl Acad Sci U S A 107 : 18933 18938.[PubMed] [CrossRef]
24. O’Hara AM,, Shanahan F . 2006. The gut flora as a forgotten organ. EMBO Rep 7 : 688 693.[PubMed] [CrossRef]
25. Peterson J,, Garges S,, Giovanni M,, McInnes P,, Wang L,, Schloss JA,, Bonazzi V,, McEwen JE,, Wetterstrand KA,, Deal C,, Baker CC,, Di Francesco V,, Howcroft TK,, Karp RW,, Lunsford RD,, Wellington CR,, Belachew T,, Wright M,, Giblin C,, David H,, Mills M,, Salomon R,, Mullins C,, Akolkar B,, Begg L,, Davis C,, Grandison L,, Humble M,, Khalsa J,, Little AR,, Peavy H,, Pontzer C,, Portnoy M,, Sayre MH,, Starke-Reed P,, Zakhari S,, Read J,, Watson B,, Guyer M . 2009. The NIH Human Microbiome Project. Genome Res 19 : 2317 2323.[PubMed] [CrossRef]
26. Turnbaugh PJ,, Ley RE,, Hamady M,, Fraser-Liggett CM,, Knight R,, Gordon JI . 2007. The human microbiome project. Nature 449 : 804 810.[PubMed] [CrossRef]
27. Png CW,, Linden SK,, Gilshenan KS,, Zoetendal EG,, McSweeney CS,, Sly LI,, McGuckin MA,, Florin TH . 2010. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am J Gastroenterol 105 : 2420 2428.[PubMed] [CrossRef]
28. Tu QV,, McGuckin MA,, Mendz GL . 2008. Campylobacter jejuni response to human mucin MUC2: modulation of colonization and pathogenicity determinants. J Med Microbiol 57 : 795 802.[PubMed] [CrossRef]
29. Johansson ME,, Larsson JM,, Hansson GC . 2011. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc Natl Acad Sci U S A 108( Suppl 1) : 4659 4665.[PubMed] [CrossRef]
30. Larson G,, Falk P,, Hoskins LC . 1988. Degradation of human intestinal glycosphingolipids by extracellular glycosidases from mucin-degrading bacteria of the human fecal flora. J Biol Chem 263 : 10790 10798.[PubMed]
31. Hoskins LC,, Agustines M,, McKee WB,, Boulding ET,, Kriaris M,, Niedermeyer G . 1985. Mucin degradation in human colon ecosystems. Isolation and properties of fecal strains that degrade ABH blood group antigens and oligosaccharides from mucin glycoproteins. J Clin Invest 75 : 944 953.[PubMed] [CrossRef]
32. Marcobal A,, Southwick AM,, Earle KA,, Sonnenburg JL . 2013. A refined palate: Bacterial consumption of host glycans in the gut. Glycobiology 23 : 1038 1046.[PubMed] [CrossRef]
33. Bergstrom KS,, Kissoon-Singh V,, Gibson DL,, Ma C,, Montero M,, Sham HP,, Ryz N,, Huang T,, Velcich A,, Finlay BB,, Chadee K,, Vallance BA . 2010. Muc2 protects against lethal infectious colitis by disassociating pathogenic and commensal bacteria from the colonic mucosa. PLoS Pathog 6 : e1000902. [PubMed] [CrossRef]
34. Kim YS,, Ho SB . 2010. Intestinal goblet cells and mucins in health and disease: recent insights and progress. Curr Gastroenterol Rep 12 : 319 330.[PubMed] [CrossRef]
35. Salzman N,, Underwood MA,, Bevins CL . 2007. Paneth cells, defensins, and the commensal microbiota: a hypothesis on intimate interplay at the intestinal mucosa. Semin Immunol 19 : 70 83.[PubMed] [CrossRef]
36. Mack DR,, Michail S,, Wei S,, McDougall L,, Hollingsworth MA . 1999. Probiotics inhibit enteropathogenic E. coli adherence in vitro by inducing intestinal mucin gene expression. Am J Physiol 276 : G941 G950.[PubMed]
37. Robbe C,, Capon C,, Flahaut C,, Michalski JC . 2003. Microscale analysis of mucin-type O-glycans by a coordinated fluorophore-assisted carbohydrate electrophoresis and mass spectrometry approach. Electrophoresis 24 : 611 621.[PubMed] [CrossRef]
38. Corfield AP,, Wagner SA,, Clamp JR,, Kriaris MS,, Hoskins LC . 1992. Mucin degradation in the human colon: production of sialidase, sialate O-acetylesterase, N-acetylneuraminate lyase, arylesterase, and glycosulfatase activities by strains of fecal bacteria. Infect Immun 60 : 3971 3978.[PubMed]
39. Johansson ME,, Phillipson M,, Petersson J,, Velcich A,, Holm L,, Hansson GC . 2008. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci USA 105 : 15064 15069.[PubMed] [CrossRef]
40. Robbe C,, Capon C,, Coddeville B,, Michalski JC . 2004. Structural diversity and specific distribution of O-glycans in normal human mucins along the intestinal tract. Biochem J 384 : 307 316.[PubMed] [CrossRef]
41. Resta-Lenert S,, Das S,, Batra SK,, Ho SB . 2011. Muc17 protects intestinal epithelial cells from enteroinvasive E. coli infection by promoting epithelial barrier integrity. Am J Physiol Gastrointest Liver Physiol 300 : G1144 G1155.[PubMed] [CrossRef]
42. Grys TE,, Walters LL,, Welch RA . 2006. Characterization of the StcE protease activity of Escherichia coli O157:H7. J Bacteriol 188 : 4646 4653.[PubMed] [CrossRef]
43. Wadolkowski EA,, Laux DC,, Cohen PS . 1988. Colonization of the streptomycin-treated mouse large intestine by a human fecal Escherichia coli strain: role of growth in mucus. Infect Immun 56 : 1030 1035.[PubMed]
44. Miranda RL,, Conway T,, Leatham MP,, Chang DE,, Norris WE,, Allen JH,, Stevenson SJ,, Laux DC,, Cohen PS . 2004. Glycolytic and gluconeogenic growth of Escherichia coli O157:H7 (EDL933) and E. coli K-12 (MG1655) in the mouse intestine. Infect Immun 72 : 1666 1676.[PubMed] [CrossRef]
45. Peekhaus N,, Conway T . 1998. What’s for dinner?: Entner-Doudoroff metabolism in Escherichia coli. J Bacteriol 180 : 3495 3502.[PubMed]
46. Montagne L,, Toullec R,, Lalles JP . 2000. Calf intestinal mucin: isolation, partial characterization, and measurement in ileal digesta with an enzyme-linked immunosorbent assay. J Dairy Sci 83 : 507 517.[PubMed] [CrossRef]
47. Chang DE,, Smalley DJ,, Tucker DL,, Leatham MP,, Norris WE,, Stevenson SJ,, Anderson AB,, Grissom JE,, Laux DC,, Cohen PS,, Conway T . 2004. Carbon nutrition of Escherichia coli in the mouse intestine. Proc Natl Acad Sci U S A 101 : 7427 7432.[PubMed] [CrossRef]
48. Martens EC,, Roth R,, Heuser JE,, Gordon JI . 2009. Coordinate regulation of glycan degradation and polysaccharide capsule biosynthesis by a prominent human gut symbiont. J Biol Chem 284 : 18445 18457.[PubMed] [CrossRef]
49. McNulty NP,, Wu M,, Erickson AR,, Pan C,, Erickson BK,, Martens EC,, Pudlo NA,, Muegge BD,, Henrissat B,, Hettich RL,, Gordon JI . 2013. Effects of Diet on Resource Utilization by a Model Human Gut Microbiota Containing Bacteroides cellulosilyticus WH2, a Symbiont with an Extensive Glycobiome. PLoS Biol 11 : e1001637. [PubMed] [CrossRef]
50. Sonnenburg JL,, Xu J,, Leip DD,, Chen CH,, Westover BP,, Weatherford J,, Buhler JD,, Gordon JI . 2005. Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 307 : 1955 1959.[PubMed] [CrossRef]
51. Salyers AA,, West SE,, Vercellotti JR,, Wilkins TD . 1977. Fermentation of mucins and plant polysaccharides by anaerobic bacteria from the human colon. Appl Environ Microbiol 34 : 529 533.[PubMed]
52. Martens EC,, Chiang HC,, Gordon JI . 2008. Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Cell Host Microbe 4 : 447 457.[PubMed] [CrossRef]
53. Martens EC,, Lowe EC,, Chiang H,, Pudlo NA,, Wu M,, McNulty NP,, Abbott DW,, Henrissat B,, Gilbert HJ,, Bolam DN,, Gordon JI . 2011. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. PLoS Biol 9 : e1001221. [PubMed] [CrossRef]
54. Marcobal A,, Barboza M,, Sonnenburg ED,, Pudlo N,, Martens EC,, Desai P,, Lebrilla CB,, Weimer BC,, Mills DA,, German JB,, Sonnenburg JL . 2011. Bacteroides in the infant gut consume milk oligosaccharides via mucus-utilization pathways. Cell Host Microbe 10 : 507 514.[PubMed] [CrossRef]
55. Flint HJ,, Bayer EA,, Rincon MT,, Lamed R,, White BA . 2008. Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat Rev Microbiol 6 : 121 131.[PubMed] [CrossRef]
56. Moore WE,, Holdeman LV . 1974. Human fecal flora: the normal flora of 20 Japanese-Hawaiians. Appl Microbiol 27 : 961 979.[PubMed]
57. Ushijima T,, Takahashi M,, Tatewaki K,, Ozaki Y . 1983. A selective medium for isolation and presumptive identification of the Bacteriodes fragilis group. Microbiol Immunol 27 : 985 993.[PubMed] [CrossRef]
58. Xu J,, Mahowald MA,, Ley RE,, Lozupone CA,, Hamady M,, Martens EC,, Henrissat B,, Coutinho PM,, Minx P,, Latreille P,, Cordum H,, Van Brunt A,, Kim K,, Fulton RS,, Fulton LA,, Clifton SW,, Wilson RK,, Knight RD,, Gordon JI . 2007. Evolution of symbiotic bacteria in the distal human intestine. PLoS Biol 5 : e156. [PubMed] [CrossRef]
59. Bjursell MK,, Martens EC,, Gordon JI . 2006. Functional genomic and metabolic studies of the adaptations of a prominent adult human gut symbiont, Bacteroides thetaiotaomicron, to the suckling period. J Biol Chem 281 : 36269 36279.[PubMed] [CrossRef]
60. Garrido D,, Ruiz-Moyano S,, Mills DA . 2012. Release and utilization of N-acetyl-D-glucosamine from human milk oligosaccharides by Bifidobacterium longum subsp. infantis. Anaerobe 18 : 430 435.[PubMed] [CrossRef]
61. Garrido D,, Dallas DC,, Mills DA . 2013. Consumption of human milk glycoconjugates by infant-associated bifidobacteria: mechanisms and implications. Microbiology 159 : 649 664.[PubMed] [CrossRef]
62. Garrido D,, Barile D,, Mills DA . 2012. A molecular basis for bifidobacterial enrichment in the infant gastrointestinal tract. Adv Nutr 3 : 415S 421S.[PubMed] [CrossRef]
63. Collins MD,, Gibson GR . 1999. Probiotics, prebiotics, and synbiotics: approaches for modulating the microbial ecology of the gut. Am J Clin Nutr 69 : 1052S 1057S.[PubMed]
64. Pacheco AR,, Curtis MM,, Ritchie JM,, Munera D,, Waldor MK,, Moreira CG,, Sperandio V . 2012. Fucose sensing regulates bacterial intestinal colonization. Nature 492 : 113 117.[PubMed] [CrossRef]
65. Bry L,, Falk PG,, Midtvedt T,, Gordon JI . 1996. A model of host-microbial interactions in an open mammalian ecosystem. Science 273 : 1380 1383.[PubMed] [CrossRef]
66. Coyne MJ,, Reinap B,, Lee MM,, Comstock LE . 2005. Human symbionts use a host-like pathway for surface fucosylation. Science 307 : 1778 1781.[PubMed] [CrossRef]
67. Bjork S,, Breimer ME,, Hansson GC,, Karlsson KA,, Leffler H . 1987. Structures of blood group glycosphingolipids of human small intestine. A relation between the expression of fucolipids of epithelial cells and the ABO, Le and Se phenotype of the donor. J Biol Chem 262 : 6758 6765.[PubMed]
68. Finne J,, Breimer ME,, Hansson GC,, Karlsson KA,, Leffler H,, Vliegenthart JF,, van Halbeek H . 1989. Novel polyfucosylated N-linked glycopeptides with blood group A, H, X, and Y determinants from human small intestinal epithelial cells. J Biol Chem 264 : 5720 5735.[PubMed]
69. Hooper LV,, Xu J,, Falk PG,, Midtvedt T,, Gordon JI . 1999. A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem. Proc Natl Acad Sci U S A 96 : 9833 9838.[PubMed] [CrossRef]
70. Fletcher CM,, Coyne MJ,, Villa OF,, Chatzidaki-Livanis M,, Comstock LE . 2009. A general O-glycosylation system important to the physiology of a major human intestinal symbiont. Cell 137 : 321 331.[PubMed] [CrossRef]
71. Fischbach MA,, Sonnenburg JL . 2011. Eating for two: how metabolism establishes interspecies interactions in the gut. Cell Host Microbe 10 : 336 347.[PubMed] [CrossRef]
72. Lozupone CA,, Hamady M,, Cantarel BL,, Coutinho PM,, Henrissat B,, Gordon JI,, Knight R . 2008. The convergence of carbohydrate active gene repertoires in human gut microbes. Proc Natl Acad Sci U S A 105 : 15076 15081.[PubMed] [CrossRef]
73. Xu J,, Bjursell MK,, Himrod J,, Deng S,, Carmichael LK,, Chiang HC,, Hooper LV,, Gordon JI . 2003. A genomic view of the human-Bacteroides thetaiotaomicron symbiosis. Science 299 : 2074 2076.[PubMed] [CrossRef]
74. Derrien M,, Vaughan EE,, Plugge CM,, de Vos WM . 2004. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol 54 : 1469 1476.[PubMed] [CrossRef]
75. Deriu E,, Liu JZ,, Pezeshki M,, Edwards RA,, Ochoa RJ,, Contreras H,, Libby SJ,, Fang FC,, Raffatellu M . 2013. Probiotic bacteria reduce salmonella typhimurium intestinal colonization by competing for iron. Cell Host Microbe 14 : 26 37.[PubMed] [CrossRef]
76. Stecher B,, Hardt WD . 2008. The role of microbiota in infectious disease. Trends Microbiol 16 : 107 114.[PubMed] [CrossRef]
77. Curtis MM,, Sperandio V . 2011. A complex relationship: the interaction among symbiotic microbes, invading pathogens, and their mammalian host. Mucosal Immunol 4 : 133 138.[PubMed] [CrossRef]
78. Keeney KM,, Finlay BB . 2011. Enteric pathogen exploitation of the microbiota-generated nutrient environment of the gut. Curr Opin Microbiol 14 : 92 98.[PubMed] [CrossRef]
79. Fabich AJ,, Jones SA,, Chowdhury FZ,, Cernosek A,, Anderson A,, Smalley D,, McHargue JW,, Hightower GA,, Smith JT,, Autieri SM,, Leatham MP,, Lins JJ,, Allen RL,, Laux DC,, Cohen PS,, Conway T . 2008. Comparison of carbon nutrition for pathogenic and commensal Escherichia coli strains in the mouse intestine. Infect Immun 76 : 1143 1152.[PubMed] [CrossRef]
80. Momose Y,, Hirayama K,, Itoh K . 2008. Competition for proline between indigenous Escherichia coli and E. coli O157:H7 in gnotobiotic mice associated with infant intestinal microbiota and its contribution to the colonization resistance against E. coli O157:H7. Antonie Van Leeuwenhoek 94 : 165 171.[PubMed] [CrossRef]
81. Maltby R,, Leatham-Jensen MP,, Gibson T,, Cohen PS,, Conway T . 2013. Nutritional basis for colonization resistance by human commensal Escherichia coli strains HS and Nissle 1917 against E. coli O157:H7 in the mouse intestine. PLoS One 8 : e53957. [PubMed] [CrossRef]
82. Snider TA,, Fabich AJ,, Conway T,, Clinkenbeard KD . 2009. E. coli O157:H7 catabolism of intestinal mucin-derived carbohydrates and colonization. Vet Microbiol 136 : 150 154.[PubMed] [CrossRef]
83. Moller AK,, Leatham MP,, Conway T,, Nuijten PJ,, de Haan LA,, Krogfelt KA,, Cohen PS . 2003. An Escherichia coli MG1655 lipopolysaccharide deep-rough core mutant grows and survives in mouse cecal mucus but fails to colonize the mouse large intestine. Infect Immun 71 : 2142 2152.[PubMed] [CrossRef]
84. Ley RE,, Lozupone CA,, Hamady M,, Knight R,, Gordon JI . 2008. Worlds within worlds: evolution of the vertebrate gut microbiota. Nat Rev Microbiol 6 : 776 788.[PubMed] [CrossRef]
85. Bertin Y,, Chaucheyras-Durand F,, Robbe-Masselot C,, Durand A,, de la Foye A,, Harel J,, Cohen PS,, Conway T,, Forano E,, Martin C . 2013. Carbohydrate utilization by enterohaemorrhagic Escherichia coli O157:H7 in bovine intestinal content. Environ Microbiol 15 : 610 622.[PubMed] [CrossRef]
86. Naylor SW,, Roe AJ,, Nart P,, Spears K,, Smith DG,, Low JC,, Gally DL . 2005. Escherichia coli O157 : H7 forms attaching and effacing lesions at the terminal rectum of cattle and colonization requires the LEE4 operon. Microbiology 151 : 2773 2781.[PubMed] [CrossRef]
87. Freter R,, Stauffer E,, Cleven D,, Holdeman LV,, Moore WE . 1983. Continuous-flow cultures as in vitro models of the ecology of large intestinal flora. Infect Immun 39 : 666 675.[PubMed]
88. Kamada N,, Kim YG,, Sham HP,, Vallance BA,, Puente JL,, Martens EC,, Nunez G . 2012. Regulated Virulence Controls the Ability of a Pathogen to Compete with the Gut Microbiota. Science 336 : 1325 1329.[PubMed] [CrossRef]
89. Autieri SM,, Lins JJ,, Leatham MP,, Laux DC,, Conway T,, Cohen PS . 2007. L-fucose stimulates utilization of D-ribose by Escherichia coli MG1655 DeltafucAO and E. coli Nissle 1917 DeltafucAO mutants in the mouse intestine and in M9 minimal medium. Infect Immun 75 : 5465 5475.[PubMed] [CrossRef]
90. Karmali MA . 2004. Prospects for preventing serious systemic toxemic complications of Shiga toxin-producing Escherichia coli infections using Shiga toxin receptor analogues. J Infect Dis 189 : 355 359.[PubMed] [CrossRef]
91. Tarr PI,, Gordon CA,, Chandler WL . 2005. Shiga-toxin-producing Escherichia coli and haemolytic uraemic syndrome. Lancet 365 : 1073 1086.[PubMed] [CrossRef]
92. Kaper JB,, Nataro JP,, Mobley HL . 2004. Pathogenic Escherichia coli. Nat Rev Microbiol 2 : 123 140.[PubMed] [CrossRef]
93. McDaniel TK,, Jarvis KG,, Donnenberg MS,, Kaper JB . 1995. A genetic locus of enterocyte effacement conserved among diverse enterobacterial pathogens. Proc Natl Acad Sci U S A 92 : 1664 1668.[PubMed] [CrossRef]
94. Elliott SJ,, Hutcheson SW,, Dubois MS,, Mellies JL,, Wainwright LA,, Batchelor M,, Frankel G,, Knutton S,, Kaper JB . 1999. Identification of CesT, a chaperone for the type III secretion of Tir in enteropathogenic Escherichia coli. Mol Microbiol 33 : 1176 1189.[PubMed] [CrossRef]
95. Mellies JL,, Elliott SJ,, Sperandio V,, Donnenberg MS,, Kaper JB . 1999. The Per regulon of enteropathogenic Escherichia coli : identification of a regulatory cascade and a novel transcriptional activator, the locus of enterocyte effacement (LEE)-encoded regulator (Ler). Mol Microbiol 33 : 296 306.[PubMed] [CrossRef]
96. Elliott SJ,, Wainwright LA,, McDaniel TK,, Jarvis KG,, Deng YK,, Lai LC,, McNamara BP,, Donnenberg MS,, Kaper JB . 1998. The complete sequence of the locus of enterocyte effacement (LEE) from enteropathogenic Escherichia coli E2348/69. Mol Microbiol 28 : 1 4.[PubMed] [CrossRef]
97. Jerse AE,, Yu J,, Tall BD,, Kaper JB . 1990. A genetic locus of enteropathogenic Escherichia coli necessary for the production of attaching and effacing lesions on tissue culture cells. Proc Natl Acad Sci U S A 87 : 7839 7843.[PubMed] [CrossRef]
98. Kenny B,, DeVinney R,, Stein M,, Reinscheid DJ,, Frey EA,, Finlay BB . 1997. Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell 91 : 511 520.[PubMed] [CrossRef]
99. McNamara BP,, Donnenberg MS . 1998. A novel proline-rich protein, EspF, is secreted from enteropathogenic Escherichia coli via the type III export pathway. FEMS Microbiol Lett 166 : 71 78.[PubMed] [CrossRef]
100. Kenny B,, Jepson M . 2000. Targeting of an enteropathogenic Escherichia coli (EPEC) effector protein to host mitochondria. Cell Microbiol 2 : 579 590.[PubMed] [CrossRef]
101. Elliott SJ,, Krejany EO,, Mellies JL,, Robins-Browne RM,, Sasakawa C,, Kaper JB . 2001. EspG, a novel type III system-secreted protein from enteropathogenic Escherichia coli with similarities to VirA of Shigella flexneri. Infect Immun 69 : 4027 4033.[PubMed] [CrossRef]
102. Tu X,, Nisan I,, Yona C,, Hanski E,, Rosenshine I . 2003. EspH, a new cytoskeleton-modulating effector of enterohaemorrhagic and enteropathogenic Escherichia coli. Mol Microbiol 47 : 595 606.[PubMed] [CrossRef]
103. Kanack KJ,, Crawford JA,, Tatsuno I,, Karmali MA,, Kaper JB . 2005. SepZ/EspZ is secreted and translocated into HeLa cells by the enteropathogenic Escherichia coli type III secretion system. Infect Immun 73 : 4327 4337.[PubMed] [CrossRef]
104. Campellone KG,, Robbins D,, Leong JM . 2004. EspFU is a translocated EHEC effector that interacts with Tir and N-WASP and promotes Nck-independent actin assembly. Developmental cell 7 : 217 228.[PubMed] [CrossRef]
105. Sperandio V,, Torres AG,, Jarvis B,, Nataro JP,, Kaper JB . 2003. Bacteria-host communication: the language of hormones. Proc Natl Acad Sci U S A 100 : 8951 8956.[PubMed] [CrossRef]
106. Tilden J Jr,, Young W,, McNamara AM,, Custer C,, Boesel B,, Lambert-Fair MA,, Majkowski J,, Vugia D,, Werner SB,, Hollingsworth J,, Morris GJ Jr . 1996. A new route of transmission for Escherichia coli: infection from dry fermented salami. Am J Public Health 86 : 1142 1145.[CrossRef]
107. Clarke MB,, Hughes DT,, Zhu C,, Boedeker EC,, Sperandio V . 2006. The QseC sensor kinase: A bacterial adrenergic receptor. Proc Natl Acad Sci USA 103 : 10420 10425.[PubMed] [CrossRef]
108. Reading NC,, Rasko DA,, Torres AG,, Sperandio V . 2009. The two-component system QseEF and the membrane protein QseG link adrenergic and stress sensing to bacterial pathogenesis. Proc Natl Acad Sci U S A 106 : 5889 5894.[PubMed] [CrossRef]
109. Reading NC,, Torres AG,, Kendall MM,, Hughes DT,, Yamamoto K,, Sperandio V . 2007. A novel two-component signaling system that activates transcription of an enterohemorrhagic Escherichia coli effector involved in remodeling of host actin. J Bacteriol 189 : 2468 2476.[PubMed] [CrossRef]
110. Clarke MB,, Hughes DT,, Zhu C,, Boedeker EC,, Sperandio V . 2006. The QseC sensor kinase: A bacterial adrenergic receptor. Proc Natl Acad Sci USA 103 : 10420 10425.[PubMed] [CrossRef]
111. Rasko DA,, Moreira CG,, Li de R,, Reading NC,, Ritchie JM,, Waldor MK,, Williams N,, Taussig R,, Wei S,, Roth M,, Hughes DT,, Huntley JF,, Fina MW,, Falck JR,, Sperandio V . 2008. Targeting QseC signaling and virulence for antibiotic development. Science 321 : 1078 1080.[PubMed] [CrossRef]
112. Yamamoto K,, Hirao K,, Oshima T,, Aiba H,, Utsumi R,, Ishihama A . 2005. Functional characterization in vitro of all two-component signal transduction systems from Escherichia coli. J Biol Chem 280 : 1448 1456.[PubMed] [CrossRef]
113. Hughes DT,, Sperandio V . 2008. Inter-kingdom signalling: communication between bacteria and their hosts. Nat Rev Microbiol 6 : 111 120.[PubMed] [CrossRef]
114. Ritchie JM,, Thorpe CM,, Rogers AB,, Waldor MK . 2003. Critical roles for stx2, eae, and tir in enterohemorrhagic Escherichia coli-induced diarrhea and intestinal inflammation in infant rabbits. Infect Immun 71 : 7129 7139.[PubMed] [CrossRef]
115. Reid SD,, Herbelin CJ,, Bumbaugh AC,, Selander RK,, Whittam TS . 2000. Parallel evolution of virulence in pathogenic Escherichia coli. Nature 406 : 64 67.[PubMed] [CrossRef]
116. Wick LM,, Qi W,, Lacher DW,, Whittam TS . 2005. Evolution of genomic content in the stepwise emergence of Escherichia coli O157:H7. J Bacteriol 187 : 1783 1791.[PubMed] [CrossRef]
117. Rodriguez-Diaz J,, Rubio-del-Campo A,, Yebra MJ . 2012. Lactobacillus casei ferments the N-Acetylglucosamine moiety of fucosyl-alpha-1,3-N-acetylglucosamine and excretes L-fucose. Appl Environ Microbiol 78 : 4613 4619.[PubMed] [CrossRef]
118. Njoroge JW,, Nguyen Y,, Curtis MM,, Moreira CG,, Sperandio V . 2012. Virulence Meets Metabolism: Cra and KdpE Gene Regulation in Enterohemorrhagic Escherichia coli. MBio 3 : e00280-00212. [PubMed] [CrossRef]
119. Bakovic M,, Fullerton MD,, Michel V . 2007. Metabolic and molecular aspects of ethanolamine phospholipid biosynthesis: the role of CTP:phosphoethanolamine cytidylyltransferase (Pcyt2). Biochem Cell Biol 85 : 283 300.[PubMed] [CrossRef]
120. Dowhan W . 1997. Molecular basis for membrane phospholipid diversity: why are there so many lipids? Annu Rev Biochem 66 : 199 232.[PubMed] [CrossRef]
121. Dowhan W . 1997. Phosphatidylserine decarboxylases: pyruvoyl-dependent enzymes from bacteria to mammals. Methods Enzymol 280 : 81 88.[PubMed]
122. Cotton PB . 1972. Non-dietary lipid in the intestinal lumen. Gut 13 : 675 681.[PubMed] [CrossRef]
123. Kendall MM,, Gruber CC,, Parker CT,, Sperandio V . 2012. Ethanolamine controls expression of genes encoding components involved in interkingdom signaling and virulence in enterohemorrhagic Escherichia coli O157:H7. MBio 3 : e00050-12. [PubMed] [CrossRef]
124. Thiennimitr P,, Winter SE,, Winter MG,, Xavier MN,, Tolstikov V,, Huseby DL,, Sterzenbach T,, Tsolis RM,, Roth JR,, Baumler AJ . 2011. Intestinal inflammation allows Salmonella to use ethanolamine to compete with the microbiota. Proc Natl Acad Sci U S A 108 : 17480 17485.[PubMed] [CrossRef]
125. Stojiljkovic I,, Baumler AJ,, Heffron F . 1995. Ethanolamine utilization in Salmonella typhimurium: nucleotide sequence, protein expression, and mutational analysis of the cchA cchB eutE eutJ eutG eutH gene cluster. J Bacteriol 177 : 1357 1366.[PubMed]
126. Garsin DA . 2010. Ethanolamine utilization in bacterial pathogens: roles and regulation. Nat Rev Microbiol 8 : 290 295.[PubMed] [CrossRef]
127. Bertin Y,, Girardeau JP,, Chaucheyras-Durand F,, Lyan B,, Pujos-Guillot E,, Harel J,, Martin C . 2011. Enterohaemorrhagic Escherichia coli gains a competitive advantage by using ethanolamine as a nitrogen source in the bovine intestinal content. Environ Microbiol 13 : 365 377.[PubMed] [CrossRef]
128. Lupp C,, Robertson ML,, Wickham ME,, Sekirov I,, Champion OL,, E Gaynor EC,, Finlay BB . 2007. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe 2 : 119 129.[PubMed] [CrossRef]
129. Winter SE,, Thiennimitr P,, Winter MG,, Butler BP,, Huseby DL,, Crawford RW,, Russell JM,, Bevins CL,, Adams LG,, Tsolis RM,, Roth JR,, Baumler AJ . 2010. Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature 467 : 426 429.[PubMed] [CrossRef]

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error