Chapter 6 : Trigger Enzymes: Coordination of Metabolism and Virulence Gene Expression

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Trigger Enzymes: Coordination of Metabolism and Virulence Gene Expression, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818883/9781555818869_Chap06-1.gif /docserver/preview/fulltext/10.1128/9781555818883/9781555818869_Chap06-2.gif


As for all other organisms, life of bacterial pathogens has been subject to a selective pressure to grow and multiply. For these bacteria, the host is a huge source of nutrients, and it is their primary aim to utilize these nutrients rather than to cause damage to the host. In consequence, metabolism is intimately linked to virulence of these organisms ( ).

Citation: Commichau F, Stülke J. 2015. Trigger Enzymes: Coordination of Metabolism and Virulence Gene Expression, p 105-127. In Conway T, Cohen P (ed), Metabolism and Bacterial Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MBP-0010-2014
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

The localization of the PutA protein within the cell determines its role in proline catabolism. In the presence of exogenous proline, the trifunctional PutA enzyme catalyzes the two-step conversion of proline to glutamate, which may serve as a carbon and nitrogen source. This catabolically active, reduced form of PutA (PutA) localizes to the membrane. The divergon, encoding the proline transporter PutP and the PutA trigger enzyme, respectively, is expressed in the presence of proline. In the absence of proline, the oxidized PutA protein (PutA) binds to the intergenic region of the and genes to repress their transcription. P5C, Δ1-pyrroline-5-carboxylate.

Citation: Commichau F, Stülke J. 2015. Trigger Enzymes: Coordination of Metabolism and Virulence Gene Expression, p 105-127. In Conway T, Cohen P (ed), Metabolism and Bacterial Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MBP-0010-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

The β-glucoside permease controls the activity of the transcription antiterminator protein BglG in response to β-glucoside availability. In the presence of β-glucosides, the sugar is taken up by the β-glucoside permease of the PTS and concomitantly phosphorylated. The phosphoryl group is derived from phosphoenolpyruvate (PEP) and transferred via the phosphocarriers Enzyme I (EI) and HPr to the EIIB component of the β-glucoside permease. Under these conditions, the transcription-antiterminator protein BglG binds a stem-loop structure of the mRNA, thereby preventing the formation of a terminator structure, and the transcription of the mRNA can continue. Inactivation of the antiterminator protein BglG occurs in the absence of β-glucosides. BglG receives a phosphoryl goup from the β-glucoside permease and is now unable to bind the mRNA. The formation of a termination structure occurs and the transcription of the operon is aborted. Pyr, pyruvate.

Citation: Commichau F, Stülke J. 2015. Trigger Enzymes: Coordination of Metabolism and Virulence Gene Expression, p 105-127. In Conway T, Cohen P (ed), Metabolism and Bacterial Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MBP-0010-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Control of CymR DNA-binding activity by CysK. In the presence of cysteine, the acetyltransferase CysE is inhibited and the -acetyl-serine (OAS)-thiol-lyase CysK forms a complex with the transcription factor CymR. The protein complex binds to the CymR-regulated genes and prevents transcription. At low cysteine levels, the OAS-thiol-lyase converts serine and acetyl-CoA to OAS, which serves as the substrate for CysK to produce cysteine.

Citation: Commichau F, Stülke J. 2015. Trigger Enzymes: Coordination of Metabolism and Virulence Gene Expression, p 105-127. In Conway T, Cohen P (ed), Metabolism and Bacterial Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MBP-0010-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Evolutionary stages of (trigger) enzymes A. Conventional enzymes (E), such as the β-galactosidase LacZ, catalyze metabolic reactions without controlling gene expression through modulating the activity of a transcription factor (TF). B. Bifunctional trigger enzymes (TEs) such as the glutamate dehydrogenase (GDH) from can control the activity of TFs by a direct protein-protein interaction. It has been suggested that the metabolites that are converted by the GDH also directly modulate the activity of the GDH-controlled TF, GltC. C. TEs like the glutamine synthetase (GS) from control the activities of TFs that do not response to metabolites. D. TFs such as the trifunctional PutA enzyme may have acquired a DNA-binding motif, which allows the enzyme to regulate gene expression depending of the metabolic state of the cell. E. TFs like BzdR from may be composed of a DNA-binding domain and an enzymatic domain that has lost its catalytic activity during evolution. These TE sense metabolites without converting them. S, substrate; P, product.

Citation: Commichau F, Stülke J. 2015. Trigger Enzymes: Coordination of Metabolism and Virulence Gene Expression, p 105-127. In Conway T, Cohen P (ed), Metabolism and Bacterial Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MBP-0010-2014
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Sonenshein AL . 2007. Control of key metabolic intersections in Bacillus subtilis . Nat Rev Microbiol 5 : 917 927.[PubMed] [CrossRef]
2. Halbedel S,, Hames C,, Stülke J . 2007. Regulation of carbon metabolism in the mollicutes and its relation to virulence. J Mol Microbiol Biotechnol 12 : 147 154.[PubMed] [CrossRef]
3. Poncet S,, Milohanic E,, Maze A,, Nait-Abdallah J,, Ake F,, Larribe M,, Deghmane AE,, Taha MK,, Dozot M,, De Bolle X,, Letesson JJ,, Deutscher J . 2009. Correlations between carbon metabolism and virulence in bacteria. Contrib Microbiol 16 : 88 102.[PubMed] [CrossRef]
4. Commichau FM,, Stülke J . 2008. Trigger enzymes: bifunctional proteins active in metabolism and in controlling gene expression. Mol Microbiol 67 : 692 702.[PubMed] [CrossRef]
5. Greenberg EP . 2000. Bacterial genomics. Pump up the versatility. Nature 406 : 947 948.[PubMed] [CrossRef]
6. Arraiano CM,, Mauxion F,, Viegas SC,, Matos RG,, Seraphin B . 2013. Intracellular ribonucleases involved in transcript processing and decay: precision tools for RNA. Biochim Biophys Acta 1829 : 491 513.[PubMed] [CrossRef]
7. Gao R,, Stock AM . 2010. Molecular strategies for phosphorylation-mediated regulation of response regulator activity. Curr Opin Microbiol 13 : 160 167.[PubMed] [CrossRef]
8. Joyet P,, Bouraoui H,, Aké FM,, Derkaoui M,, Zébré AC,, Cao TN,, Ventroux M,, Nessler S,, Noirot-Gros MF,, Deutscher J,, Milohanic E . 2013. Transcription regulators controlled by interaction with enzyme IIB components of the phosphoenolpyruvate:sugar phosphotransferase system. Biochim Biophys Acta 1834 : 1415 1424.[PubMed] [CrossRef]
9. Gunka K,, Commichau FM . 2012. Control of glutamate homeostasis in Bacillus subtilis: a complex interplay between ammonium assimilation, glutamate biosynthesis and degradation. Mol Microbiol 85 : 213 224.[PubMed] [CrossRef]
10. Österberg S,, del Peso-Santos T,, Shingler V . 2011. Regulation of alternative sigma factor use. Annu Rev Microbiol 65 : 37 55.[PubMed] [CrossRef]
11. Narberhaus F . 2010. Translational control of bacterial heat shock and virulence genes by temperature-sensing mRNAs. RNA Biol 7 : 84 89.[PubMed] [CrossRef]
12. Johansson J,, Mandin P,, Renzoni A,, Chiaruttini C,, Springer M,, Cossart P . 2002. An RNA thermosensor controls expression of virulence genes in Listeria monocytogenes . Cell 110 : 551 561.[PubMed] [CrossRef]
13. Böhme K,, Steinmann R,, Kortmann J,, Seekircher S,, Heroven AK,, Berger E,, Pisano F,, Thiermann T,, Wolf-Watz H,, Narberhaus F,, Dersch P . 2012. Concerted actions of a thermo-labile regulator and a unique intergenic RNA thermosensor control Yersinia virulence. PLoS Pathog 8 : e1002518. doi:10.1371/journal.ppat.1002518 [PubMed] [CrossRef]
14. Loh E,, Kugelberg E,, Tracy A,, Zhang Q,, Gollan B,, Ewles H,, Chalmers R,, Pelicic V,, Tang CM . 2013. Temperature triggers immune evasion by Neisseria meningitidis . Nature 502 : 237 240.[PubMed] [CrossRef]
15. Kamp HD,, Higgins DE . 2011. A protein thermometer controls temperature-dependent transcription of flagellar motility genes in Listeria monocytogenes . PLoS Pathog 7 : e1002153. doi:10.1371/journal.ppat.1002153 [CrossRef]
16. Quade N,, Mendonca C,, Herbst K,, Heroven AK,, Ritter C,, Heinz DW,, Dersch P . 2012. Structural basis for intrinsic thermosensing by the master virulence regulator RovA of Yersinia . J Biol Chem 287 : 35796 35803.[PubMed] [CrossRef]
17. Freitag NE,, Port GC,, Miner MD . 2009. Listeria monocytogenes – from saprophyte to intracellular pathogen. Nat Rev Microbiol 7 : 623 628.[PubMed] [CrossRef]
18. Fouet A . 2010. AtxA, a Bacillus anthracis global virulence regulator. Res Microbiol 161 : 735 742.[PubMed] [CrossRef]
19. Jeffery CJ . 2009. Moonlighting proteins – an update. Mol Biosyst 5 : 345 350.[PubMed] [CrossRef]
20. Henderson B,, Martin A . 2011. Bacterial virulence in the moonlight: multitasking bacterial moonlighting proteins are virulence determinants in infectious disease. Infect Immunol 79 : 3476 3491.[PubMed] [CrossRef]
21. Copley SD . 2012. Moonlighting is mainstream: paradigm adjustment required. Bioessays 34 : 578 588.[PubMed] [CrossRef]
22. Chien AC,, Zareh SK,, Wang YM,, Levin PA . 2012. Changes in the oligomerization potential of the division inhibitor UgtP co-ordinate Bacillus subtilis cell size with nutrient availability. Mol Microbiol 86 : 594 610.[PubMed] [CrossRef]
23. Weart RB,, Lee AH,, Chien AC,, Haeusser DP,, Hill NS,, Levin PA . 2007. A metabolic sensor governing cell size in bacteria. Cell 130 : 335 347.[PubMed] [CrossRef]
24. Hill NS,, Buske PJ,, Shi Y,, Levin PA . 2013. A moonlighting enzyme links Escherichia coli cell size with central metabolism. PLoS Genet 9 : e1003663. doi:10.1371./journal.pgen.1003663 [PubMed]
25. Beckham KS,, Connolly JP,, Ritchie JM,, Wang D,, Gawthorne JA,, Tahoun A,, Gally DL,, Burgess K,, Burchmore RJ,, Smith BO,, Beatson SA,, Byron O,, Wolfe AJ,, Douce GR,, Roe AJ . 2014. The metabolic enzyme AdhE controls the virulence of Escherichia coli O157:H7. Mol Microbiol 93 : 199 211.[PubMed] [CrossRef]
26. Gu D,, Zhou Y,, Kallhoff V,, Baban B,, Tanner JJ,, Becker DF . 2004. Identification and characterization of the DNA-binding domain of the multifunctional PutA flavoenzyme. J Biol Chem 279 : 31171 31176.[PubMed] [CrossRef]
27. Singh RK,, Larson JD,, Rambo RP,, Hura GL,, Becker DF,, Tanner JJ . 2011. Small-angle X-ray scattering studies of the oligomeric state and quarternary structure of the trifunctional proline utilization A (PutA) flavoprotein from Escherichia coli . J Biol Chem 286 : 43144 43153.[PubMed] [CrossRef]
28. Singh RK,, Tanner JJ . 2012. Unique structural features and sequence motifs of proline utilization A (PutA). Front Biosci 17 : 556 568.[CrossRef]
29. Muro-Pastor AM,, Maloy S . 1995. Proline dehydrogenase activity of the transcriptional repressor PutA is required for induction of the put operon by proline. J Biol Chem 270 : 9819 9827.[PubMed] [CrossRef]
30. Ostrovsky de Spicer P,, Maloy S . 1993. PutA protein, a membrane-associated flavin dehydrogenase, acts as a redox-dependent transcriptional regulator. Proc Natl Acad Sci U S A 90 : 4295 4298.[PubMed] [CrossRef]
31. Zhu W,, Becker DF . 2005. Exploring the proline-dependent conformational change in the multifunctional PutA flavoprotein by tryptophan fluorescence spectroscopy. Biochemistry 44 : 12297 12306.[PubMed] [CrossRef]
32. Lin S,, Cronan JE . 2011. Closing in on complete pathways of biotin biosynthesis. Mol Biosyst 7 : 1811 1821.[PubMed] [CrossRef]
33. Rodionov DA,, Mironov AA,, Gelfand AS . 2002. Conservation of the biotin regulon and the BirA regulatory signal in Eubacteria and Archaea. Genome Res 12 : 1507 1516.[PubMed] [CrossRef]
34. Wilson KP,, Shewchuk LM,, Brennan RG,, Otsuka AJ,, Matthews BW . 1992. Escherichia coli biotin holoenzyme synthetase/bio repressor crystal structure delineates the biotin- and DNA-binding domains. Proc Natl Acad Sci U S A 89 : 9257 9261.[PubMed] [CrossRef]
35. Solbiati J,, Cronan JE . 2010. The switch regulating transcription of the Escherichia coli biotin operon does not require extensive protein-protein contacts. Chem Biol 17 : 11 17.[PubMed] [CrossRef]
36. Adikaram PR,, Beckett D . 2013. Protein:protein interactions in control of a transcriptional switch. J Mol Biol 425 : 4584 4594.[PubMed] [CrossRef]
37. Chakravartty V,, Cronan JE . 2013. The wing of a winged helix-turn-helix transcription factor organizes the active site of BirA, a bifunctional repressor/ligase. J Biol Chem 288 : 36029 36039.[PubMed] [CrossRef]
38. Henke SK,, Cronan JE . 2014. Successful conversion of the Bacillus subtilis BirA group II biotin protein ligase into a group I ligase. PLoS ONE 9 : e96757. doi:10.1371/journal.pone.0096757 [PubMed] [CrossRef]
39. Raffaelli N,, Lorenzi T,, Mariani PL,, Emanuelli M,, Amici A,, Ruggieri S,, Magni G . 1999. The Escherichia coli NadR regulator is endowed with nicotinamide mononucleotide adenylyltransferase activity. J Bacteriol 181 : 5509 5511.[PubMed]
40. Grose JH,, Bergthorsson U,, Roth JR . 2005. Regulation of NAD synthesis by the trifunctional NadR protein of Salmonella enterica . J Bacteriol 187 : 2774 2782.[PubMed] [CrossRef]
41. Morohoshi F,, Hayashi K,, Munakata N . 1990. Bacillus subtilis ada operon encodes two DNA alkyltransferases. Nucleic Acids Res 18 : 5473 5480.[PubMed] [CrossRef]
42. Landini P,, Volkert MR . 2000. Regulatory responses of the adaptive response to alkylation damage: a simple regulon with complex regulatory features. J Bacteriol 182 : 6543 6549.[PubMed] [CrossRef]
43. Takinowaki H,, Matsuda Y,, Yoshida T,, Kobayashi Y,, Ohkubo T . 2006. The solution structure of the methylated form of the N-terminal 16-kDa domain of Escherichia coli Ada protein. Protein Sci 15 : 487 497.[PubMed] [CrossRef]
44. Kholti A,, Charlier D,, Gigot D,, Huysveld N,, Roovers M,, Glansdorff N . 1998. pyrH-encoded UMP-kinase directly participates in pyrimidine-specific modulation of promoter activity in Escherichia coli . J Mol Biol 280 : 571 582.[PubMed] [CrossRef]
45. Rostirolla DC,, Breda A,, Rosado LA,, Palma MS,, Basso LA,, Santos DS . 2011. UMP kinase from Mycobacterium tuberculosis: mode of action and allosteric interactions, and their likely role in pyrimidine metabolism regulation. Arch Biochem Biophys 505 : 202 212.[PubMed] [CrossRef]
46. Charlier D,, Hassanzadeh G,, Kholti A,, Gigot D,, Pierard A,, Glansdorff N . 1995. carP, involved in pyrimidine regulation of the Escherichia coli carbamoylphosphate synthetase operon encodes a sequence-specific DNA-binding protein identical to XerB and PepA, also required for resolution of ColEI multimers. J Mol Biol 250 : 392 406.[PubMed] [CrossRef]
47. Minh PN,, Devroede N,, Massant J,, Maes D,, Charlier D . 2009. Insights into the architecture and stoichiometry of Escherichia coli PepA*DNA complexes involved in transcriptional control and site-specific DNA recombination by atomic force microscopy. Nucleic Acids Res 37 : 1463 1476.[PubMed] [CrossRef]
48. Sinha SC,, Krahn J,, Shin BS,, Tomchick DR,, Zalkin H,, Smith JL . 2003. The purine repressor of Bacillus subtilis: a novel combination of domains adapted for transcription regulation. J Bacteriol 185 : 4087 4098.[PubMed] [CrossRef]
49. Putney SD,, Schimmel P . 1981. An aminoacyl tRNA synthetase binds to a specific DNA sequence and regulates its gene transcription. Nature 291 : 632 635.[PubMed] [CrossRef]
50. Lin TH,, Hu YN,, Shaw GC . 2014. Two enzymes, TilS and HprT, can form a complex to function as a transcriptional activator for the cell division protease gene ftsH in Bacillus subtilis . J Biochem 155 : 5 16.[PubMed] [CrossRef]
51. Ellington AD,, Szostack JW . 1990. In vitro selection of RNA molecules that bind specific ligands. Nature 346 : 818 822.[PubMed] [CrossRef]
52. Stülke J . 2002. Control of transcription termination in bacteria by RNA-binding proteins that modulate RNA structures. Arch Microbiol 177 : 433 440.[PubMed] [CrossRef]
53. Roth A,, Breaker RR . 2009. The structural and functional diversity of metabolite-binding riboswitches. Annu Rev Biochem 78 : 305 334.[PubMed] [CrossRef]
54. Klass DM,, Scheibe M,, Butte F,, Hogan GJ,, Mann M,, Brown PO . 2013. Quantitative proteomic analysis reveals concurrent RNA-protein interactions and identifies new RNA-binding proteins in Saccharomyces cerevisiae . Genome Res 23 : 1028 1038.[PubMed] [CrossRef]
55. Scherrer T,, Mittal N,, Janga SC,, Gerber AP . 2010. A screen for RNA-binding proteins in yeast indicates dual functions for many enzymes. PLoS ONE 5 : e15499. doi:10.1371/journal.pone.0015499 [PubMed] [CrossRef]
56. Tsvetanova NG,, Klass DM,, Salzman J,, Brown PO . 2010. Proteome-wide search reveals unexpected RNA-binding proteins in Saccharomyces cerevisiae . PLoS ONE 5 : e12671. doi:10.1371/journal.pone.0012671 [PubMed] [CrossRef]
57. Volz K . 2008. The functional duality of iron regulatory protein 1. Curr Opin Struct Biol 18 : 106 111.[PubMed] [CrossRef]
58. Leipuviene R,, Theil EC . 2007. The family of iron responsive RNA structures regulated by changes in cellular iron and oxygen. Cell Mol Life Sci 64 : 2945 2955.[PubMed] [CrossRef]
59. Beinert H,, Kennedy MC,, Stout CD . 1996. Aconitase as iron-sulfur protein, enzyme, and iron-regulatory protein. Chem Rev 96 : 2335 2374.[PubMed] [CrossRef]
60. Rouault TA,, Klausner RD . 1996. Iron-sulfur clusters as biosensors for oxygen and iron. Trends Biochem Sci 21 : 174 177.[PubMed] [CrossRef]
61. Weinstock GM,, Hardham JM,, McLeod MP,, Sodergren EJ,, Norris SJ . 1998. The genome of Treponema pallidum: new light on the agent of syphilis. FEMS Microbiol Rev 22 : 323 332.[PubMed] [CrossRef]
62. Vardhan H,, Bhengraj AR,, Jha R,, Singh Mittal A . 2009. Chlamydia trachomatis alters iron-regulatory protein-1 binding capacity and modulates cellular iron homeostasis in HeLa-229 cells. J Biomed Biotechnol 2009 : 342032. [PubMed] [CrossRef]
63. Kaptain S,, Downey WE,, Tang C,, Philpott C,, Haile D,, Orloff DG,, Harford JB,, Rouault TA,, Klausner RD . 1991. A regulated RNA binding protein also possesses aconitase activity. Proc Natl Acad Sci U S A 88 : 10109 10113.[PubMed] [CrossRef]
64. Tang Y,, Guest JR . 1999. Direct evidence for mRNA binding and post-transcriptional regulation by Escherichia coli aconitases. Microbiology 145 : 3069 3079.[PubMed]
65. Alén C,, Sonenshein AL . 1999. Bacillus subtilis aconitase in an RNA-binding protein. Proc Natl Acad Sci U S A 96 : 10412 10417.[PubMed] [CrossRef]
66. Austin CM,, Maier RJ . 2013. Aconitase-mediated post-transcriptional regulation of Helicobacter pylori peptidoglycan deacetylase. J Bacteriol 195 : 5316 5322.[PubMed] [CrossRef]
67. Banerjee S,, Nandyala AK,, Raviprasad P,, Ahmed N,, Hasnain SE . 2007. Iron-dependent RNA-binding activity of Mycobacterium tuberculosis aconitase. J Bacteriol 189 : 4046 4052.[PubMed] [CrossRef]
68. Baothman OA,, Rolfe MD,, Green J . 2013. Characterization of Salmonella enterica serovar typhimurium aconitase A. Microbiology 159 : 1209 1216.[PubMed] [CrossRef]
69. Mengaud JM,, Horwitz MA . 1993. The major iron-containing protein of Legionella pneumophila is an aconitase homologous with the human iron-responsive element-binding protein. J Bacteriol 175 : 5666 5676.[PubMed]
70. Sadykov MR,, Olson ME,, Halouska S,, Zhu Y,, Fey PD,, Powers R,, Somerville GA . 2008. Tricarboxylic acid cycle-dependent regulation of Staphylococcus epidermidis polysaccharide intercellular adhesion synthesis. J Bacteriol 190 : 7621 7632.[PubMed] [CrossRef]
71. Zhu Y,, Xiong YQ,, Sadykov MR,, Fey PD,, Lei MG,, Lee CY,, Bayer AS,, Somerville GA . 2009. Tricarboxylic acid cycle-dependent attenuation of Staphylococcus aureus in vivo virulence by selective inhibition of amino acid transport. Infect Immun 77 : 4256 4264.[PubMed] [CrossRef]
72. Somerville GA,, Mikoryak CA,, Reitzer L . 1999. Physiological characterization of Pseudomonas aeruginosa during exotoxin A synthesis: glutamate, iron limitation, and aconitase activity. J Bacteriol 181 : 1072 1078.[PubMed]
73. Wilson TJ,, Bertrand N,, Tang JL,, Feng JX,, Pan MQ,, Barber CE,, Dow JM,, Daniels MJ . 1998. The rpfA gene of Xanthomonas campestris pathovar campestris, which is involved in the regulation of pathogenicity factor production, encodes an aconitase. Mol Microbiol 28 : 961 970.[PubMed] [CrossRef]
74. Robbins AH,, Stout CD . 1989. Structure of activated aconitase: formation of the [4Fe-4S] cluster in the crystal. Proc Natl Acad Sci U S A 86 : 3639 3643.[PubMed] [CrossRef]
75. Williams CH,, Stillman TJ,, Barynin VV,, Sedelnikova SE,, Tang Y,, Green J,, Guest JR,, Artymiuk PJ . 2002. E. coli aconitase B structure reveals a HEAT-like domain with implications for protein-protein recognition. Nat Struct Biol 9 : 447 452.[PubMed] [CrossRef]
76. Walden WE,, Selezneva AI,, Dupuy J,, Volbeda A,, Fontecilla-Camps JC,, Theil C,, Volz K . 2006. Structure of dual function iron regulatory protein 1 complexed with ferritin IRE-RNA. Science 314 : 1903 1908.[PubMed] [CrossRef]
77. Goforth JB,, Anderson SA,, Nizzi CP,, Eisenstein RS . 2010. Multiple determinants within iron-responsive elements dictate iron regulatory protein binding and regulatory hierarchy. RNA 16 : 154 169.[PubMed] [CrossRef]
78. Selezneva AI,, Walden WE,, Volz KW . 2013. Nucleotide-specific recognition of iron-responsive elements by iron regulatory protein 1. J Mol Biol 425 : 3301 3310.[PubMed] [CrossRef]
79. Serio AW,, Pechter KB,, Sonenshein AL . 2006. Bacillus subtilis aconitase is required for efficient late-sporulation gene expression. J Bacteriol 188 : 6396 6405.[PubMed] [CrossRef]
80. Craig JE,, Ford MJ,, Blaydon DC,, Sonenshein AL . 1997. A null mutation in the Bacillus subtilis aconitase gene causes a block in Spo0A-phosphate-dependent gene expression. J Bacteriol 179 : 7351 7359.[PubMed]
81. Pechter KB,, Meyer FM,, Serio AW,, Stülke J,, Sonenshein AL . 2013. Two roles for aconitase in the regulation of tricarboxylic acid branch gene expression in Bacillus subtilis . J Bacteriol 195 : 1525 1537.[PubMed] [CrossRef]
82. Baumgart M,, Mustafi N,, Krug A,, Bott M . 2011. Deletion of the aconitase gene in Corynebacterium glutamicum causes strong selection pressure for secondary mutations inactivating citrate synthase. J Bacteriol 193 : 6864 6873.[PubMed] [CrossRef]
83. Viollier PH,, Nguyen KT,, Minas W,, Folcher M,, Dale GE,, Thompson CJ . 2001. Roles of aconitase in growth, metabolism, and morphological differentiation of Streptomyces coelicolor . J Bacteriol 183 : 3193 3203.[PubMed] [CrossRef]
84. Tang Y,, Guest JR,, Artymiuk PJ,, Green J . 2005. Switching aconitase B between catalytic and regulatory modes involves iron-dependent dimer formation. Mol Microbiol 56 : 1149 1158.[PubMed] [CrossRef]
85. Tang Y,, Guest JR,, Artymiuk PJ,, Read RC,, Green J . 2004. Post-transcriptional regulation of bacterial motility by aconitase proteins. Mol Microbiol 51 : 1817 1826.[PubMed] [CrossRef]
86. Michta E,, Schad K,, Blin K,, Ort-Winklbauer R,, Röttig M,, Kohlbacher O,, Wohlleben W,, Schinko E,, Mast Y . 2012. The bifunctional role of aconitase in Streptomyces viridochromogenes Tü494. Environ Microbiol 14 : 3203 3219.[PubMed] [CrossRef]
87. Springer M,, Plumbridge JA,, Butler JS,, Graffe M,, Dondon J,, Mayaux JF,, Fayat G,, Lestienne P,, Blanquet S,, Grunberg-Manago M . 1985. Autogenous control of Escherichia coli threonyl-tRNA synthetase expression in vivo . J Mol Biol 185 : 93 104.[PubMed] [CrossRef]
88. Higashitsuji Y,, Angerer A,, Berghaus S,, Hobl B,, Mack M . 2007. RibR, a possible regulator of the Bacillus subtilis riboflavin biosynthetic operon, in vivo interacts with the 5′-untranslated leader of rib mRNA. FEMS Microbiol Lett 274 : 48 54.[PubMed] [CrossRef]
89. Grabner GK,, Switzer RL . 2003. Kinetic studies of the uracil phosphoribosyltransferase reaction catalyzed by the Bacillus subtilis pyrimidine attenuation regulatory protein PyrR. J Biol Chem 278 : 6921 6927.[PubMed] [CrossRef]
90. Chander P,, Halbig KM,, Miller JK,, Fields CJ,, Bonner HK,, Grabner GK,, Switzer RL,, Smith JL . 2005. Structure of the nucleotide complex of PyrR, the pyr attenuation protein from Bacillus caldolyticus, suggests dual regulation by pyrimidine and purine nucleotides. J Bacteriol 187 : 1773 1782.[PubMed] [CrossRef]
91. Hobl B,, Mack M . 2007. The regulator protein PyrR of Bacillus subtilis specifically interacts in vivo with three untranslated regions within pyr mRNA of pyrimidine biosynthesis. Microbiology 153 : 693 700.[PubMed] [CrossRef]
92. Deutscher J,, Francke C,, Postma PW . 2006. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 70 : 939 1031.[PubMed] [CrossRef]
93. Stülke J,, Hillen W . 1998. Coupling physiology and gene regulation in bacteria:the phosphotransferase sugar uptake system delivers the signals. Naturwissenschaften 85 : 583 592.[PubMed] [CrossRef]
94. Deutscher J,, Aké FM,, Derkaoui M,, Zébré AC,, Cao TN,, Bouraoui H,, Kentache T,, Mokhtari A,, Milohanic E,, Joyet P . 2014. The bacterial phosphoenolpyruvate:carbohydrate phosphotransferase system: regulation by protein phosphorylation and phosphorylation-dependent protein-protein interactions. Microbiol Mol Biol Rev 78 : 231 256.[PubMed] [CrossRef]
95. Greenberg DB,, Stülke J,, Saier MH Jr . 2002. Domain analysis of transcriptional regulators bearing PTS-regulatory domains. Res Microbiol 153 : 519 526.[PubMed] [CrossRef]
96. Brehm K,, Ripio MT,, Kreft J,, Vázquez-Boland JA . 1999. The bvr locus of Listeria monocytogenes mediates virulence gene repression by bet-glucosides. J Bacteriol 181 : 5024 5032.[PubMed]
97. Gray MJ,, Freitag NE,, ad Boor KJ . 2006. How the bacterial pathogen Listeria monocytogenes mediates the switch from environmental Dr. Jekyll to pathogenic Mr. Hyde. Infect Immun 74 : 2505 2512.[PubMed] [CrossRef]
98. Schnetz K,, Rak B . 1990. Beta-glucoside permease represses the bgl operon of Escherichia coli by phosphorylation of the antiterminator protein and also interacts with glucose-specific enzyme III, the key element in catabolite control. Proc Natl Acad Sci U S A 87 : 5074 5078.[PubMed] [CrossRef]
99. Amster-Choder O,, Wright A . 1992. Modulation of the dimerization of a transcriptional antiterminator protein by phosphorylation. Science 257 : 1395 1398.[PubMed] [CrossRef]
100. Chen Q,, Arents JC,, Bader R,, Postma PW,, Amster-Choder O . 1997. BglF, the sensor of the E. coli bgl system, uses the same site to phosphorylate both a sugar and a regulatory protein. EMBO J 16 : 4617 4627.[PubMed] [CrossRef]
101. Rothe FM,, Bahr T,, Stülke J,, Rak B,, Görke B . 2012. Activation of Escherichia coli antiterminator BglG requires its phosphorylation. Proc Natl Acad Sci U S A 109 : 15906 15911.[PubMed] [CrossRef]
102. Himmel S,, Zschiedrich CP,, Becker S,, Hsiao HH,, Wolff S,, Diethmaier C,, Urlaub H,, Lee D,, Griesinger C,, Stülke J . 2012. Determinants of interaction specificity of the Bacillus subtilis GlcT antitermination protein: functionality and phosphorylation specificity depend on the arrangement of the regulatory domains. J Biol Chem 287 : 27731 27742.[PubMed] [CrossRef]
103. Schilling O,, Langbein I,, Müller M,, Schmalisch M,, Stülke J . 2004. A protein-dependent riboswitch controlling ptsGHI operon expression in Bacillus subtilis: RNA structure rather than sequence provides interaction specificity. Nucleic Acids Res 32 : 2853 2864.[PubMed] [CrossRef]
104. Schilling O,, Herzberg C,, Hertrich T,, Vörsmann H,, Jessen D,, Hübner S,, Titgemeyer F,, Stülke J . 2006. Keeping signals straight in transcription regulation: specificity determinants for the interaction of a family of conserved bacterial RNA-protein couples. Nucleic Acids Res 34 : 6102 6115.[PubMed] [CrossRef]
105. Hübner S,, Declerck N,, Diethmaier C,, Le Coq D,, Aymerich S,, Stülke J . 2011. Prevention of cross-talk in conserved regulatory systems: Identification of specificity determinants in RNA-binding anti-termination proteins of the BglG family. Nucleic Acids Res 39 : 4360 4372.[PubMed] [CrossRef]
106. Lopian L,, Elisha Y,, Nussbaum-Schochat A,, Amster-Choder O . 2010. Spatial and temporal organization of the E. coli PTS components. EMBO J 29 : 3630 3645.[PubMed] [CrossRef]
107. Rothe FM,, Wrede C,, Lehnik-Habrink M,, Görke B,, Stülke J . 2013. Dynamic localization of a transcription factor in Bacillus subtilis: the LicT antiterminator relocalizes in response to inducer availability. J Bacteriol 195 : 2146 2154.[PubMed] [CrossRef]
108. Lopian L,, Nussbaum-Schochat A,, O’Day-Kerstein K,, Wright A,, Amster-Choder O . 2003. The BglF sensor recruits the BglG transcription regulator to the membrane and releases it on stimulation. Proc Natl Acad Sci U S A 100 : 7099 7104.[PubMed] [CrossRef]
109. Bouraoui H,, Ventroux M,, Noirot-Gros MF,, Deutscher J,, Joyet P . 2013. Membrane sequestration by the EIIB domain of the mannitol permease MtlA activates the Bacillus subtilis mtl operon regulator MtlR. Mol Microbiol 87 : 789 801.[PubMed] [CrossRef]
110. Heravi KM,, Altenbuchner J . 2014. Regulation of the Bacillus subtilis mannitol utilization genes: promoter structure and transcriptional activation by the wild-type regulator (MtlR) and its mutants. Microbiology 160 : 91 101.[PubMed] [CrossRef]
111. Tsvetanova B,, Wilson AC,, Bongiorni C,, Chiang C,, Hoch JA,, Perego M . 2007. Opposing effects of histidine phosphorylation regulate the AtxA virulence transcription factor in Bacillus anthracis. Mol Microbiol 63 : 644 655.[PubMed] [CrossRef]
112. Tetsch L,, Jung K . 2009. How are signals transduced across the cytoplasmic membrane? Transport proteins as transmitter of information. Amino Acids 37 : 467 477.[PubMed] [CrossRef]
113. Dintner S,, Staron A,, Berchtold E,, Petri T,, Mascher T,, Gebhard S . 2011. Coevolution of ABC transporters and two-component regulatory systems as resistance modules against antimicrobial peptides in Firmicutes bacteria. J Bacteriol 193 : 3851 3962.[PubMed] [CrossRef]
114. Murray DS,, Chinnam N,, Tonthat NK,, Whitfill T,, Wray LV Jr,, Fisher SH,, Schumacher MA . 2013. Structures of the Bacillus subtilis glutamine synthetase dodecamer reveal large intersubunit catalytic conformational changes linked to a unique feedback inhibition mechanism. J Biol Chem 288 : 35801 35811.[PubMed] [CrossRef]
115. Fedorova K,, Kayumov A,, Woyda K,, Ilinskaja O,, Forchhammer K . 2013. Transcription factor TnrA inhibits the biosynthetic activity of glutamine synthetase in Bacillus subtilis . FEBS Lett 587 : 1293 1298.[PubMed] [CrossRef]
116. Kloosterman TG,, Hendriksen WT,, Bijlsma JJ,, Bootsma HJ,, van Hijum SA,, Kok J,, Hermans PW,, Kuipers OP . 2006. Regulation of glutamine and glutamate metabolism by GlnR and GlnA in Streptococcus pneumoniae . J Biol Chem 281 : 25097 25109.[PubMed] [CrossRef]
117. Hendriksen WT,, Kloosterman TG,, Bootsma HJ,, Estevao S,, de Groot R,, Kuipers OP,, Hermans PW . 2008. Site-specific contributions of glutamine-dependent regulator GlnR and GlnR-regulated genes to virulence of Streptococcus pneumoniae . Infect Immun 76 : 1230 1238.[PubMed] [CrossRef]
118. Groot Kormelink T,, Koenders E,, Hagemeijer Y,, Overmars L,, Siezen RJ,, de Vos WM,, Francke C . 2012. Comparative genome analysis of central nitrogen metabolism and its control by GlnR in the class Bacilli. BMC Genomics 13 : 191. [PubMed] [CrossRef]
119. Even S,, Burguière P,, Auger S,, Soutourina O,, Danchin A,, Martin-Verstraete I . 2006. Global control of cysteine metabolism by CymR in Bacillus subtilis . J Bacteriol 188 : 2184 2197.[PubMed] [CrossRef]
120. Hullo MF,, Martin-Verstraete I,, Soutourina O . 2010. Complex phenotypes of a mutant inactivated for CymR, the global regulator of cysteine metabolism in Bacillus subtilis . FEMS Microbiol Lett 309 : 201 207.[PubMed] [CrossRef]
121. Tanous C,, Soutourina O,, Raynal B,, Hullo MF,, Mervelet P,, Gilles AM,, Noirot P,, Danchin A,, England P,, Martin-Verstraete I . 2008. The CymR regulator in complex with the enzyme CysK controls cysteine metabolism in Bacillus subtilis . J Biol Chem 283 : 35551 35560.[PubMed] [CrossRef]
122. Soutourina O,, Poupal O,, Coppée JY,, Danchin A,, Msadek T,, Martin-Verstraete I . 2009. CymR, the master regulator of cysteine metabolism in Staphylococcus aureus, controls host sulphur source utilization and plays a role in biofilm formation. Mol Microbiol 73 : 194 211.[PubMed] [CrossRef]
123. Zhao C,, Moriga Y,, Feng B,, Kumada Y,, Imanaka H,, Imamura K,, Nakanishi K . 2006. On the interaction site of serine acetyltransferase in the cysteine synthase complex in Escherichia coli . Biochem Biophys Res Commun 341 : 911 916.[PubMed] [CrossRef]
124. Fisher SH,, Wray LV . 2008. Bacillus subtilis glutamine synthetase regulates its own synthesis by acting as a chaperone to stabilize GlnR-DNA complexes. Proc Natl Acad Sci U S A 105 : 1014 1019.[PubMed] [CrossRef]
125. Lindenberg S,, Klauck G,, Pesavento C,, Klauck E,, Hengge R . 2013. The EAL domain protein YciR acts as a trigger enzyme in a c-di-GMP signalling cascade in E. coli biofilm control. EMBO J 32 : 2001 2014.[PubMed] [CrossRef]
126. Gebhard S . 2012. ABC transporters of antimicrobial peptides in Firmicutes bacteria - phylogeny, function, and regulation. Mol Microbiol 86 : 1295 1317.[PubMed] [CrossRef]
127. Revilla-Guarinos A,, Gebhard S,, Mascher T,, Zuñiga M . 2014. Defence against antimicrobial peptides: different strategies in Firmicutes. Environ Microbiol 16 : 1225 1237.[PubMed] [CrossRef]
128. Hiron A,, Falord M,, Valle J,, Débarbouillé M,, Msadek T . 2011. Bacitracin and nisin resistance in Staphylococcus aureus: a novel pathway involving the BraS/BraR two-component system (SA2417/SA2418) and both the BraD/BraE and VraD/VraE ABC transporters. Mol Microbiol 81 : 602 622.[PubMed] [CrossRef]
129. Kallenberg F,, Dintner S,, Schmitz R,, Gebhard S . 2013. Identification of regions important for resistance and signaling within the antimicrobial peptide transporter BceAB of Bacillus subtilis . J Bacteriol 195 : 3287 3297.[PubMed] [CrossRef]
130. Gebhard S,, Fang C,, Shaaly A,, Leslie DJ,, Weimar MR,, Kalamorz F,, Carne A,, Cook GM . 2014. Identification and characterization of a bacitracin resistance network in Enterococcus faecalis . Antimicrob Agents Chemother 58 : 1425 1433.[PubMed] [CrossRef]
131. Falord M,, Karimova G,, Hiron A,, Msadek T . 2012. GraXSR proteins interact with the VraFG ABC transporter to form a five-component system required for cationic antimicrobial peptide sensing and resistance in Staphylococcus aureus . Antimicrob Agents Chemother 56 : 1047 1058.[PubMed] [CrossRef]
132. Commichau FM,, Herzberg C,, Tripal P,, Valerius O,, Stülke J . 2007. A regulatory protein-protein interaction governs glutamate biosynthesis in Bacillus subtilis: the glutamate dehydrogenase RocG moonlights in controlling the transcription factor GltC. Mol Microbiol 65 : 642 654.[PubMed] [CrossRef]
133. Wray LV Jr,, Zalieckas JM,, Fisher SH . 2001. Bacillus subtilis glutamine synthetase controls gene expression through a protein-protein interaction with transcription factor TnrA. Cell 107 : 427 435.[PubMed] [CrossRef]
134. Picossi S,, Belitsky BR,, Sonenshein AL . 2007. Molecular mechanism of the regulation of Bacillus subtilis gltAB expression by GltC. J Mol Biol 365 : 1298 1313.[PubMed] [CrossRef]
135. Gunka K,, Newman JA,, Commichau FM,, Herzberg C,, Rodrigues C,, Hewitt L,, Lewis RJ,, Stülke J . 2010. Functional dissection of a trigger enzyme: mutations of the Bacillus subtilis glutamate dehydrogenase RocG that affect differentially its catalytic activity and regulatory properties. J Mol Biol 400 : 815 827.[PubMed] [CrossRef]
136. Krishnan N,, Becker DF . 2005. Characterization of a bifunctional PutA homologue from Bradyrhizobium japonicum and identification of an active site residue that modulates proline reduction of the flavin adenine dinucleotide cofactor. Biochemistry 44 : 9130 9139.[PubMed] [CrossRef]
137. Durante-Rodríguez G,, Mancheño JM,, Rivas G,, Alfonso C,, García JL,, Díaz E,, Carmona M . 2013. Identification of a missing link in the evolution of an enzyme into a transcriptional regulator. PLoS ONE 8 : e57518. doi:10.1371/journal.pone.0057518 [PubMed] [CrossRef]
138. Barragán MJ,, Blázquez B,, Zamarro MT,, Mancheño JM,, García JL,, Díaz E,, Carmona M . 2005. BzdR, a repressor that controls the anaerobic catabolism of benzoate in Azoarcus sp. CIB, is the first member of a new subfamily of transcriptional regulators. J Biol Chem 280 : 10683 10694.[PubMed] [CrossRef]
139. Bramucci E,, Milano T,, Pascarella S . 2011. Genomic distribution and heterogeneity of MocR-like transcriptional factors containing a domain belonging to the superfamily of the pyridoxal-5′-phosphate dependent enzymes of fold type I. Biochem Biophys Res Commun 415 : 88 93.[PubMed] [CrossRef]
140. Titgemeyer F,, Reizer J,, Reizer A,, Saier MH Jr . 1994. Evolutionary relationships between sugar kinases and transcriptional repressors in bacteria. Microbiology 140 : 2349 2354.[PubMed] [CrossRef]
141. Chevance FF,, Erhardt M,, Lengsfeld C,, Lee SJ,, Boos W . 2006. Mlc of Thermus thermophilus: a glucose-specific regulator for a glucose/mannose ABC transporter in the absence of the phosphotranferase system. J Bacteriol 188 : 6561 6571.[PubMed] [CrossRef]
142. Kietzman CC,, Caparon MG . 2010. CcpA and LacD.1 affect temporal regulation of Streptococcus pyogenes virulence genes. Infect Immun 78 : 241 252.[PubMed] [CrossRef]
143. Loughman JA,, Caparon MG . 2006. A novel adaptation of aldolase regulates virulence in Streptococcus pyogenes . EMBO J 25 : 5414 5422.[PubMed] [CrossRef]
144. Loughman JA,, Caparon MG . 2007. Comparative functional analysis of the lac operons in Streptococcus pyogenes . Mol Microbiol 64 : 269 280.[PubMed] [CrossRef]
145. Lee SJ,, Kim HS,, Kim do J,, Yoon HJ,, Kim KH,, Yoon JY,, Suh SW . 2011. Crystal structures of LacD from Staphylococcus aureus and LacD.1 from Streptococcus pyogenes: insights into substrate specificity and virulence gene regulation. FEBS Lett 585 : 307 312.[PubMed] [CrossRef]
146. Cusumano Z,, Caparon M . 2013. Adaptive evolution of the Streptococcus pyogenes regulatory aldolase LacD.1. J Bacteriol 195 : 1294 1304.[PubMed] [CrossRef]
147. Shevell DE,, Friedman BM,, Walker GC . 1990. Resistance to alkylation damage in Escherichia coli: role of the Ada protein in induction of the adaptive response. Mutat Res 233 : 53 72.[PubMed] [CrossRef]
148. Kleefeld A,, Ackermann B,, Bauer J,, Krämer J,, Unden G . 2009. The fumarate/succinate antiporter DcuB of Escherichia coli is a bifunctional protein with sites for regulation of DcuS-dependent gene expression. J Biol Chem 284 : 265 275.[PubMed] [CrossRef]
149. Tomchick DR,, Turner RJ,, Switzer RL,, Smith JL . 1998. Adaptation of an enzyme to regulatory function: structure of Bacillus subtilis PyrR, a pyr RNA-binding attenuation protein and uracil phosphoribosyltransferase. Structure 6 : 337 350.[PubMed] [CrossRef]
150. Bachem S,, Stülke J . 1998. Regulation of the Bacillus subtilis GlcT antiterminator protein by components of the phosphotransferase system. J Bacteriol 180 : 5319 5326.[PubMed]
151. Martin-Verstraete I,, Charrier V,, Stülke J,, Galinier A,, Erni B,, Rapoport G,, Deutscher J . 1998. Antagonistic effects of dual PTS catalysed phosphorylation on the Bacillus subtilis transcriptional activator LevR. Mol Microbiol 28 : 293 303.[PubMed] [CrossRef]
152. Tobisch S,, Stülke J,, Hecker M . 1999. Regulation of the lic operon of Bacillus subtilis and characterization of potential phosphorylation sites of the LicR regulator protein by site-directed mutagenesis. J Bacteriol 181 : 4995 5003.[PubMed]
153. Wenzel M,, Altenbuchner J . 2013. The Bacillus subtilis mannose regulator, ManR, a DNA-binding protein regulated by HPr and its cognate PTS transporter, ManP. Mol Microbiol 88 : 562 576.[PubMed] [CrossRef]
154. Joyet P,, Derkaoui M,, Poncet S,, Deutscher J . 2010. Control of Bacillus subtilis mtl operon expression by complex phosphorylation-dependent regulation of the transcriptional activator MtlR. Mol Microbiol 76 : 1279 1294.[PubMed] [CrossRef]
155. Tanaka Y,, Kimata K,, Aiba H . 2000. A novel regulatory role of glucose transporter of Escherichia coli: membrane sequestration of a global repressor Mlc. EMBO J 19 : 5344 5352.[PubMed] [CrossRef]
156. Tetsch L,, Koller C,, Haneburger I,, Jung K . 2008. The membrane-integrated transcriptional activator CadC of Escherichia coli senses lysine indirectly via the interaction with the lysine permease LysP. Mol Microbiol 67 : 570 583.[PubMed] [CrossRef]
157. Bächler C,, Schneider P,, Bähler P,, Lustig A,, Erni B . 2005. Escherichia coli dihydroxyacetone kinase controls gene expression by binding to transcription factor DhaR. EMBO J 24 : 283 293.[PubMed] [CrossRef]
158. Joly N,, Böhm A,, Boos W,, Richet E . 2004. MalK, the ATP-binding cassette component of the Escherichia coli maltodextrin transporter, inhibits the transcriptional activator MalT by antagonizing inducer binding. J Biol Chem 279 : 33123 33130.[PubMed] [CrossRef]
159. Nakano Y,, Kimura K . 1991. Purification and characterization of a repressor for the Bacillus cereus glnRA operon. J Biochem 109 : 223 228.[PubMed]
160. Chen PM,, Chen YY,, Yu SL,, Sher S,, Lai CH,, Chia JS . 2010. Role of GlnR in acid-mediated repression of genes encoding proteins involved glutamine and glutamate metabolism in Streptococcus mutans . Appl Environ Microbiol 76 : 2478 2486.[PubMed] [CrossRef]
161. Terra R,, Stanley-Wall NR,, Cao G,, Lazazzera BA . 2012. Identification of Bacillus subtilis SipW as a bifunctional signal peptidase that controls surface-adhered biofilm formation. J Bacteriol 194 : 2781 2790.[PubMed] [CrossRef]
162. Garcia LL,, Rivas-Marín E,, Floriano B,, Bernhardt R,, Ewen KM,, Reyes-Ramírez F,, Santero E . 2011. ThnY is a ferredoxin reductase-like iron-sulfur flavoprotein that has evolved to function as a regulator of tetralin biodegradation gene expression. J Biol Chem 286 : 1709 1718.[PubMed] [CrossRef]


Generic image for table

A compilation of trigger enzymes in bacteria

Citation: Commichau F, Stülke J. 2015. Trigger Enzymes: Coordination of Metabolism and Virulence Gene Expression, p 105-127. In Conway T, Cohen P (ed), Metabolism and Bacterial Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MBP-0010-2014

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error