Chapter 16 : The Plasmid Mobilome of the Model Plant-Symbiont : Coming up with New Questions and Answers

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

The Plasmid Mobilome of the Model Plant-Symbiont : Coming up with New Questions and Answers, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818982/9781555818975_Chap16-1.gif /docserver/preview/fulltext/10.1128/9781555818982/9781555818975_Chap16-2.gif


Bacteria grouped within the , , and families, collectively known as rhizobia, inhabit the soil under free-living conditions and are associated in symbiosis with the root of legumes as nitrogen-fixing organisms. Rhizobia do not form a single taxonomic cluster. Instead, they are distributed within distantly related lineages amongst the alpha- and beta-subdivisions of the proteobacteria. The superb nitrogen-fixing capacity of the -legume symbioses argues for the use of rhizobia for the introduction of nitrogen into agricultural soils, as a means of avoiding the massive use of chemical fertilizers ( ).

Citation: Lagares A, Sanjuán J, Pistorio M. 2015. The Plasmid Mobilome of the Model Plant-Symbiont : Coming up with New Questions and Answers, p 279-293. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0005-2013
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Scheme of the different possible destinies of the model plasmid pSmeLPU88b::Tn5 when transferred to from different plasmid-diversity groups (plasmid OTU types; see reference ). The percentage assigned to each event was calculated upon consideration of an abundance of plasmid OTU types in which all are equally represented. Box A represents those OTUs that proved unable to host plasmid pSmeLPU88b::Tn5 because of either surface-exclusion phenomena or plasmid restriction within the recipient cell. Box B represents OTUs bearing helper functions able to mobilize the model plasmid. Box C represents isolates that, under our experimental conditions, were not able to mobilize plasmid pSmeLPU88b::Tn5. Some isolates belonging to the helper (+) class (Box B) or the helper (–) class (Box C) bear cryptic plasmids that display a replication incompatibility with plasmid pSmeLPU88b::Tn5 (dotted box). CRY, cryptic plasmid. The percent values on the right denote the maximal expected transfer frequency to a third bacterial strain (Reprinted from [ ] with permission of the publisher).

Citation: Lagares A, Sanjuán J, Pistorio M. 2015. The Plasmid Mobilome of the Model Plant-Symbiont : Coming up with New Questions and Answers, p 279-293. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0005-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Phylogenetic (neighbor-joining) tree showing the relationships between different relaxases of the MOB cluster as inferred from their complete protein sequences. The bootstrap-consensus tree inferred from 1,000 replicates is taken to represent the evolutionary history of the proteins (corresponding to the indicated taxa) analyzed ( ). The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1,000 replicates) is shown next to the branches. The tree is drawn to scale, with the branch lengths in proportion to the evolutionary distances used to construct the phylogenetic tree. Those distances were computed by means of the Poisson-correction method ( ) with the units being the number of amino acid substitutions per site. The protein sequences used were obtained from GenBank under the accession numbers indicated in parentheses before the name of each plasmid replicon. The box over the tree indicates the clades that include the close MOB, MOB, and MOB families of relaxases. *See text for description of type IV Dtrs. The black dots denote those plasmid replicons that bear nodulation () genes (Reprinted from [ ] with permission of the publisher).

Citation: Lagares A, Sanjuán J, Pistorio M. 2015. The Plasmid Mobilome of the Model Plant-Symbiont : Coming up with New Questions and Answers, p 279-293. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0005-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Proposed model for the regulation of conjugative transfer of the symbiotic plasmids. (A) Under nonfavorable conditions (i.e., standard laboratory media), RctR silences the Sma0953/50- and SMa0956-58-59- operons, so that remains inactive and RctA represses conjugative transfer in both pSyms. (B) Conjugative transfer is achieved after an unknown compound—putatively imported by the ABC transporter encoded by SMa0953-50 and modified by the SMa0956-58-59 gene products—binds RctR, thereby relieving transcription repression of . The resulting transcription ends up with the activation of to counteract RctA, the conjugative-transfer operons become expressed, and plasmid conjugation is able to proceed. (+) activation; (–) repression or inhibition; BM, bacterial membrane (Reprinted from [ ] with permission of the publisher).

Citation: Lagares A, Sanjuán J, Pistorio M. 2015. The Plasmid Mobilome of the Model Plant-Symbiont : Coming up with New Questions and Answers, p 279-293. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0005-2013
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Peoples MB,, Craswell ET . 1992. Biological nitrogen fixation: investments, expectations and actual contributions to agriculture. Plant Soil 141 : 13 39.[CrossRef]
2. Peoples MB,, Herridge DF . 1990. Nitrogen fixation by legumes in tropical and sub-tropical agriculture. Adv Agron 44 : 155 224.[CrossRef]
3. García de los Santos A,, Brom S,, Romero D . 1996. Rhizobium plasmids in bacteria-legume interactions. World J Microbiol Biotechnol 12 : 119 125.[PubMed] [CrossRef]
4. Mercado-Blanco J,, Toro N . 1996. Plasmids in Rhizobia: the role of nonsymbiotic plasmids. Mol Plant Microbe Interact 9 : 535 545.[CrossRef]
5. Banfalvi Z,, Kondorosi E,, Kondorosi A . 1985. Rhizobium meliloti carries two megaplasmids. Plasmid 13 : 129 138.[PubMed] [CrossRef]
6. Hynes MF,, Simon R,, Müller P,, Niehaus K,, Labes M,, Pühler A . 1986. The two megaplasmids of Rhizobium meliloti are involved in the effective nodulation of alfalfa. Mol Gen Genet 202 : 356 362.[CrossRef]
7. Banfalvi Z,, Sakanyan V,, Koncz C,, Kiss A,, Dusha I,, Kondorosi A . 1981. Location of nodulation and nitrogen fixation genes on a high molecular weight plasmid of Rhizobium meliloti . Mol Gen Genet 184 : 318 325.[PubMed]
8. Smets BF,, Barkay T . 2005. Horizontal gene transfer: perspectives at a crossroads of scientific disciplines. Nat Rev Microbiol 3 : 675 678.[PubMed] [CrossRef]
9. Pistorio M,, Del Papa MF,, Balague LJ,, Lagares A . 2003. Identification of a transmissible plasmid from an Argentine Sinorhizobium meliloti strain which can be mobilised by conjugative helper functions of the European strain S. meliloti GR4. FEMS Microbiol Lett 225 : 15 21.[CrossRef]
10. Roumiantseva ML,, Andronov EE,, Sharypova LA,, Dammann-Kalinowski T,, Keller M,, Young JP,, Simarov BV . 2002. Diversity of Sinorhizobium meliloti from the Central Asian alfalfa gene center. Appl Environ Microbiol 68 : 4694 4697.[PubMed] [CrossRef]
11. Stiens M,, Schneiker S,, Keller M,, Kuhn S,, Pühler A,, Schlüter A . 2006. Sequence analysis of the 144-kilobase accessory plasmid pSmeSM11a, isolated from a dominant Sinorhizobium meliloti strain identified during a long-term field release experiment. Appl Environ Microbiol 72 : 3662 3672.[PubMed] [CrossRef]
12. Kosier B,, Pühler A,, Simon R . 1993. Monitoring the diversity of Rhizobium meliloti field and microcosm isolates with a novel rapid genotyping method using insertion elements. Mol Ecol 2 : 35 36.[CrossRef]
13. Pistorio M,, Giusti MA,, Del Papa MF,, Draghi WO,, Lozano MJ,, Tejerizo GT,, Lagares A . 2008. Conjugal properties of the Sinorhizobium meliloti plasmid mobilome. FEMS Microbiol Ecol 65 : 372 382.[PubMed] [CrossRef]
14. Mercado-Blanco J,, Olivares J . 1993. Stability and transmissibility of the cryptic plasmids of Rhizobium meliloti GR4. Their possible use in the construction of cloning vectors of rhizobia. Arch Microbiol 160 : 477 485.[CrossRef]
15. Barnett MJ,, Fisher RF,, Jones T,, Komp C,, Abola AP,, Barloy-Hubler F,, Bowser L,, Capela D,, Galibert F,, Gouzy J,, Gurjal M,, Hong A,, Huizar L,, Hyman RW,, Kahn D,, Kahn ML,, Kalman S,, Keating DH,, Palm C,, Peck MC,, Surzycki R,, Wells DH,, Yeh KC,, Davis RW,, Federspiel NA,, Long SR . 2001. Nucleotide sequence and predicted functions of the entire Sinorhizobium meliloti pSymA megaplasmid. Proc Natl Acad Sci USA 98 : 9883 9888.[PubMed] [CrossRef]
16. Finan TM,, Weidner S,, Wong K,, Buhrmester J,, Chain P,, Vorholter FJ,, Hernandez-Lucas I,, Becker A,, Cowie A,, Gouzy J,, Golding B,, Puhler A . 2001. The complete sequence of the 1,683-kb pSymB megaplasmid from the N 2-fixing endosymbiont Sinorhizobium meliloti . Proc Natl Acad Sci USA 98 : 9889 9894.[PubMed] [CrossRef]
17. Giuntini E,, Mengoni A,, De Filippo C,, Cavalieri D,, Aubin-Horth N,, Landry CR,, Becker A,, Bazzicalupo M . 2005. Large-scale genetic variation of the symbiosis-required megaplasmid pSymA revealed by comparative genomic analysis of Sinorhizobium meliloti natural strains. BMC Genomics 6 : 158. doi:10.1186/1471-2164-6-158. [PubMed] [CrossRef]
18. Oresnik IJ,, Liu SL,, Yost CK,, Hynes MF . 2000. Megaplasmid pRme2011a of Sinorhizobium meliloti is not required for viability. J Bacteriol 182 : 3582 3586.[PubMed] [CrossRef]
19. Slater SC,, Goldman BS,, Goodner B,, Setubal JC,, Farrand SK,, Nester EW,, Burr TJ,, Banta L,, Dickerman AW,, Paulsen I,, Otten L,, Suen G,, Welch R,, Almeida NF,, Arnold F,, Burton OT,, Du Z,, Ewing A,, Godsy E,, Heisel S,, Houmiel KL,, Jhaveri J,, Lu J,, Miller NM,, Norton S,, Chen Q,, Phoolcharoen W,, Ohlin V,, Ondrusek D,, Pride N,, Stricklin SL,, Sun J,, Wheeler C,, Wilson L,, Zhu H,, Wood DW . 2009. Genome sequences of three agrobacterium biovars help elucidate the evolution of multichromosome genomes in bacteria. J Bacteriol 191 : 2501 2511.[PubMed] [CrossRef]
20. Galardini M,, Pini F,, Bazzicalupo M,, Biondi EG,, Mengoni A . 2013. Replicon-dependent bacterial genome evolution: the case of Sinorhizobium meliloti . Genome Biol Evol 5 : 542 558.[PubMed] [CrossRef]
21. Harrison PW,, Lower RP,, Kim NK,, Young JP . 2010. Introducing the bacterial ‘chromid’: not a chromosome, not a plasmid. Trends Microbiol 18 : 141 148.[PubMed] [CrossRef]
22. Galardini M,, Mengoni A,, Brilli M,, Pini F,, Fioravanti A,, Lucas S,, Lapidus A,, Cheng JF,, Goodwin L,, Pitluck S,, Land M,, Hauser L,, Woyke T,, Mikhailova N,, Ivanova N,, Daligault H,, Bruce D,, Detter C,, Tapia R,, Han C,, Teshima H,, Mocali S,, Bazzicalupo M,, Biondi EG . 2011. Exploring the symbiotic pangenome of the nitrogen-fixing bacterium Sinorhizobium meliloti . BMC Genomics 12 : 235. doi:10.1186/1471-2164-12-235. [PubMed] [CrossRef]
23. Schneiker-Bekel S,, Wibberg D,, Bekel T,, Blom J,, Linke B,, Neuweger H,, Stiens M,, Vorholter FJ,, Weidner S,, Goesmann A,, Puhler A,, Schluter A . 2011. The complete genome sequence of the dominant Sinorhizobium meliloti field isolate SM11 extends the S. meliloti pan-genome. J Biotechnol 155 : 20 33.[PubMed] [CrossRef]
24. Perez-Mendoza D,, Sepulveda E,, Pando V,, Munoz S,, Nogales J,, Olivares J,, Soto MJ,, Herrera-Cervera JA,, Romero D,, Brom S,, Sanjuan J . 2005. Identification of the rctA gene, which is required for repression of conjugative transfer of rhizobial symbiotic megaplasmids. J Bacteriol 187 : 7341 7350.[PubMed] [CrossRef]
25. Blanca-Ordóñez H,, Oliva-García JJ,, Pérez-Mendoza D,, Soto MJ,, Olivares J,, Sanjuán J,, Nogales J . 2010. pSymA-dependent mobilization of the Sinorhizobium meliloti pSymB megaplasmid. J Bacteriol 192 : 6309 6312.[PubMed] [CrossRef]
26. Barran LR,, Ritchot N,, Bromfield ES . 2001. Sinorhizobium meliloti plasmid pRm1132f replicates by a rolling-circle mechanism. J Bacteriol 183 : 2704 2708.[PubMed] [CrossRef]
27. Hahn M,, Hennecke H . 1987. Mapping of a Bradyrhizobium japonicum DNA region carrying genes for symbiosis and an asymmetric accumulation of reiterated sequences. Appl Environ Microbiol 53 : 2247 2252.[PubMed]
28. Kaluza K,, Hahn M,, Hennecke H . 1985. Repeated sequences similar to insertion elements clustered around the nif region of the Rhizobium japonicum genome. J Bacteriol 162 : 535 542.[PubMed]
29. Bromfield ES,, Lewis DM,, Barran LR . 1985. Cryptic plasmid and rifampin resistance in Rhizobium meliloti influencing nodulation competitiveness. J Bacteriol 164 : 410 413.[PubMed]
30. García-Rodriguez FM,, Toro N . 2000. Sinorhizobium meliloti nfe (nodulation formation efficiency) genes exhibit temporal and spatial expression patterns similar to those of genes involved in symbiotic nitrogen fixation. Mol Plant Microbe Interact 13 : 583 591.[PubMed] [CrossRef]
31. Soto MJ,, Zorzano A,, Garcia-Rodriguez FM,, Mercado-Blanco J,, Lopez-Lara IM,, Olivares J,, Toro N . 1994. Identification of a novel Rhizobium meliloti nodulation efficiency nfe gene homolog of Agrobacterium ornithine cyclodeaminase. Mol Plant Microbe Interact 7 : 703 707.[PubMed] [CrossRef]
32. Soto MJ,, Zorzano A,, Mercado-Blanco J,, Lepek V,, Olivares J,, Toro N . 1993. Nucleotide sequence and characterization of Rhizobium meliloti nodulation competitiveness genes nfe . J Mol Biol 229 : 570 576.[PubMed] [CrossRef]
33. Velázquez E,, Mateos PF,, Pedrero P,, Dazzo FB,, Martinez-Molina E . 1995. Attenuation of symbiotic effectiveness by Rhizobium meliloti SAF22 related to the presence of a cryptic plasmid. Appl Environ Microbiol 61 : 2033 2036.[PubMed]
34. Eckhardt T . 1978. A rapid method for the identification of plasmid desoxyribonucleic acid in bacteria. Plasmid 1 : 584 588.[PubMed] [CrossRef]
35. Wheatcroft R,, McRae DG,, Miller RW . 1990. Changes in the Rhizobium meliloti genome and the ability to detect supercoiled plasmids during bacteroid development. Mol Plant Microbe Interact 3 : 9 17.[CrossRef]
36. Plazinski J,, Cen YH,, Rolfe BG . 1985. General method for the identification of plasmid species in fast-growing soil microorganisms. Appl Environ Microbiol 49 : 1001 1003.[PubMed]
37. Velázquez E,, Mateos PF,, Velasco N,, Santos F,, Burgos PA,, Villadas P,, Toro N,, Martínez-Molina E . 1999. Symbiotic characteristics and selection of autochthonous strains of Sinorhizobium meliloti populations in different soils. Soil Biol Biochem 31 : 1039 1047.[CrossRef]
38. Coutinho HLC,, Oliveira VM,, Lovato A,, Maia AHN,, Manfio GP . 1999. Evaluation of the diversity of rhizobia in Brazilian agricultural soils cultivated with soybeans. Appl Soil Ecol 13 : 159 167.[CrossRef]
39. Cevallos MA,, Cervantes-Rivera R,, Gutierrez-Rios RM . 2008. The repABC plasmid family. Plasmid 60 : 19 37.[PubMed] [CrossRef]
40. Pinto UM,, Pappas KM,, Winans SC . 2012. The ABCs of plasmid replication and segregation. Nat Rev Microbiol 10 : 755 765.[PubMed] [CrossRef]
41. Ramírez-Romero MA,, Soberón N,, Pérez-Oseguera A,, Téllez-Sosa J,, Cevallos MA . 2000. Structural elements required for replication and incompatibility of the Rhizobium etli symbiotic plasmid. J Bacteriol 182 : 3117 3124.[PubMed] [CrossRef]
42. Salje J . 2010. Plasmid segregation: how to survive as an extra piece of DNA. Crit Rev Biochem Mol Biol 45 : 296 317.[PubMed] [CrossRef]
43. Hwang LC,, Vecchiarelli AG,, Han YW,, Mizuuchi M,, Harada Y,, Funnell BE,, Mizuuchi K . 2013. ParA-mediated plasmid partition driven by protein pattern self-organization. EMBO J 32 : 1238 1249.[PubMed] [CrossRef]
44. Cevallos MA,, Porta H,, Izquierdo J,, Tun-Garrido C,, Garcia-de-los-Santos A,, Davila G,, Brom S . 2002. Rhizobium etli CFN42 contains at least three plasmids of the repABC family: a structural and evolutionary analysis. Plasmid 48 : 104 116.[PubMed] [CrossRef]
45. Venkova-Canova T,, Soberón NE,, Ramírez-Romero MA,, Cevallos MA . 2004. Two discrete elements are required for the replication of a repABC plasmid: an antisense RNA and a stem-loop structure. Mol Microbiol 54 : 1431 1444.[PubMed] [CrossRef]
46. Chai Y,, Winans SC . 2005. A small antisense RNA downregulates expression of an essential replicase protein of an Agrobacterium tumefaciens Ti plasmid. Mol Microbiol 56 : 1574 1585.[PubMed] [CrossRef]
47. MacLellan SR,, Smallbone LA,, Sibley CD,, Finan TM . 2005. The expression of a novel antisense gene mediates incompatibility within the large repABC family of alpha-proteobacterial plasmids. Mol Microbiol 55 : 611 623.[PubMed] [CrossRef]
48. Mercado-Blanco J,, Olivares J . 1994. The large nonsymbiotic plasmid pRmeGR4a of Rhizobium meliloti GR4 encodes a protein involved in replication that has homology with the RepC protein of Agrobacterium plasmids. Plasmid 32 : 75 79.[PubMed] [CrossRef]
49. Izquierdo J,, Venkova-Canova T,, Ramirez-Romero MA,, Tellez-Sosa J,, Hernandez-Lucas I,, Sanjuan J,, Cevallos MA . 2005. An antisense RNA plays a central role in the replication control of a repC plasmid. Plasmid 54 : 259 277.[PubMed] [CrossRef]
50. Watson RJ,, Heys R . 2006. Replication regions of Sinorhizobium meliloti plasmids. Plasmid 55 : 87 98.[PubMed] [CrossRef]
51. Castellanos M,, Romero D . 2009. The extent of migration of the Holliday junction is a crucial factor for gene conversion in Rhizobium etli . J Bacteriol 191 : 4987 4995.[PubMed] [CrossRef]
52. Hernandez-Salmeron JE,, Santoyo G . 2011. Phylogenetic analysis reveals gene conversions in multigene families of rhizobia. Genet Mol Res 12 : 1383 1392.[PubMed] [CrossRef]
53. Tian CF,, Young JP,, Wang ET,, Tamimi SM,, Chen WX . 2010. Population mixing of Rhizobium leguminosarum bv. viciae nodulating Vicia faba: the role of recombination and lateral gene transfer. FEMS Microbiol Ecol 73 : 563 576.[PubMed]
54. Torres Tejerizo G,, Del Papa MF,, Giusti MA,, Draghi W,, Lozano M,, Lagares A,, Pistorio M . 2010. Characterization of extrachromosomal replicons present in the extended host range Rhizobium sp. LPU83. Plasmid 64 : 177 185.[PubMed] [CrossRef]
55. van Berkum P,, Terefework Z,, Paulin L,, Suomalainen S,, Lindstrom K,, Eardly BD . 2003. Discordant phylogenies within the rrn loci of rhizobia. J Bacteriol 185 : 2988 2998.[PubMed] [CrossRef]
56. Cervantes L,, Bustos P,, Girard L,, Santamaría RI,, Dávila G,, Vinuesa P,, Romero D,, Brom S . 2011. The conjugative plasmid of a bean-nodulating Sinorhizobium fredii strain is assembled from sequences of two Rhizobium plasmids and the chromosome of a Sinorhizobium strain. BMC Microbiol 11 : 149. doi:10.1186/1471-2180-11-149. [PubMed] [CrossRef]
57. Mazur A,, Majewska B,, Stasiak G,, Wielbo J,, Skorupska A . 2011. repABC-based replication systems of Rhizobium leguminosarum bv. trifolii TA1 plasmids: incompatibility and evolutionary analyses. Plasmid 66 : 53 66.[PubMed] [CrossRef]
58. Suominen L,, Roos C,, Lortet G,, Paulin L,, Lindstrom K . 2001. Identification and structure of the Rhizobium galegae common nodulation genes: evidence for horizontal gene transfer. Mol Biol Evol 18 : 907 916.[PubMed] [CrossRef]
59. Nogales J,, Blanca-Ordonez H,, Olivares J,, Sanjuan J . 2013. Conjugal transfer of the Sinorhizobium meliloti 1021 symbiotic plasmid is governed through the concerted action of one- and two-component signal transduction regulators. Environ Microbiol 15 : 811 821.[PubMed] [CrossRef]
60. Bailly X,, Olivieri I,, Brunel B,, Cleyet-Marel JC,, Béna G . 2007. Horizontal gene transfer and homologous recombination drive the evolution of the nitrogen-fixing symbionts of Medicago species. J Bacteriol 189 : 5223 5236.[PubMed] [CrossRef]
61. Shannon CE,, Weaver W . 1949. Evolution and measurement of species diversity. Taxon 21 : 213 251.
62. Simpson EH . 1949. Measurement of diversity. Nature 163 : 688. [CrossRef]
63. Herrera-Cervera JA,, Olivares J,, Sanjuan J . 1996. Ammonia inhibition of plasmid pRmeGR4a conjugal transfer between Rhizobium meliloti strains. Appl Environ Microbiol 62 : 1145 1150.[PubMed]
64. Giusti MA,, Lozano MJ,, Torres Tejerizo GA,, Martini MC,, Salas ME,, López JL,, Draghi WO,, Del Papa MF,, Pistorio M,, Lagares A . 2013. Conjugal transfer of a Sinorhizobium meliloti cryptic plasmid evaluated during a field release and in soil microcosms. Eur J Soil Biol 55 : 9 12.[CrossRef]
65. Kinkle BK,, Schmidt EL . 1991. Transfer of the pea symbiotic plasmid pJB5JI in nonsterile soil. Appl Environ Microbiol 57 : 3264 3269.[PubMed]
66. Ding H,, Hynes MF . 2009. Plasmid transfer systems in the rhizobia. Can J Microbiol 55 : 917 927.[PubMed] [CrossRef]
67. Giusti MA,, Pistorio M,, Lozano MJ,, Torres Tejerizo GA,, Salas ME,, Martini MC,, López JL,, Draghi WO,, Del Papa MF,, Pérez-Mendoza D,, Sanjuán J,, Lagares A . 2012. Genetic and functional characterization of a yet-unclassified rhizobial Dtr (DNA-transfer-and-replication) region from the ubiquitous plasmid conjugal system present in Sinorhizobium meliloti, Sinorhizobium medicae, and in other Gram-negative bacteria. Plasmid 67 : 199 210.[PubMed] [CrossRef]
68. Ding H,, Yip CB,, Hynes MF . 2013. Genetic characterization of a novel rhizobial plasmid conjugation system in Rhizobium leguminosarum bv. viciae strain VF39SM. J Bacteriol 195 : 328 339.[PubMed] [CrossRef]
69. Herrera-Cervera JA,, Sanjuan-Pinilla JM,, Olivares J,, Sanjuan J . 1998. Cloning and identification of conjugative transfer origins in the Rhizobium meliloti genome. J Bacteriol 180 : 4583 4590.[PubMed]
70. Garcillan-Barcia MP,, Francia MV,, de la Cruz F . 2009. The diversity of conjugative relaxases and its application in plasmid classification. FEMS Microbiol Rev 33 : 657 687.[PubMed] [CrossRef]
71. Holmes B,, Poppoff M,, Kiredjian M,, Kersters K . 1988. Ochrobactrum anthropi gen. nov., sp. nov. from human clinical specimens and previously known as group Vd. Int J Syst Evol Bacteriol 38 : 406 416.[CrossRef]
72. Pistorio M,, Torres Tejerizo GA,, Del Papa MF,, de Los Angeles Giusti M,, Lozano M,, Lagares A . 2013. rptA, a novel gene from Ensifer ( Sinorhizobium) meliloti involved in conjugal transfer. FEMS Microbiol Lett 345 : 22 30.[PubMed] [CrossRef]
73. He X,, Chang W,, Pierce DL,, Seib LO,, Wagner J,, Fuqua C . 2003. Quorum sensing in Rhizobium sp. strain NGR234 regulates conjugal transfer ( tra) gene expression and influences growth rate. J Bacteriol 185 : 809 822.[PubMed] [CrossRef]
74. Danino VE,, Wilkinson A,, Edwards A,, Downie JA . 2003. Recipient-induced transfer of the symbiotic plasmid pRL1JI in Rhizobium leguminosarum bv. viciae is regulated by a quorum-sensing relay. Mol Microbiol 50 : 511 525.[PubMed] [CrossRef]
75. Wilkinson A,, Danino V,, Wisniewski-Dye F,, Lithgow JK,, Downie JA . 2002. N-acyl-homoserine lactone inhibition of rhizobial growth is mediated by two quorum-sensing genes that regulate plasmid transfer. J Bacteriol 184 : 4510 4519.[PubMed] [CrossRef]
76. Tun-Garrido C,, Bustos P,, Gonzalez V,, Brom S . 2003. Conjugative transfer of p42a from Rhizobium etli CFN42, which is required for mobilization of the symbiotic plasmid, is regulated by quorum sensing. J Bacteriol 185 : 1681 1692.[PubMed] [CrossRef]
77. Hoskisson PA,, Rigali S . 2009. Chapter 1: variation in form and function: the helix-turn-helix regulators of the GntR superfamily. Adv Appl Microbiol 69 : 1 22.[PubMed] [CrossRef]
78. Mueller K,, Gonzalez JE . 2011. Complex regulation of symbiotic functions is coordinated by MucR and quorum sensing in Sinorhizobium meliloti . J Bacteriol 193 : 485 496.[PubMed] [CrossRef]
79. Woese CR . 2002. On the evolution of cells. Proc Natl Acad Sci USA 99 : 8742 8747.[PubMed] [CrossRef]
80. Felsenstein J . 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39 : 783 791.[CrossRef]
81. Zuckerkandl E,, Pauling L, . 1965. Evolutionary divergence and convergence in proteins, p 97 166. In Bryson V,, Vogel HJ (ed), Evolving Genes and Proteins. Academic Press, New York, NY. [CrossRef]

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error