Chapter 4 : Plasmid Rolling-Circle Replication

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Plasmid Rolling-Circle Replication, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818982/9781555818975_Chap04-1.gif /docserver/preview/fulltext/10.1128/9781555818982/9781555818975_Chap04-2.gif


The main features that characterize rolling-circle replication (RCR) (see Fig. 1A ) derive from its singular initiation mechanism, which relies on the sequence-specific cleavage, at the nick site of the double-strand origin (), of one of the parental DNA strands by an initiator Rep protein. This cleavage generates a 3′-OH end that allows the host DNA polymerases to initiate the leading strand replication. Therefore, the RCR initiation circumvents the synthesis of a primer RNA that is required in all other modes of replication of circular double-stranded DNA (dsDNA). Elongation of the leading strand takes place as the parental double helix is unwound by a host DNA helicase and the cleaved nontemplate strand is covered with the single-stranded DNA binding protein. Since the nascent DNA is covalently attached to the parental DNA, termination of a round of leading-strand replication implies a new cleavage event at the reconstituted nick site. This reaction is assumed to be catalyzed by the same Rep molecule that carried out the initiation cleavage and remained bound to the 5′ end of the parental strand while traveling along with the replication fork. A trans-esterification then occurs that joins this 5′ end to the 3′ end generated in the termination cleavage, releasing the displaced parental strand as a circular single-stranded DNA (ssDNA). This replicative intermediate serves as the template for the synthesis of the lagging strand, which depends solely on host-encoded enzymes and is initiated from a highly structured region of the ssDNA, termed the single-strand origin ().

Citation: Ruiz-Masó J, Machón C, Bordanaba-Ruiseco L, Espinosa M, Coll M, del Solar G. 2015. Plasmid Rolling-Circle Replication, p 45-69. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0035-2014
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

(A) A model for plasmid RCR based on pMV158 and pT181 replicons. Detailed information about the RCR process is given in the text. In the pMV158 replication model, a possible mechanism is shown in which, upon assembly and cleavage at the nick site, the hexameric ring of RepB encircles one of the plasmid strands within the central channel. As discussed in the text, the strand enclosure may confer high processivity to the replisome complex. The RepB-mediated mechanism that, at the termination step, yields the dsDNA replication product and the ssDNA intermediate, as well as the mechanism of RepB inactivation, remain undisclosed (dotted arrow with ? symbol). (B) Scheme of the s and of the adjacent regions of the pMV158 and pT181 RCR plasmids. The symbols used are as follows: direct repeats in the replication region are indicated by solid boxed arrows; the inverted arrows represent the two arms of the inverted repeat elements; promoters are indicated by open arrowheads. The AT- and GC-rich sequences (A+T and G+C, respectively) are also indicated. The dotted line above the pMV158 map indicates that the direct repeats of the locus are separated by 84 bp from the nick site. SSB, single-stranded DNA binding protein.

Citation: Ruiz-Masó J, Machón C, Bordanaba-Ruiseco L, Espinosa M, Coll M, del Solar G. 2015. Plasmid Rolling-Circle Replication, p 45-69. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0035-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Functional organization of the RCR plasmids. Plasmids representative of the different families are shown. The arrows point to the direction of transcription (black) or the direction of replication (red) from the (leading strand) and (lagging strand). Inside the boxes, is the replication gene; represents the copy number control gene(s); is the double-strand origin of replication; is the single-strand origin of replication; and are chloramphenicol- and tetracycline-resistant genes, respectively; represents the conjugative mobilization gene; indicates an open reading frame with unknown homology. The positions of the copy number control genes and of pGA1, and of the gene of pTX14-2 are also indicated.

Citation: Ruiz-Masó J, Machón C, Bordanaba-Ruiseco L, Espinosa M, Coll M, del Solar G. 2015. Plasmid Rolling-Circle Replication, p 45-69. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0035-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Domain structure of the Rep proteins from RCR plasmids. Predicted and observed secondary structures of the replication proteins of different RCR plasmids and of the Rep proteins from the adeno associated virus (AAV) and bovine papillomavirus (BPV). The amino-terminal end (N) and the number of amino acids are indicated for each of the proteins analyzed. The predicted or observed α-helices and β-strands are represented as red and green bars, respectively. The 3-helices are represented as blue bars. Conserved amino acid residues of the active site involved in metal binding (HUH) and in the endonucleolytic activity are indicated in the protein maps. The conserved Walker A, B, and C motifs are indicated in the proteins with a helicase domain. The limits of the origin binding domain (OBD) and of the oligomerization domain (OD) are indicated in the protein maps of RepB, Rep68, and E1. The additional line below the sequence of RepB, Rep68, and E1 shows the secondary structure present in the crystal structure of the protein (PDB entry code is given in the figure). Plasmidic Rep proteins were aligned by the metal binding HUH motif. However, viral Reps were aligned with RepB by the all-helical OD domain due to the structural similarity found in this region.

Citation: Ruiz-Masó J, Machón C, Bordanaba-Ruiseco L, Espinosa M, Coll M, del Solar G. 2015. Plasmid Rolling-Circle Replication, p 45-69. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0035-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Cartoon representation of the structure of RepB obtained by X-ray crystallography. (A) Top (left) and side (right) views of the RepB hexamer. The locations of the OBD (continuous line) and of the OD (dotted line) are also indicated in the two views. The position of the hinge connecting both domains is indicated in the side view. (B) Top (left) and side (right) views of the electrostatic potential on the solvent-accessible surface of the RepB hexamer structure. The location of the crevice is indicated.

Citation: Ruiz-Masó J, Machón C, Bordanaba-Ruiseco L, Espinosa M, Coll M, del Solar G. 2015. Plasmid Rolling-Circle Replication, p 45-69. In Tolmasky M, Alonso J (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.PLAS-0035-2014
Permissions and Reprints Request Permissions
Download as Powerpoint


1. del Solar G,, Giraldo R,, Ruiz-Echevarría MJ,, Espinosa M,, Díaz-Orejas R . 1998. Replication and control of circular bacterial plasmids. Microbiol Mol Biol Rev 62 : 434 464.[PubMed]
2. Khan SA . 2005. Plasmid rolling-circle replication: highlights of two decades of research. Plasmid 53 : 126 136.[PubMed] [CrossRef]
3. Chandler M,, de la Cruz F,, Dyda F,, Hickman AB,, Moncalian G,, Ton-Hoang B . 2013. Breaking and joining single-stranded DNA: the HUH endonuclease superfamily. Nat Rev Microbiol 11 : 525 538.[PubMed] [CrossRef]
4. Dressler D . 1970. The rolling circle for phiX174 DNA replication. II. Synthesis of single-stranded circles. Proc Natl Acad Sci USA 67 : 1934 1942.[PubMed] [CrossRef]
5. Dressler D,, Wolfson J . 1970. The rolling circle for phiX174 DNA replication. 3. Synthesis of supercoiled duplex rings. Proc Natl Acad Sci USA 67 : 456 463.[PubMed] [CrossRef]
6. Gilbert W,, Dressler D . 1968. DNA replication: the rolling circle model. Cold Spring Harb Symp Quant Biol 33 : 473 484.[PubMed] [CrossRef]
7. Eisenberg S,, Kornberg A . 1979. Purification and characterization of phiX174 gene A protein. A multifunctional enzyme of duplex DNA replication. J Biol Chem 254 : 5328 5332.[PubMed]
8. Henry TJ,, Knippers R . 1974. Isolation and function of the gene A initiator of bacteriophage phiX174, a highly specific DNA endonuclease. Proc Natl Acad Sci USA 71 : 1549 1553.[PubMed] [CrossRef]
9. Ikeda JE,, Yudelevich A,, Hurwitz J . 1976. Isolation and characterization of the protein coded by gene A of bacteriophage phiX174 DNA. Proc Natl Acad Sci USA 73 : 2669 2673.[PubMed] [CrossRef]
10. van Mansfeld AD,, van Teeffelen HA,, Baas PD,, Veeneman GH,, van Boom JH,, Jansz HS . 1984. The bond in the bacteriophage phiX174 gene A protein–DNA complex is a tyrosyl-5′-phosphate ester. FEBS Lett 173 : 351 356.[PubMed] [CrossRef]
11. Koepsel RR,, Murray RW,, Rosenblum WD,, Khan SA . 1985. The replication initiator protein of plasmid pT181 has sequence-specific endonuclease and topoisomerase-like activities. Proc Natl Acad Sci USA 82 : 6845 6849.[PubMed] [CrossRef]
12. del Solar GH,, Puyet A,, Espinosa M . 1987. Initiation signals for the conversion of single stranded to double stranded DNA forms in the streptococcal plasmid pLS1. Nucleic Acids Res 15 : 5561 5580.[PubMed] [CrossRef]
13. Deng ZX,, Kieser T,, Hopwood DA . 1988. “Strong incompatibility” between derivatives of the Streptomyces multi-copy plasmid pIJ101. Mol Gen Genet 214 : 286 294.[PubMed] [CrossRef]
14. te Riele H,, Michel B,, Ehrlich SD . 1986. Single-stranded plasmid DNA in Bacillus subtilis and Staphylococcus aureus . Proc Natl Acad Sci USA 83 : 2541 2545.[PubMed] [CrossRef]
15. Backert S,, Meissner K,, Borner T . 1997. Unique features of the mitochondrial rolling circle-plasmid mp1 from the higher plant Chenopodium album (L.). Nucleic Acids Res 25 : 582 589.[PubMed] [CrossRef]
16. Yu JS,, Noll KM . 1997. Plasmid pRQ7 from the hyperthermophilic bacterium Thermotoga species strain RQ7 replicates by the rolling-circle mechanism. J Bacteriol 179 : 7161 7164.[PubMed]
17. Akimkina T,, Ivanov P,, Kostrov S,, Sokolova T,, Bonch-Osmolovskaya E,, Firman K,, Dutta CF,, McClellan JA . 1999. A highly conserved plasmid from the extreme thermophile Thermotoga maritima MC24 is a member of a family of plasmids distributed worldwide. Plasmid 42 : 236 240.[PubMed] [CrossRef]
18. Nesbo CL,, Dlutek M,, Doolittle WF . 2006. Recombination in Thermotoga: implications for species concepts and biogeography. Genetics 172 : 759 769.[PubMed] [CrossRef]
19. Nesvera J,, Hochmannova J,, Patek M . 1998. An integron of class 1 is present on the plasmid pCG4 from Gram-positive bacterium Corynebacterium glutamicum . FEMS Microbiol Lett 169 : 391 395.[PubMed] [CrossRef]
20. Smith MC,, Thomas CD . 2004. An accessory protein is required for relaxosome formation by small staphylococcal plasmids. J Bacteriol 186 : 3363 3373.[PubMed] [CrossRef]
21. Blanco M,, Kadlec K,, Gutierrez Martin CB,, de la Fuente AJ,, Schwarz S,, Navas J . 2007. Nucleotide sequence and transfer properties of two novel types of Actinobacillus pleuropneumoniae plasmids carrying the tetracycline resistance gene tet(H). J Antimicrob Chemother 60 : 864 867.[PubMed] [CrossRef]
22. Cooper TF,, Heinemann JA . 2000. Postsegregational killing does not increase plasmid stability but acts to mediate the exclusion of competing plasmids. Proc Natl Acad Sci USA 97 : 12643 12648.[PubMed] [CrossRef]
23. Cooper TF,, Paixao T,, Heinemann JA . 2010. Within-host competition selects for plasmid-encoded toxin-antitoxin systems. Proc Biol Sci 277 : 3149 3155.[PubMed] [CrossRef]
24. Hernández-Arriaga AM,, Chan WT,, Espinosa M,, Díaz-Orejas R . 2014. Conditional activation of toxin-antitoxin systems: postsegregational killing and beyond. Microbiol Spec 2.
25. del Solar G,, Fernández-López C,, Ruiz-Masó JA,, Lorenzo-Díaz F,, Espinosa M, . 2014. Rolling circle replicating plasmids. In Bell E (ed), Molecular Life Sciences. Springer Science+Business Media, New York. doi:10.1007/978-1-4614-6436-5_567-2. [CrossRef]
26. Petrova P,, Miteva V,, Ruiz-Masó JA,, del Solar G . 2003. Structural and functional analysis of pt38, a 2.9 kb plasmid of Streptococcus thermophilus yogurt strain. Plasmid 50 : 176 189.[PubMed] [CrossRef]
27. Petrova PM,, Gouliamova DE . 2006. Rapid screening of plasmid-encoded small hsp-genes in Streptococcus thermophilus . Curr Microbiol 53 : 422 427.[PubMed] [CrossRef]
28. Andrup L,, Jensen GB,, Wilcks A,, Smidt L,, Hoflack L,, Mahillon J . 2003. The patchwork nature of rolling-circle plasmids: comparison of six plasmids from two distinct Bacillus thuringiensis serotypes. Plasmid 49 : 205 232.[PubMed] [CrossRef]
29. del Solar G,, Alonso JC,, Espinosa M,, Díaz-Orejas R . 1996. Broad-host-range plasmid replication: an open question. Mol Microbiol 21 : 661 666.[PubMed] [CrossRef]
30. Iordanescu S . 1995. Plasmid pT181 replication is decreased at high levels of RepC per plasmid copy. Mol Microbiol 16 : 477 484.[PubMed] [CrossRef]
31. Ruiz-Masó JA,, Anand SP,, Espinosa M,, Khan SA,, del Solar G . 2006. Genetic and biochemical characterization of the Streptococcus pneumoniae PcrA helicase and its role in plasmid rolling circle replication. J Bacteriol 188 : 7416 7425.[PubMed] [CrossRef]
32. del Solar G,, Moscoso M,, Espinosa M . 1993. Rolling circle-replicating plasmids from Gram-positive and -negative bacteria: a wall falls. Mol Micobiol 8 : 789 796.[PubMed] [CrossRef]
33. Biswas I,, Jha JK,, Fromm N . 2008. Shuttle expression plasmids for genetic studies in Streptococcus mutans . Microbiology 154 : 2275 2282.[PubMed] [CrossRef]
34. Bron S,, Meijer W,, Holsappel S,, Haima P . 1991. Plasmid instability and molecular cloning in Bacillus subtilis . Res Microbiol 142 : 875 883.[PubMed] [CrossRef]
35. del Solar G,, Moscoso M,, Espinosa M . 1993. In vivo definition of the functional origin of replication (ori(+)) of the promiscuous plasmid pLS1. Mol Gen Genet 237 : 65 72.[PubMed] [CrossRef]
36. O’Sullivan TF,, Fitzgerald GF . 1999. Electrotransformation of industrial strains of Streptococcus thermophilus . J Appl Microbiol 86 : 275 283.[PubMed] [CrossRef]
37. Turgeon N,, Laflamme C,, Ho J,, Duchaine C . 2006. Elaboration of an electroporation protocol for Bacillus cereus ATCC 14579. J Microbiol Methods 67 : 543 548.[PubMed] [CrossRef]
38. Gruss A,, Ehrlich SD . 1988. Insertion of foreign DNA into plasmids from Gram-positive bacteria induces formation of high-molecular-weight plasmid multimers. J Bacteriol 170 : 1183 1190.[PubMed]
39. Kiewiet R,, Kok J,, Seegers JF,, Venema G,, Bron S . 1993. The mode of replication is a major factor in segregational plasmid instability in Lactococcus lactis . Appl Environ Microbiol 59 : 358 364.[PubMed]
40. Leonhardt H,, Alonso JC . 1991. Parameters affecting plasmid stability in Bacillus subtilis . Gene 103 : 107 111.[PubMed] [CrossRef]
41. Viret JF,, Alonso JC . 1987. Generation of linear multigenome-length plasmid molecules in Bacillus subtilis . Nucleic Acids Res 15 : 6349 6367.[PubMed] [CrossRef]
42. Alonso JC,, Trautner TA . 1985. Generation of deletions through a cis-acting mutation in plasmid pC194. Mol Gen Genet 198 : 432 436.[PubMed] [CrossRef]
43. Fernández-López C,, Bravo A,, Ruiz-Cruz S,, Solano-Collado V,, Garsin DA,, Lorenzo-Díaz F,, Espinosa M . 2014. Mobilizable rolling-circle replicating plasmids from Gram-positive bacteria: a low-cost conjugative transfer. Microbiol Spec 2. doi:10.1128/microbiolspec.PLAS-0008-2013. [CrossRef]
44. Ruiz-Cruz S,, Solano-Collado V,, Espinosa M,, Bravo A . 2010. Novel plasmid-based genetic tools for the study of promoters and terminators in Streptococcus pneumoniae and Enterococcus faecalis . J Microbiol Methods 83 : 156 163.[PubMed] [CrossRef]
45. Ruiz-Masó JA,, López-Aguilar C,, Nieto C,, Sanz M,, Burón P,, Espinosa M,, del Solar G . 2012. Construction of a plasmid vector based on the pMV158 replicon for cloning and inducible gene expression in Streptococcus pneumoniae . Plasmid 67 : 53 59.[PubMed] [CrossRef]
46. Patek M,, Nesvera J, . 2013. Promoters and plasmid vectors of Corynebacterium glutamicum . In Yukawa H,, Inui M (ed), Corynebacterium glutamicum. Microbiology Monographs 23. Springer Verlag, Berlin. [CrossRef]
47. Nesvera J,, Patek M,, Hochmannova J,, Abrhamova Z,, Becvarova V,, Jelinkova M,, Vohradsky J . 1997. Plasmid pGA1 from Corynebacterium glutamicum codes for a gene product that positively influences plasmid copy number. J Bacteriol 179 : 1525 1532.[PubMed]
48. Hernández-Arriaga AM,, Espinosa M,, del Solar G . 2012. Fitness of the pMV158 replicon in Streptococcus pneumoniae . Plasmid 67 : 162 166.[PubMed] [CrossRef]
49. Espinosa M,, del Solar G,, Rojo F,, Alonso JC . 1995. Plasmid rolling circle replication and its control. FEMS Microbiol Lett 130 : 111 120.[PubMed] [CrossRef]
50. Khan SA . 1997. Rolling-circle replication of bacterial plasmids. Microbiol Mol Biol Rev 61 : 442 455.[PubMed]
51. Lo Piano A,, Martínez-Jiménez MI,, Zecchi L,, Ayora S . 2011. Recombination-dependent concatemeric viral DNA replication. Virus Res 160 : 1 14.[PubMed] [CrossRef]
52. Thomas CD,, Balson DF,, Shaw WV . 1990. In vitro studies of the initiation of staphylococcal plasmid replication. Specificity of RepD for its origin (oriD) and characterization of the Rep-ori tyrosyl ester intermediate. J Biol Chem 265 : 5519 5530.[PubMed]
53. Noirot-Gros MF,, Bidnenko V,, Ehrlich SD . 1994. Active site of the replication protein of the rolling circle plasmid pC194. EMBO J 13 : 4412 4420.[PubMed]
54. Novick RP . 1989. Staphylococcal plasmids and their replication. Annu Rev Microbiol 43 : 537 565.[PubMed] [CrossRef]
55. Tauch A,, Puhler A,, Kalinowski J,, Thierbach G . 2003. Plasmids in Corynebacterium glutamicum and their molecular classification by comparative genomics. J Biotechnol 104 : 27 40.[PubMed] [CrossRef]
56. Zhou L,, Zhou M,, Sun C,, Han J,, Lu Q,, Zhou J,, Xiang H . 2008. Precise determination, cross-recognition, and functional analysis of the double-strand origins of the rolling-circle replication plasmids in haloarchaea. J Bacteriol 190 : 5710 5719.[PubMed] [CrossRef]
57. Erauso G,, Marsin S,, Benbouzid-Rollet N,, Baucher MF,, Barbeyron T,, Zivanovic Y,, Prieur D,, Forterre P . 1996. Sequence of plasmid pGT5 from the archaeon Pyrococcus abyssi: evidence for rolling-circle replication in a hyperthermophile. J Bacteriol 178 : 3232 3237.[PubMed]
58. Zock JM,, Birch P,, Khan SA . 1990. Specificity of RepC protein in plasmid pT181 DNA replication. J Biol Chem 265 : 3484 3488.[PubMed]
59. Iordanescu S . 1989. Specificity of the interactions between the Rep proteins and the origins of replication of Staphylococcus aureus plasmids pT181 and pC221. Mol Gen Genet 217 : 481 487.[PubMed] [CrossRef]
60. Kim SW,, Jeong EJ,, Kang HS,, Tak JI,, Bang WY,, Heo JB,, Jeong JY,, Yoon GM,, Kang HY,, Bahk JD . 2006. Role of RepB in the replication of plasmid pJB01 isolated from Enterococcus faecium JC1. Plasmid 55 : 99 113.[PubMed] [CrossRef]
61. de la Campa AG,, del Solar GH,, Espinosa M . 1990. Initiation of replication of plasmid pLS1. The initiator protein RepB acts on two distant DNA regions. J Mol Biol 213 : 247 262.[PubMed] [CrossRef]
62. Moscoso M,, del Solar G,, Espinosa M . 1995. Specific nicking-closing activity of the initiator of replication protein RepB of plasmid pMV158 on supercoiled or single-stranded DNA. J Biol Chem 270 : 3772 3779.[PubMed] [CrossRef]
63. Moscoso M,, Eritja R,, Espinosa M . 1997. Initiation of replication of plasmid pMV158: mechanisms of DNA strand-transfer reactions mediated by the initiator RepB protein. J Mol Biol 268 : 840. [PubMed] [CrossRef]
64. Ruiz-Masó JA,, Lurz R,, Espinosa M,, del Solar G . 2007. Interactions between the RepB initiator protein of plasmid pMV158 and two distant DNA regions within the origin of replication. Nucleic Acids Res 35 : 1230 1244.[PubMed] [CrossRef]
65. Wang PZ,, Projan SJ,, Henriquez V,, Novick RP . 1993. Origin recognition specificity in pT181 plasmids is determined by a functionally asymmetric palindromic DNA element. EMBO J 12 : 45 52.[PubMed]
66. del Solar G,, Díaz R,, Espinosa M . 1987. Replication of the streptococcal plasmid pMV158 and derivatives in cell-free extracts of Escherichia coli . Mol Gen Genet 206 : 428 435.[PubMed] [CrossRef]
67. Moscoso M,, del Solar G,, Espinosa M . 1995. In vitro recognition of the replication origin of pLS1 and of plasmids of the pLS1 family by the RepB initiator protein. J Bacteriol 177 : 7041 7049.[PubMed]
68. Noirot P,, Bargonetti J,, Novick RP . 1990. Initiation of rolling-circle replication in pT181 plasmid: initiator protein enhances cruciform extrusion at the origin. Proc Natl Acad Sci USA 87 : 8560 8564.[PubMed] [CrossRef]
69. Puyet A,, del Solar G,, Espinosa M . 1988. Identification of the origin and direction of replication of the broad-host-range plasmid pLS1. Nucl Acids Res 16 : 115 133.[PubMed] [CrossRef]
70. Michel B,, Ehrlich SD . 1986. Illegitimate recombination occurs between the replication origin of the plasmid pC194 and a progressing replication fork. EMBO J 5 : 3691 3696.[PubMed]
71. Gros MF,, te Riele H,, Ehrlich SD . 1987. Rolling circle replication of single-stranded DNA plasmid pC194. EMBO J 6 : 3863 3869.[PubMed]
72. Alonso JC,, Leonhardt H,, Stiege CA . 1988. Functional analysis of the leading strand replication origin of plasmid pUB110 in Bacillus subtilis . Nucleic Acids Res 16 : 9127 9145.[PubMed] [CrossRef]
73. Servin-Gonzalez L . 1993. Relationship between the replication functions of Streptomyces plasmids pJV1 and pIJ101. Plasmid 30 : 131 140.[PubMed] [CrossRef]
74. Kataoka M,, Kiyose YM,, Michisuji Y,, Horiguchi T,, Seki T,, Yoshida T . 1994. Complete nucleotide sequence of the Streptomyces nigrifaciens plasmid, pSN22: genetic organization and correlation with genetic properties. Plasmid 32 : 55 69.[PubMed] [CrossRef]
75. Suzuki I,, Seki T,, Yoshida T . 1997. Nucleotide sequence of a nicking site of the Streptomyces plasmid pSN22 replicating by the rolling circle mechanism. FEMS Microbiol Lett 150 : 283 288.[PubMed] [CrossRef]
76. Abrhamova Z,, Patek M,, Nesvera J . 2002. Atypical location of double-strand origin of replication (nic site) on the plasmid pGA1 from Corynebacterium glutamicum . Folia Microbiol (Praha) 47 : 307 310.[PubMed] [CrossRef]
77. Soler N,, Justome A,, Quevillon-Cheruel S,, Lorieux F,, Le Cam E,, Marguet E,, Forterre P . 2007. The rolling-circle plasmid pTN1 from the hyperthermophilic archaeon Thermococcus nautilus . Mol Microbiol 66 : 357 370.[PubMed] [CrossRef]
78. Ward DE,, Revet IM,, Nandakumar R,, Tuttle JH,, de Vos WM,, van der Oost J,, DiRuggiero J . 2002. Characterization of plasmid pRT1 from Pyrococcus sp. strain JT1. J Bacteriol 184 : 2561 2566.[CrossRef]
79. Ilyina TV,, Koonin EV . 1992. Conserved sequence motifs in the initiator proteins for rolling circle DNA replication encoded by diverse replicons from eubacteria, eucaryotes and archaebacteria. Nucleic Acids Res 20 : 3279 3285.[PubMed] [CrossRef]
80. Boer R,, Russi S,, Guasch A,, Lucas M,, Blanco AG,, Pérez-Luque R,, Coll M,, de la Cruz F . 2006. Unveiling the molecular mechanism of a conjugative relaxase: the structure of TrwC complexed with a 27-mer DNA comprising the recognition hairpin and the cleavage site. J Mol Biol 358 : 857. [PubMed] [CrossRef]
81. Hickman AB,, Ronning DR,, Kotin RM,, Dyda F . 2002. Structural unity among viral origin binding proteins: crystal structure of the nuclease domain of adeno-associated virus Rep. Mol Cell 10 : 327. [PubMed] [CrossRef]
82. Asano S,, Higashitani A,, Horiuchi K . 1999. Filamentous phage replication initiator protein gpII forms a covalent complex with the 5′ end of the nick it introduced. Nucl Acids Res 27 : 1882 1889.[PubMed] [CrossRef]
83. Marsin S,, Forterre P . 1998. A rolling circle replication initiator protein with a nucleotidyl-transferase activity encoded by the plasmid pGT5 from the hyperthermophilic archaeon Pyrococcus abyssi . Mol Microbiol 27 : 1183 1192.[PubMed] [CrossRef]
84. Marsin S,, Forterre P . 1999. The active site of the rolling circle replication protein Rep75 is involved in site-specific nuclease, ligase and nucleotidyl transferase activities. Mol Microbiol 33 : 537 545.[PubMed] [CrossRef]
85. Dempsey LA,, Birch P,, Khan SA . 1992. Six amino acids determine the sequence-specific DNA binding and replication specificity of the initiator proteins of the pT181 family. J Biol Chem 267 : 24538 24543.[PubMed]
86. Dempsey LA,, Birch P,, Khan SA . 1992. Uncoupling of the DNA topoisomerase and replication activities of an initiator protein. Proc Natl Acad Sci USA 89 : 3083 3087.[PubMed] [CrossRef]
87. Thomas CD,, Nikiforov TT,, Connolly BA,, Shaw WV . 1995. Determination of sequence specificity between a plasmid replication initiator protein and the origin of replication. J Mol Biol 254 : 381 391.[PubMed] [CrossRef]
88. Wang PZ,, Projan SJ,, Henriquez V,, Novick RP . 1992. Specificity of origin recognition by replication initiator protein in plasmids of the pT181 family is determined by a six amino acid residue element. J Mol Biol 223 : 145 158.[PubMed] [CrossRef]
89. Chang T-L,, Kramer MG,, Ansari RA,, Khan SA . 2000. Role of individual monomers of a dimeric initiator protein in the initiation and termination of plasmid rolling circle replication. J Biol Chem 275 : 13529 13534.[CrossRef]
90. Boer R,, Ruiz-Masó JA,, Gomez-Blanco JR,, Blanco AG,, Vives-Llàcer M,, Chacón P,, Usón I,, Gomis-Rüth FX,, Espinosa M,, Llorca O,, del Solar G,, Coll M . 2009. Plasmid replication initiator RepB forms a hexamer reminiscent of ring helicases and has mobile nuclease domains. EMBO J 28 : 1666 1678.[PubMed] [CrossRef]
91. Ruiz-Masó JA,, López-Zumel C,, Menéndez M,, Espinosa M,, del Solar G . 2004. Structural features of the initiator of replication protein RepB encoded by the promiscuous plasmid pMV158. Biochim Biophys Acta 1696 : 113 119.[PubMed] [CrossRef]
92. Rasooly A,, Projan SJ,, Novick RP . 1994. Plasmids of the pT181 family show replication-specific initiator protein modification. J Bacteriol 176 : 2450 2453.[PubMed]
93. Zhao AC,, Ansari RA,, Schmidt MC,, Khan SA . 1998. An oligonucleotide inhibits oligomerization of a rolling circle initiator protein at the pT181 origin of replication. J Biol Chem 273 : 16082 16089.[PubMed] [CrossRef]
94. Muller AK,, Rojo F,, Alonso JC . 1995. The level of the pUB110 replication initiator protein is autoregulated, which provides an additional control for plasmid copy number. Nucleic Acids Res 23 : 1894 1900.[PubMed] [CrossRef]
95. Enemark EJ,, Joshua-Tor L . 2006. Mechanism of DNA translocation in a replicative hexameric helicase. Nature 442 : 270. [PubMed] [CrossRef]
96. Krupovic M,, Ravantti JJ,, Bamford DH . 2009. Geminiviruses: a tale of a plasmid becoming a virus. BMC Evol Biol 9 : 112. [PubMed] [CrossRef]
97. Oshima K,, Kakizawa S,, Nishigawa H,, Kuboyama T,, Miyata S,, Ugaki M,, Namba S . 2001. A plasmid of phytoplasma encodes a unique replication protein having both plasmid- and virus-like domains: clue to viral ancestry or result of virus/plasmid recombination? Virology 285 : 270 277.[PubMed] [CrossRef]
98. Tran-Nguyen LTT,, Gibb KS . 2006. Extrachromosomal DNA isolated from tomato big bud and Candidatus Phytoplasma australiense phytoplasma strains. Plasmid 56 : 153 166.[PubMed] [CrossRef]
99. Brantl S . 2014. Plasmid replication control by antisense RNAs. Microbiol Spec 2. doi:10.1128/microbiolspec.PLAS-0001-2013.[CrossRef]
100. del Solar G,, Espinosa M . 2000. Plasmid copy number control: an ever-growing story. Mol Microbiol 37 : 492 500.[PubMed] [CrossRef]
101. Novick RP,, Iordanescu S,, Projan SJ,, Kornblum J,, Edelman I . 1989. pT181 plasmid replication is regulated by a countertranscript-driven transcriptional attenuator. Cell 59 : 395 404.[PubMed] [CrossRef]
102. del Solar G,, Acebo P,, Espinosa M . 1995. Replication control of plasmid pLS1: efficient regulation of plasmid copy number is exerted by the combined action of two plasmid components, CopG and RNA II. Mol Microbiol 18 : 913 924.[PubMed] [CrossRef]
103. Hernández-Arriaga AM,, Rubio-Lepe TS,, Espinosa M,, del Solar G . 2009. Repressor CopG prevents access of RNA polymerase to promoter and actively dissociates open complexes. Nucleic Acids Res 37 : 4799 4811.[PubMed] [CrossRef]
104. del Solar G,, Acebo P,, Espinosa M . 1997. Replication control of plasmid pLS1: the antisense RNA II and the compact rnaII region are involved in translational regulation of the initiator RepB synthesis. Mol Microbiol 23 : 95 108.[PubMed] [CrossRef]
105. del Solar G,, Espinosa M . 2001. In vitro analysis of the terminator T(II) of the inhibitor antisense rna II gene from plasmid pMV158. Plasmid 45 : 75 87.[PubMed] [CrossRef]
106. López-Aguilar C,, del Solar G . 2013. Probing the sequence and structure of in vitro synthesized antisense and target RNAs from the replication control system of plasmid pMV158. Plasmid 70 : 94 103.[PubMed] [CrossRef]
107. del Solar G,, Espinosa M . 1992. The copy number of plasmid pLS1 is regulated by two trans-acting plasmid products: the antisense RNA II and the repressor protein, RepA. Mol Microbiol 6 : 83 94.[PubMed] [CrossRef]
108. Brantl S,, Wagner EG . 2000. Antisense RNA-mediated transcriptional attenuation: an in vitro study of plasmid pT181. Mol Microbiol 35 : 1469 1482.[PubMed] [CrossRef]
109. Franch T,, Petersen M,, Wagner EGH,, Jacobsen JP,, Gerdes K . 1999. Antisense RNA regulation in prokaryotes: rapid RNA/RNA interaction facilitated by a general U-turn loop structure. J Mol Biol 294 : 1115 1125.[PubMed] [CrossRef]
110. Kim SW,, Jeong IS,, Jeong EJ,, Tak JI,, Lee JH,, Eo SK,, Kang HY,, Bahk JD . 2008. The terminal and internal hairpin loops of the ctRNA of plasmid pJB01 play critical roles in regulating copy number. Mol Cells 26 : 26 33.[PubMed]
111. López-Aguilar C,, Ruiz-Masó JA,, Rubio-Lepe TS,, Sanz M,, del Solar G . 2013. Translation initiation of the replication initiator repB gene of promiscuous plasmid pMV158 is led by an extended non-SD sequence. Plasmid 70 : 69 77.[PubMed] [CrossRef]
112. Venkova-Canova T,, Patek M,, Nesvera J . 2003. Control of rep gene expression in plasmid pGA1 from Corynebacterium glutamicum . J Bacteriol 185 : 2402 2409.[PubMed] [CrossRef]
113. Venkova T,, Patek M,, Nesvera J . 2001. Identification of a novel gene involved in stable maintenance of plasmid pGA1 from Corynebacterium glutamicum . Plasmid 46 : 153 162.[PubMed] [CrossRef]
114. Maciag IE,, Viret JF,, Alonso JC . 1988. Replication and incompatibility properties of plasmid pUB110 in Bacillus subtilis . Mol Gen Genet 212 : 232 240.[PubMed] [CrossRef]
115. Rasooly A,, Novick RP . 1993. Replication-specific inactivation of the pT181 plasmid initiator protein. Science 262 : 1048 1050.[PubMed] [CrossRef]
116. Rasooly A,, Wang P,, Novick R . 1994. Replication-specific conversion of the Staphylococcus aureus pT181 initiator protein from an active homodimer to an inactive heterodimer. EMBO J 13 : 5245 5251.[PubMed]
117. Novick RP . 1998. Contrasting lifestyles of rolling-circle phages and plasmids. Trends Biochem Sci 23 : 434 438.[PubMed] [CrossRef]
118. Jin R,, Zhou X,, Novick RP . 1996. The inactive pT181 initiator heterodimer, RepC/C, binds but fails to induce melting of the plasmid replication origin. J Biol Chem 271 : 31086 31091.[PubMed] [CrossRef]
119. Noirot-Gros MF,, Ehrlich SD . 1996. Change of a catalytic reaction carried out by a DNA replication protein. Science 274 : 777 780.[PubMed] [CrossRef]
120. Gruss AD,, Ross HF,, Novick RP . 1987. Functional analysis of a palindromic sequence required for normal replication of several staphylococcal plasmids. Proc Natl Acad Sci USA 84 : 2165 2169.[PubMed] [CrossRef]
121. Kramer MG,, del Solar G,, Espinosa M . 1995. Lagging-strand origins of the promiscuous plasmid pMV158: physical and functional characterization. Microbiology 141 : 655 662.[PubMed] [CrossRef]
122. Kramer MG,, Khan SA,, Espinosa M . 1997. Plasmid rolling circle replication: identification of the RNA polymerase-directed primer RNA and requirement for DNA polymerase I for lagging strand synthesis. EMBO J 16 : 5784 5795.[PubMed] [CrossRef]
123. Kramer MG,, Khan SA,, Espinosa M . 1998. Lagging-strand replication from the ssoA origin of plasmid pMV158 in Streptococcus pneumoniae: in vivo and in vitro influences of mutations in two conserved ssoA regions. J Bacteriol 180 : 83 89.[PubMed]
124. Farrar MD,, Howson KM,, Emmott JE,, Bojar RA,, Holland KT . 2007. Characterisation of cryptic plasmid pPG01 from Propionibacterium granulosum, the first plasmid to be isolated from a member of the cutaneous propionibacteria. Plasmid 58 : 68 75.[PubMed] [CrossRef]
125. Fernández-Gonzalez C,, Cadenas RF,, Noirot-Gros MF,, Martin JF,, Gil JA . 1994. Characterization of a region of plasmid pBL1 of Brevibacterium lactofermentum involved in replication via the rolling circle model. J Bacteriol 176 : 3154 3161.[PubMed]
126. Nakashima N,, Tamura T . 2004. Isolation and characterization of a rolling-circle-type plasmid from Rhodococcus erythropolis and application of the plasmid to multiple-recombinant-protein expression. Appl Environ Microbiol 70 : 5557 5568.[PubMed] [CrossRef]
127. Shibayama Y,, Dabbs ER,, Yazawa K,, Mikami Y . 2011. Functional analysis of a small cryptic plasmid pYS1 from Nocardia . Plasmid 66 : 26 37.[PubMed] [CrossRef]
128. Zaman S,, Radnedge L,, Richards H,, Ward JM . 1993. Analysis of the site for second-strand initiation during replication of the Streptomyces plasmid pIJ101. J Gen Microbiol 139 : 669 676.[PubMed] [CrossRef]
129. Kramer MG,, Espinosa M,, Misra TK,, Khan SA . 1998. Lagging strand replication of rolling-circle plasmids: specific recognition of the ssoA-type origins in different Gram-positive bacteria. Proc Natl Acad Sci USA 95 : 10505 10510.[PubMed] [CrossRef]
130. Leenhouts KJ,, Tolner B,, Bron S,, Kok J,, Venema G,, Seegers JFML . 1991. Nucleotide sequence and characterization of the broad-host-range lactococcal plasmid pWVO1. Plasmid 26 : 55 66.[PubMed] [CrossRef]
131. Seegers JF,, Zhao AC,, Meijer WJ,, Khan SA,, Venema G,, Bron S . 1995. Structural and functional analysis of the single-strand origin of replication from the lactococcal plasmid pWV01. Mol Gen Genet 249 : 43 50.[PubMed] [CrossRef]
132. Baas PD,, Jansz HS . 1988. Single-stranded DNA phage origins. Curr Top Microbiol Immunol 136 : 31 70.[PubMed] [CrossRef]
133. Chang S,, Chang SY,, Gray O . 1987. Structural and genetic analyses of a par locus that regulates plasmid partition in Bacillus subtilis . J Bacteriol 169 : 3952 3962.[PubMed]
134. Mahillon J,, Seurinck J . 1988. Complete nucleotide sequenceof pGI2, a Bacillus thuringiensis plasmid containing Tn4430. Nucleic Acids Res 16 : 11827 11828.[PubMed] [CrossRef]
135. Seery L,, Devine KM . 1993. Analysis of features contributing to activity of the single-stranded origin of Bacillus plasmid pBAA1. J Bacteriol 175 : 1988 1994.[PubMed]
136. Meijer WJJ,, de Boer AJ,, van Tongeren S,, Venema G,, Bron S . 1995. Characterization of the replication region of the Bacillus subtilis plasmid pLS20: a novel type of replicon. Nucleic Acids Res 23 : 3214 3223.[PubMed] [CrossRef]
137. Madsen SM,, Andrup L,, Boe L . 1993. Fine mapping and DNA sequence of replication functions of Bacillus thuringiensis plasmid pTX14-3. Plasmid 30 : 119 130.[PubMed] [CrossRef]
138. Boe L,, Nielsen TT,, Madsen SM,, Andrup L,, Bolander G . 1991. Cloning and characterization of two plasmids from Bacillus thuringiensis in Bacillus subtilis . Plasmid 25 : 190 197.[PubMed] [CrossRef]
139. Boe L,, Gros MF,, te Riele H,, Ehrlich SD,, Gruss A . 1989. Replication origins of single-stranded-DNA plasmid pUB110. J Bacteriol 171 : 3366 3372.[PubMed]
140. Lorenzo-Díaz F,, Espinosa M . 2009. Lagging-strand DNA replication origins are required for conjugal transfer of the promiscuous plasmid pMV158. J Bacteriol 191 : 720 727.[PubMed] [CrossRef]
141. Meijer WJ,, van der Lelie D,, Venema G,, Bron S . 1995. Effects of the generation of single-stranded DNA on the maintenance of plasmid pMV158 and derivatives in Lactococcus lactis . Plasmid 33 : 91 99.[PubMed] [CrossRef]
142. Viret JF,, Alonso JC . 1988. A DNA sequence outside the pUB110 minimal replicon is required for normal replication in Bacillus subtilis . Nucleic Acids Res 16 : 4389 4406.[PubMed] [CrossRef]
143. van der Lelie D,, Bron S,, Venema G,, Oskam L . 1989. Similarity of minus origins of replication and flanking open reading frames of plasmids pUB110, pTB913 and pMV158. Nucleic Acids Res 17 : 7283 7294.[PubMed] [CrossRef]
144. Kramer MG,, Espinosa M,, Misra TK,, Khan SA . 1999. Characterization of a single-strand origin, ssoU, required for broad host range replication of rolling-circle plasmids. Mol Microbiol 33 : 466 475.[PubMed] [CrossRef]
145. Leer RJ,, Luijk N,, Posno M,, Pouwels PH . 1992. Structural and functional analysis of two cryptic plasmids from Lactobacillus pentosus MD353 and Lactobacillus plantarum ATCC 8014. Mol Gen Genet 234 : 265 274.[PubMed] [CrossRef]
146. Suzuki I,, Kataoka M,, Yoshida T,, Seki T . 2004. Lagging strand replication of rolling-circle plasmids in Streptomyces lividans: an RNA polymerase-independent primer synthesis. Arch Microbiol 181 : 305 313.[PubMed] [CrossRef]
147. Bron S,, Luxen E . 1985. Segregational instability of pUB110-derived recombinant plasmids in Bacillus subtilis . Plasmid 14 : 235 244.[PubMed] [CrossRef]
148. del Solar G,, Kramer G,, Ballester S,, Espinosa M . 1993. Replication of the promiscuous plasmid pLS1: a region encompassing the minus origin of replication is associated with stable plasmid inheritance. Mol Gen Genet 241 : 97 105.[PubMed] [CrossRef]
149. Hernández-Arriaga AM,, Espinosa M,, del Solar G . 2000. A functional lagging strand origin does not stabilize plasmid pMV158 inheritance in Escherichia coli . Plasmid 43 : 49 58.[PubMed] [CrossRef]
150. Gigliani F,, Ciotta C,, Del Grosso MF,, Battaglia PA . 1993. pR plasmid replication provides evidence that single-stranded DNA induces the SOS system in vivo . Mol Gen Genet 238 : 333 338.[PubMed] [CrossRef]
151. Higashitani N,, Higashitani A,, Horiuchi K . 1995. SOS induction in Escherichia coli by single-stranded DNA of mutant filamentous phage: monitoring by cleavage of LexA repressor. J Bacteriol 177 : 3610 3612.[PubMed]
152. Díaz A,, Lacks SA,, López P . 1992. The 5′ to 3′ exonuclease activity of DNA polymerase I is essential for Streptococcus pneumoniae . Mol Microbiol 6 : 3009 3019.[PubMed] [CrossRef]
153. López P,, Martínez S,, Díaz A,, Espinosa M,, Lacks SA . 1989. Characterization of the polA gene of Streptococcus pneumoniae and comparison of the DNA polymerase I it encodes to homologous enzymes from Escherichia coli and phage T7. J Biol Chem 264 : 4255 4263.[PubMed]
154. Díaz A,, Lacks SA,, López P . 1994. Multiple roles for DNA polymerase I in establishment and replication of the promiscuous plasmid pLS1. Mol Micobiol 14 : 773 783.[PubMed] [CrossRef]
155. Majumder S,, Novick RP . 1988. Intermediates in plasmid pT181 DNA replication. Nucleic Acids Res 16 : 2897 2912.[PubMed] [CrossRef]
156. Gorbalenya AE,, Koonin EV . 1993. Helicases: amino acid sequence comparisons and structure-function relationships. Curr Opin Struct Biol 3 : 419 429.[CrossRef]
157. Singleton MR,, Dillingham MS,, Wigley DB . 2007. Structure and mechanism of helicases and nucleic acid translocases. Annu Rev Biochem 76 : 23 50.[PubMed] [CrossRef]
158. Bird LE,, Brannigan JA,, Subramanya HS,, Wigley DB . 1998. Characterisation of Bacillus stearothermophilus PcrA helicase: evidence against an active rolling mechanism. Nucleic Acids Res 26 : 2686 2693.[PubMed] [CrossRef]
159. Jia H,, Korolev S,, Niedziela-Majka A,, Maluf NK,, Gauss GH,, Myong S,, Ha T,, Waksman G,, Lohman TM . 2011. Rotations of the 2B sub-domain of E. coli UvrD helicase/translocase coupled to nucleotide and DNA binding. J Mol Biol 411 : 633 648.[PubMed] [CrossRef]
160. Lee JY,, Yang W . 2006. UvrD helicase unwinds DNA one base pair at a time by a two-part power stroke. Cell 127 : 1349 1360.[PubMed] [CrossRef]
161. Velankar SS,, Soultanas P,, Dillingham MS,, Subramanya HS,, Wigley DB . 1999. Crystal structures of complexes of PcrA DNA helicase with a DNA substrate indicate an inchworm mechanism. Cell 97 : 75 84.[PubMed] [CrossRef]
162. Chisty LT,, Toseland CP,, Fili N,, Mashanov GI,, Dillingham MS,, Molloy JE,, Webb MR . 2013. Monomeric PcrA helicase processively unwinds plasmid lengths of DNA in the presence of the initiator protein RepD. Nucleic Acids Res 41 : 5010 5023.[PubMed] [CrossRef]
163. Fischer CJ,, Maluf NK,, Lohman TM . 2004. Mechanism of ATP-dependent translocation of E. coli UvrD monomers along single-stranded DNA. J Mol Biol 344 : 1287 1309.[PubMed] [CrossRef]
164. Ali JA,, Maluf NK,, Lohman TM . 1999. An oligomeric form of E. coli UvrD is required for optimal helicase activity. J Mol Biol 293 : 815 834.[PubMed] [CrossRef]
165. Yang Y,, Dou SX,, Ren H,, Wang PY,, Zhang XD,, Qian M,, Pan BY,, Xi XG . 2008. Evidence for a functional dimeric form of the PcrA helicase in DNA unwinding. Nucleic Acids Res 36 : 1976 1989.[PubMed] [CrossRef]
166. Iordanescu S,, Basheer R . 1991. The Staphylococcus aureus mutation pcrA3 leads to the accumulation of pT181 replication initiation complexes. J Mol Biol 221 : 1183 1189.[PubMed] [CrossRef]
167. Iordanescu S . 1993. Plasmid pT181-linked suppressors of the Staphylococcus aureus pcrA3 chromosomal mutation. J Bacteriol 175 : 3916 3917.[PubMed]
168. Anand SP,, Chattopadhyay A,, Khan SA . 2005. The PcrA3 mutant binds DNA and interacts with the RepC initiator protein of plasmid pT181 but is defective in its DNA helicase and unwinding activities. Plasmid 54 : 104 113.[PubMed] [CrossRef]
169. Chang TL,, Naqvi A,, Anand SP,, Kramer MG,, Munshi R,, Khan SA . 2002. Biochemical characterization of the Staphylococcus aureus PcrA helicase and its role in plasmid rolling circle replication. J Biol Chem 277 : 45880 45886.[PubMed] [CrossRef]
170. Anand SP,, Khan SA . 2004. Structure-specific DNA binding and bipolar helicase activities of PcrA. Nucl Acids Res 32 : 3190 3197.[PubMed] [CrossRef]
171. Zhang W,, Dillingham MS,, Thomas CD,, Allen S,, Roberts CJ,, Soultanas P . 2007. Directional loading and stimulation of PcrA helicase by the replication initiator protein RepD. J Mol Biol 371 : 336 348.[PubMed] [CrossRef]
172. Slatter AF,, Thomas CD,, Webb MR . 2009. PcrA helicase tightly couples ATP hydrolysis to unwinding double-stranded DNA, modulated by the initiator protein for plasmid replication, RepD. Biochemistry 48 : 6326 6334.[PubMed] [CrossRef]
173. Machón C,, Lynch GP,, Thomson NH,, Scott DJ,, Thomas CD,, Soultanas P . 2010. RepD-mediated recruitment of PcrA helicase at the Staphylococcus aureus pC221 plasmid replication origin, oriD. Nucleic Acids Res 38 : 1874 1888.[PubMed] [CrossRef]
174. Anand SP,, Mitra P,, Naqvi A,, Khan SA . 2004. Bacillus anthracis and Bacillus cereus PcrA helicases can support DNA unwinding and in vitro rolling-circle replication of plasmid pT181 of Staphylococcus aureus . J Bacteriol 186 : 2195 2199.[PubMed] [CrossRef]
175. Bruand C,, Ehrlich SD . 2000. UvrD-dependent replication of rolling-circle plasmids in Escherichia coli . Mol Microbiol 35 : 204 210.[PubMed] [CrossRef]
176. Gwynn EJ,, Smith AJ,, Guy CP,, Savery NJ,, McGlynn P,, Dillingham MS . 2013. The conserved C-terminus of the PcrA/UvrD helicase interacts directly with RNA polymerase. PLoS One 8 : e78141. doi:10.1371/journal.pone.0078141.[PubMed] [CrossRef]
177. Petit MA,, Dervyn E,, Rose M,, Entian KD,, McGovern S,, Ehrlich SD,, Bruand C . 1998. PcrA is an essential DNA helicase of Bacillus subtilis fulfilling functions both in repair and rolling-circle replication. Mol Microbiol 29 : 261 273.[PubMed] [CrossRef]
178. Maluf NK,, Fischer CJ,, Lohman TM . 2003. A dimer of Escherichia coli UvrD is the active form of the helicase in vitro . J Mol Biol 325 : 913 935.[PubMed] [CrossRef]
179. Tomko EJ,, Fischer CJ,, Lohman TM . 2012. Single-stranded DNA translocation of E. coli UvrD monomer is tightly coupled to ATP hydrolysis. J Mol Biol 418 : 32 46.[PubMed] [CrossRef]

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error