Chapter 4 : Evolution of Myeloid Cells

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Evolution of Myeloid Cells, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819194/9781555819187_Chap04-1.gif /docserver/preview/fulltext/10.1128/9781555819194/9781555819187_Chap04-2.gif


The drive to clear dying cells is evident even in the deepest branches of the and phylogeny, where colonial biofilms appeared as a mode to promote survival in diverse environments ( ). These ancient colonies (earliest fossil record ∼3.25 billion years ago) already displayed attributes of multicellular organism specialization, removing nonfunctional spent cells to recycle nutrients and maintain the integrity of the colony ( ). Multicellularity followed shortly after and introduced a requirement for removal of nonself ( ). Phagocytosis provided an elegant answer to both challenges, and has since served as a primary tool for cell turnover and removal of foreign invaders across all animal groups. It therefore provides a good stage to examine the evolution of myeloid cells through their contributions to homeostasis and host defenses ( Fig. 1 ). This chapter first focuses on ancestral phagocytes and examines their progression from primarily homeostatic cells to multifaceted effectors and regulators of immunity. The literature provides some insight into macrophage and lower metazoan hemocyte function as far back as echinoderms and urochordates. Further examination of gene marker conservation (e.g., apoptotic genes) in sponges and other colonial organisms allows us to dig deeper to examine the factors that led to the phylogenetic origins of cell clearance mechanisms and their continued evolution across newly developing animal branches. Subsequently, we focus on key challenges encountered by higher vertebrate myeloid cells as they manage increasingly complex mechanisms of immunity while maintaining a strict balance between proinflammatory and homeostatic cellular responses. In one example, we examine the impact of specialization through the diverging contributions of macrophages and neutrophils. We then consider the continued specialization of the myeloid lineage through the eyes of the dendritic cell (DC), which, through antigen presentation, effectively integrated new adaptive features into well-established and robust innate mechanisms of immunity. Indeed, documenting the multiple facets that comprise the life history of myeloid cells across evolution would not be possible in a single chapter. However, by focusing on their origins as phagocytes, we can appreciate the continued struggle of a host to develop novel and effective strategies to combat invading pathogens while ensuring the continued maintenance of tissue integrity and homeostasis.

Citation: Barreda D, Neely H, Flajnik M. 2017. Evolution of Myeloid Cells, p 45-58. In Gordon S (ed), Myeloid Cells in Health and Disease. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MCHD-0007-2015
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Contributions of phagocytosis to the evolution of myeloid cell function. Major events and key features identified in comparative models are highlighted. Metazoa refers to multicellular animals; invertebrates of the protostome lineage arose 600 MYA and deuterostomes ∼500 MYA. Agnathans are jawless fish, and all other vertebrates have jaws (gnathostomes). Adaptive immunity is found only in the vertebrates, as well as the division of labor among myeloid cells that is well known in mammals. Refer to the text for details of each of the particular features described in the figure. MPS, mononuclear phagocyte system.

Citation: Barreda D, Neely H, Flajnik M. 2017. Evolution of Myeloid Cells, p 45-58. In Gordon S (ed), Myeloid Cells in Health and Disease. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MCHD-0007-2015
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Hall-Stoodley L,, Costerton JW,, Stoodley P . 2004. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2 : 95 108.[PubMed] [CrossRef]
2. Bayles KW . 2007. The biological role of death and lysis in biofilm development. Nat Rev Microbiol 5 : 721 726.[PubMed] [CrossRef]
3. Ereskovsky AV,, Renard E,, Borchiellini C . 2013. Cellular and molecular processes leading to embryo formation in sponges: evidences for high conservation of processes throughout animal evolution. Dev Genes Evol 223 : 5 22.[PubMed] [CrossRef]
4. Nedelcu AM . 2012. The evolution of self during the transition to multicellularity. Adv Exp Med Biol 738 : 14 30.[PubMed] [CrossRef]
5. Lewis K . 2000. Programmed death in bacteria. Microbiol Mol Biol Rev 64 : 503 514.[PubMed] [CrossRef]
6. Bayles KW . 2014. Bacterial programmed cell death: making sense of a paradox. Nat Rev Microbiol 12 : 63 69.[PubMed] [CrossRef]
7. Ranjit DK,, Endres JL,, Bayles KW . 2011. Staphylococcus aureus CidA and LrgA proteins exhibit holin-like properties. J Bacteriol 193 : 2468 2476.[PubMed] [CrossRef]
8. Bos J,, Yakhnina AA,, Gitai Z . 2012. BapE DNA endonuclease induces an apoptotic-like response to DNA damage in Caulobacter . Proc Natl Acad Sci U S A 109 : 18096 18101.[PubMed] [CrossRef]
9. Dwyer DJ,, Camacho DM,, Kohanski MA,, Callura JM,, Collins JJ . 2012. Antibiotic-induced bacterial cell death exhibits physiological and biochemical hallmarks of apoptosis. Mol Cell 46 : 561 572.[PubMed] [CrossRef]
10. Wadhawan S,, Gautam S,, Sharma A . 2010. Metabolic stress-induced programmed cell death in Xanthomonas . FEMS Microbiol Lett 312 : 176 183.[PubMed] [CrossRef]
11. Bidle KD,, Falkowski PG . 2004. Cell death in planktonic, photosynthetic microorganisms. Nat Rev Microbiol 2 : 643 655.[PubMed] [CrossRef]
12. Hakansson AP,, Roche-Hakansson H,, Mossberg AK,, Svanborg C . 2011. Apoptosis-like death in bacteria induced by HAMLET, a human milk lipid-protein complex. PLoS One 6 : e17717. doi:10.1371/journal.pone.0017717. [PubMed] [CrossRef]
13. Zmasek CM,, Godzik A . 2013. Evolution of the animal apoptosis network. Cold Spring Harb Perspect Biol 5 : a008649. doi:10.1101/cshperspect.a008649. [PubMed] [CrossRef]
14. Conover MS,, Mishra M,, Deora R . 2011. Extracellular DNA is essential for maintaining Bordetella biofilm integrity on abiotic surfaces and in the upper respiratory tract of mice. PLoS One 6 : e16861. doi:10.1371/journal.pone.0016861. [CrossRef]
15. Rice KC,, Mann EE,, Endres JL,, Weiss EC,, Cassat JE,, Smeltzer MS,, Bayles KW . 2007. The cidA murein hydrolase regulator contributes to DNA release and biofilm development in Staphylococcus aureus . Proc Natl Acad Sci U S A 104 : 8113 8118.[PubMed] [CrossRef]
16. Whitchurch CB,, Tolker-Nielsen T,, Ragas PC,, Mattick JS . 2002. Extracellular DNA required for bacterial biofilm formation. Science 295 : 1487. doi:10.1126/science.295.5559.1487. [PubMed] [CrossRef]
17. Schultz D,, Onuchic JN,, Ben-Jacob E . 2012. Turning death into creative force during biofilm engineering. Proc Natl Acad Sci U S A 109 : 18633 18634.[PubMed] [CrossRef]
18. Yutin N,, Wolf MY,, Wolf YI,, Koonin EV . 2009. The origins of phagocytosis and eukaryogenesis. Biol Direct 4 : 9. doi:10.1186/1745-6150-4-9. [PubMed] [CrossRef]
19. Goley ED,, Welch MD . 2006. The ARP2/3 complex: an actin nucleator comes of age. Nat Rev Mol Cell Biol 7 : 713 726.[PubMed] [CrossRef]
20. McInerney JO,, O’Connell MJ,, Pisani D . 2014. The hybrid nature of the Eukaryota and a consilient view of life on Earth. Nat Rev Microbiol 12 : 449 455.[PubMed] [CrossRef]
21. Martijn J,, Ettema TJ . 2013. From archaeon to eukaryote: the evolutionary dark ages of the eukaryotic cell. Biochem Soc Trans 41 : 451 457.[PubMed] [CrossRef]
22. Poole AM,, Neumann N . 2011. Reconciling an archaeal origin of eukaryotes with engulfment: a biologically plausible update of the Eocyte hypothesis. Res Microbiol 162 : 71 76.[PubMed] [CrossRef]
23. Eliáš M,, Klimeš V . 2012. Rho GTPases: deciphering the evolutionary history of a complex protein family. Methods Mol Biol 827 : 13 34.[PubMed] [CrossRef]
24. David CN,, Schmidt N,, Schade M,, Pauly B,, Alexandrova O,, Böttger A . 2005. Hydra and the evolution of apoptosis. Integr Comp Biol 45 : 631 638.[PubMed] [CrossRef]
25. Jékely G . 2003. Small GTPases and the evolution of the eukaryotic cell. BioEssays 25 : 1129 1138.[PubMed] [CrossRef]
26. Thacker RW,, Díaz MC,, Kerner A,, Vignes-Lebbe R,, Segerdell E,, Haendel MA,, Mungall CJ . 2014. The Porifera Ontology (PORO): enhancing sponge systematics with an anatomy ontology. J Biomed Semantics 5 : 39. doi:10.1186/2041-1480-5-39. [PubMed] [CrossRef]
27. Bergquist PR . 1978. Sponges. University of California Press, Berkeley, CA.
28. Vacelet J,, Duport E . 2004. Prey capture and digestion in the carnivorous sponge Asbestopluma hypogea (Porifera: Demospongiae). Zoomorphology 123 : 179 190.[CrossRef]
29. Wehrl M,, Steinert M,, Hentschel U . 2007. Bacterial uptake by the marine sponge Aplysina aerophoba . Microb Ecol 53 : 355 365.[PubMed] [CrossRef]
30. Hadas E,, Shpigel M,, Ilan M . 2009. Particulate organic matter as a food source for a coral reef sponge. J Exp Biol 212 : 3643 3650.[PubMed] [CrossRef]
31. Taylor MW,, Radax R,, Steger D,, Wagner M . 2007. Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev 71 : 295 347.[PubMed] [CrossRef]
32. Hentschel U,, Hopke J,, Horn M,, Friedrich AB,, Wagner M,, Hacker J,, Moore BS . 2002. Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microbiol 68 : 4431 4440.[PubMed] [CrossRef]
33. Wilkinson CR,, Garrone R,, Vacelet J . 1984. Marine sponges discriminate between food bacteria and bacterial symbionts: electron microscope autoradiography and in situ evidence. Proc R Soc Lond B Biol Sci 220 : 519 528.[CrossRef]
34. Vogel S . 1977. Current-induced flow through living sponges in nature. Proc Natl Acad Sci U S A 74 : 2069 2071.[PubMed] [CrossRef]
35. Nguyen MT,, Liu M,, Thomas T . 2014. Ankyrin-repeat proteins from sponge symbionts modulate amoebal phagocytosis. Mol Ecol 23 : 1635 1645.[PubMed] [CrossRef]
36. Habyarimana F,, Al-Khodor S,, Kalia A,, Graham JE,, Price CT,, Garcia MT,, Kwaik YA . 2008. Role for the Ankyrin eukaryotic-like genes of Legionella pneumophila in parasitism of protozoan hosts and human macrophages. Environ Microbiol 10 : 1460 1474.[PubMed] [CrossRef]
37. Pan X,, Lührmann A,, Satoh A,, Laskowski-Arce MA,, Roy CR . 2008. Ankyrin repeat proteins comprise a diverse family of bacterial type IV effectors. Science 320 : 1651 1654.[PubMed] [CrossRef]
38. Price CT,, Al-Khodor S,, Al-Quadan T,, Abu Kwaik Y . 2010. Indispensable role for the eukaryotic-like ankyrin domains of the ankyrin B effector of Legionella pneumophila within macrophages and amoebae. Infect Immun 78 : 2079 2088.[PubMed] [CrossRef]
39. van Schaik EJ,, Chen C,, Mertens K,, Weber MM,, Samuel JE . 2013. Molecular pathogenesis of the obligate intracellular bacterium Coxiella burnetii . Nat Rev Microbiol 11 : 561 573.[PubMed] [CrossRef]
40. Ellis HM,, Horvitz HR . 1986. Genetic control of programmed cell death in the nematode C. elegans . Cell 44 : 817 829.[PubMed] [CrossRef]
41. Yuan J,, Horvitz HR . 1992. The Caenorhabditis elegans cell death gene ced-4 encodes a novel protein and is expressed during the period of extensive programmed cell death. Development 116 : 309 320.[PubMed]
42. Hengartner MO,, Ellis RE,, Horvitz HR . 1992. Caenorhabditis elegans gene ced-9 protects cells from programmed cell death. Nature 356 : 494 499.[PubMed] [CrossRef]
43. Reiter S,, Crescenzi M,, Galliot B,, Buzgariu W . 2012. Hydra, a versatile model to study the homeostatic and developmental functions of cell death. Int J Dev Biol 56 : 593 604.[PubMed] [CrossRef]
44. Burnet FM . 1971. “Self-recognition” in colonial marine forms and flowering plants in relation to the evolution of immunity. Nature 232 : 230 235.[PubMed] [CrossRef]
45. Böttger A,, Alexandrova O . 2007. Programmed cell death in Hydra . Semin Cancer Biol 17 : 134 146.[PubMed] [CrossRef]
46. Lasi M,, David CN,, Böttger A . 2010. Apoptosis in pre-Bilaterians: Hydra as a model. Apoptosis 15 : 269 278.[PubMed] [CrossRef]
47. Edgecombe GD,, Giribet G,, Dunn CW,, Hejnol A,, Kristensen RM,, Neves RC,, Rouse GW,, Worsaae K,, Sorensen MV . 2011. Higher-level metazoan relationships: recent progress and remaining questions. Org Divers Evol 11 : 151 172.[CrossRef]
48. Holland PW . 1999. The future of evolutionary developmental biology. Nature 402( Suppl) : C41 C44.[PubMed] [CrossRef]
49. Aravind L,, Dixit VM,, Koonin EV . 2001. Apoptotic molecular machinery: vastly increased complexity in vertebrates revealed by genome comparisons. Science 291 : 1279 1284.[PubMed] [CrossRef]
50. Vaux DL,, Strasser A . 1996. The molecular biology of apoptosis. Proc Natl Acad Sci U S A 93 : 2239 2244.[PubMed] [CrossRef]
51. Sokolova IM . 2009. Apoptosis in molluscan immune defense. Invertebrate Surviv J 6 : 49 58.
52. Poon IK,, Lucas CD,, Rossi AG,, Ravichandran KS . 2014. Apoptotic cell clearance: basic biology and therapeutic potential. Nat Rev Immunol 14 : 166 180.[PubMed] [CrossRef]
53. Henson PM,, Hume DA . 2006. Apoptotic cell removal in development and tissue homeostasis. Trends Immunol 27 : 244 250.[PubMed] [CrossRef]
54. Ortega-Gómez A,, Perretti M,, Soehnlein O . 2013. Resolution of inflammation: an integrated view. EMBO Mol Med 5 : 661 674.[PubMed] [CrossRef]
55. Fadok VA,, Chimini G . 2001. The phagocytosis of apoptotic cells. Semin Immunol 13 : 365 372.[PubMed] [CrossRef]
56. Elliott MR,, Ravichandran KS . 2010. Clearance of apoptotic cells: implications in health and disease. J Cell Biol 189 : 1059 1070.[PubMed] [CrossRef]
57. Chung EY,, Liu J,, Homma Y,, Zhang Y,, Brendolan A,, Saggese M,, Han J,, Silverstein R,, Selleri L,, Ma X . 2007. Interleukin-10 expression in macrophages during phagocytosis of apoptotic cells is mediated by homeodomain proteins Pbx1 and Prep-1. Immunity 27 : 952 964.[PubMed] [CrossRef]
58. Hottz ED,, Medeiros-de-Moraes IM,, Vieira-de-Abreu A,, de Assis EF,, Vals-de-Souza R,, Castro-Faria-Neto HC,, Weyrich AS,, Zimmerman GA,, Bozza FA,, Bozza PT . 2014. Platelet activation and apoptosis modulate monocyte inflammatory responses in dengue. J Immunol 193 : 1864 1872.[PubMed] [CrossRef]
59. Krönke G,, Katzenbeisser J,, Uderhardt S,, Zaiss MM,, Scholtysek C,, Schabbauer G,, Zarbock A,, Koenders MI,, Axmann R,, Zwerina J,, Baenckler HW,, van den Berg W,, Voll RE,, Kühn H,, Joosten LA,, Schett G . 2009. 12/15-Lipoxygenase counteracts inflammation and tissue damage in arthritis. J Immunol 183 : 3383 3389.[PubMed] [CrossRef]
60. Pattabiraman G,, Lidstone EA,, Palasiewicz K,, Cunningham BT,, Ucker DS . 2014. Recognition of apoptotic cells by viable cells is specific, ubiquitous, and species independent: analysis using photonic crystal biosensors. Mol Biol Cell 25 : 1704 1714.[PubMed] [CrossRef]
61. McPhillips K,, Janssen WJ,, Ghosh M,, Byrne A,, Gardai S,, Remigio L,, Bratton DL,, Kang JL,, Henson P . 2007. TNF-α inhibits macrophage clearance of apoptotic cells via cytosolic phospholipase A 2 and oxidant-dependent mechanisms. J Immunol 178 : 8117 8126.[PubMed] [CrossRef]
62. Moon C,, Lee YJ,, Park HJ,, Chong YH,, Kang JL . 2010. N-Acetylcysteine inhibits RhoA and promotes apoptotic cell clearance during intense lung inflammation. Am J Respir Crit Care Med 181 : 374 387.[PubMed] [CrossRef]
63. Rieger AM,, Konowalchuk JD,, Grayfer L,, Katzenback BA,, Havixbeck JJ,, Kiemele MD,, Belosevic M,, Barreda DR . 2012. Fish and mammalian phagocytes differentially regulate pro-inflammatory and homeostatic responses in vivo. PLoS One 7 : e47070. doi:10.1371/journal.pone.0047070. [PubMed] [CrossRef]
64. Rieger AM,, Havixbeck JJ,, Belosevic M,, Barreda DR . 2015. Teleost soluble CSF-1R modulates cytokine profiles at an inflammatory site, and inhibits neutrophil chemotaxis, phagocytosis, and bacterial killing. Dev Comp Immunol 49 : 259 266.[PubMed] [CrossRef]
65. Birge RB,, Ucker DS . 2008. Innate apoptotic immunity: the calming touch of death. Cell Death Differ 15 : 1096 1102.[PubMed] [CrossRef]
66. Pang K,, Ryan JF,, Baxevanis AD,, Martindale MQ . 2011. Evolution of the TGF-β signaling pathway and its potential role in the ctenophore, Mnemiopsis leidyi . PLoS One 6 : e24152. doi:10.1371/journal.pone.0024152. [PubMed] [CrossRef]
67. De Robertis EM,, Sasai Y . 1996. A common plan for dorsoventral patterning in Bilateria. Nature 380 : 37 40.[PubMed] [CrossRef]
68. Herpin A,, Lelong C,, Favrel P . 2004. Transforming growth factor-β-related proteins: an ancestral and widespread superfamily of cytokines in metazoans. Dev Comp Immunol 28 : 461 485.[PubMed] [CrossRef]
69. Kingsley DM . 1994. The TGF-β superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev 8 : 133 146.[PubMed] [CrossRef]
70. Cavaillon JM . 2011. The historical milestones in the understanding of leukocyte biology initiated by Elie Metchnikoff. J Leukoc Biol 90 : 413 424.[PubMed] [CrossRef]
71. Metchnikoff E . 1968; orig. 1905. Immunity in infective diseases. Johnson Reprint Corporation, New York and London.
72. Smith LC,, Ghosh J,, Buckley KM,, Clow LA,, Dheilly NM,, Haug T,, Henson JH,, Li C,, Lun CM,, Majeske AJ,, Matranga V,, Nair SV,, Rast JP,, Raftos DA,, Roth M,, Sacchi S,, Schrankel CS,, Stensvag K, . 2010. Echinoderm immunity, p 260 301. In Söderhäll K (ed), Invertebrate Immunity. Springer, New York, NY. [CrossRef]
73. West AP,, Brodsky IE,, Rahner C,, Woo DK,, Erdjument-Bromage H,, Tempst P,, Walsh MC,, Choi Y,, Shadel GS,, Ghosh S . 2011. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 472 : 476 480.[PubMed] [CrossRef]
74. Underhill DM,, Ozinsky A . 2002. Phagocytosis of microbes: complexity in action. Annu Rev Immunol 20 : 825 852.[PubMed] [CrossRef]
75. Danilova N . 2006. The evolution of immune mechanisms. J Exp Zoolog B Mol Dev Evol 306 : 496 520.[PubMed] [CrossRef]
76. Jung HC,, Eckmann L,, Yang SK,, Panja A,, Fierer J,, Morzycka-Wroblewska E,, Kagnoff MF . 1995. A distinct array of proinflammatory cytokines is expressed in human colon epithelial cells in response to bacterial invasion. J Clin Invest 95 : 55 65.[PubMed] [CrossRef]
77. Maderna P,, Godson C . 2003. Phagocytosis of apoptotic cells and the resolution of inflammation. Biochim Biophys Acta 1639 : 141 151.[PubMed] [CrossRef]
78. Henson PM,, Bratton DL,, Fadok VA . 2001. Apoptotic cell removal. Curr Biol 11 : R795 R805.[PubMed] [CrossRef]
79. Havixbeck JJ,, Rieger AM,, Wong ME,, Wilkie MP,, Barreda DR . 2014. Evolutionary conservation of divergent pro-inflammatory and homeostatic responses in lamprey phagocytes. PLoS One 9 : e86255. doi:10.1371/journal.pone.0086255. [PubMed] [CrossRef]
80. Esmann L,, Idel C,, Sarkar A,, Hellberg L,, Behnen M,, Möller S,, van Zandbergen G,, Klinger M,, Köhl J,, Bussmeyer U,, Solbach W,, Laskay T . 2010. Phagocytosis of apoptotic cells by neutrophil granulocytes: diminished proinflammatory neutrophil functions in the presence of apoptotic cells. J Immunol 184 : 391 400.[PubMed] [CrossRef]
81. Devitt A,, Marshall LJ . 2011. The innate immune system and the clearance of apoptotic cells. J Leukoc Biol 90 : 447 457.[PubMed] [CrossRef]
82. Silva MT . 2011. Macrophage phagocytosis of neutrophils at inflammatory/infectious foci: a cooperative mechanism in the control of infection and infectious inflammation. J Leukoc Biol 89 : 675 683.[PubMed] [CrossRef]
83. Soehnlein O,, Lindbom L . 2010. Phagocyte partnership during the onset and resolution of inflammation. Nat Rev Immunol 10 : 427 439.[PubMed] [CrossRef]
84. Mulero V,, Sepulcre MP,, Rainger GE,, Buckley CD . 2011. Editorial: neutrophils live on a two-way street. J Leukoc Biol 89 : 645 647.[PubMed] [CrossRef]
85. Scapini P,, Cassatella MA . 2014. Social networking of human neutrophils within the immune system. Blood 124 : 710 719.[PubMed] [CrossRef]
86. Weissmann G . 2010. It’s complicated: inflammation from Metchnikoff to Meryl Streep. FASEB J 24 : 4129 4132.[PubMed] [CrossRef]
87. Steinman RM,, Cohn ZA . 1973. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med 137 : 1142 1162.[PubMed] [CrossRef]
88. Jolles S . 2002. Paul Langerhans. J Clin Pathol 55 : 243. [PubMed] [CrossRef]
89. Langerhans P . 1868. Ueber die Nerven der menschlichen Haut. Arch Pathol Anat Physiol Klin Med 44 : 325 337.[CrossRef]
90. Karmaus PW,, Chi H . 2014. Genetic dissection of dendritic cell homeostasis and function: lessons from cell type-specific gene ablation. Cell Mol Life Sci 71 : 1893 1906.[PubMed] [CrossRef]
91. Satpathy AT,, Wu X,, Albring JC,, Murphy KM . 2012. Re(de)fining the dendritic cell lineage. Nat Immunol 13 : 1145 1154.[PubMed] [CrossRef]
92. Hume DA . 2008. Macrophages as APC and the dendritic cell myth. J Immunol 181 : 5829 5835.[PubMed] [CrossRef]
93. Flajnik MF . 2014. Re-evaluation of the immunological Big Bang. Curr Biol 24 : R1060 R1065.[PubMed] [CrossRef]
94. Flajnik MF,, Du Pasquier L . 2004. Evolution of innate and adaptive immunity: can we draw a line? Trends Immunol 25 : 640 644.[PubMed] [CrossRef]
95. Rumfelt LL,, McKinney EC,, Taylor E,, Flajnik MF . 2002. The development of primary and secondary lymphoid tissues in the nurse shark Ginglymostoma cirratum: B-cell zones precede dendritic cell immigration and T-cell zone formation during ontogeny of the spleen. Scand J Immunol 56 : 130 148.[PubMed] [CrossRef]
96. Torroba M,, Chiba A,, Vicente A,, Varas A,, Sacedón R,, Jimenez E,, Honma Y,, Zapata AG . 1995. Macrophage-lymphocyte cell clusters in the hypothalamic ventricle of some elasmobranch fish: ultrastructural analysis and possible functional significance. Anat Rec 242 : 400 410.[PubMed] [CrossRef]
97. Ohta Y,, Landis E,, Boulay T,, Phillips RB,, Collet B,, Secombes CJ,, Flajnik MF,, Hansen JD . 2004. Homologs of CD83 from elasmobranch and teleost fish. J Immunol 173 : 4553 4560.[PubMed] [CrossRef]
98. Lugo-Villarino G,, Balla KM,, Stachura DL,, Bañuelos K,, Werneck MB,, Traver D . 2010. Identification of dendritic antigen-presenting cells in the zebrafish. Proc Natl Acad Sci U S A 107 : 15850 15855.[PubMed] [CrossRef]
99. Wittamer V,, Bertrand JY,, Gutschow PW,, Traver D . 2011. Characterization of the mononuclear phagocyte system in zebrafish. Blood 117 : 7126 7135.[PubMed] [CrossRef]
100. Haugland GT,, Jordal AE,, Wergeland HI . 2012. Characterization of small, mononuclear blood cells from salmon having high phagocytic capacity and ability to differentiate into dendritic like cells. PLoS One 7 : e49260. doi:10.1371/journal.pone.0049260. [CrossRef]
101. Bassity E,, Clark TG . 2012. Functional identification of dendritic cells in the teleost model, rainbow trout ( Oncorhynchus mykiss). PLoS One 7 : e33196. doi:10.1371/journal.pone.0033196. [CrossRef]
102. Baldwin WM III,, Cohen N . 1981. A giant cell with dendritic cell properties in spleens of the anuran amphibian Xenopus laevis . Dev Comp Immunol 5 : 461 473.[PubMed] [CrossRef]
103. Horton JD,, Manning MJ . 1974. Effect of early thymectomy on the cellular changes occuring in the spleen of the clawed toad following administration of soluble antigen. Immunology 26 : 797 807.[PubMed]
104. Aguzzi A,, Kranich J,, Krautler NJ . 2014. Follicular dendritic cells: origin, phenotype, and function in health and disease. Trends Immunol 35 : 105 113.[PubMed] [CrossRef]
105. Krautler NJ,, Kana V,, Kranich J,, Tian Y,, Perera D,, Lemm D,, Schwarz P,, Armulik A,, Browning JL,, Tallquist M,, Buch T,, Oliveira-Martins JB,, Zhu C,, Hermann M,, Wagner U,, Brink R,, Heikenwalder M,, Aguzzi A . 2012. Follicular dendritic cells emerge from ubiquitous perivascular precursors. Cell 150 : 194 206.[PubMed] [CrossRef]
106. Du Pasquier L,, Flajnik MF . 1990. Expression of MHC class II antigens during Xenopus development. Dev Immunol 1 : 85 95.[PubMed] [CrossRef]
107. Turpen JB,, Smith PB . 1986. Analysis of hemopoietic lineage of accessory cells in the developing thymus of Xenopus laevis . J Immunol 136 : 412 421.[PubMed]
108. Mescher AL,, Wolf WL,, Moseman EA,, Hartman B,, Harrison C,, Nguyen E,, Neff AW . 2007. Cells of cutaneous immunity in Xenopus: studies during larval development and limb regeneration. Dev Comp Immunol 31 : 383 393.[PubMed] [CrossRef]
109. García Barrutia MS,, Leceta J,, Fonfría J,, Garrido E,, Zapata A . 1983. Non-lymphoid cells of the anuran spleen: an ultrastructural study in the natterjack, Bufo calamita . Am J Anat 167 : 83 94.[PubMed] [CrossRef]
110. García Barrutia MS,, Villena A,, Gomariz RP,, Razquin B,, Zapata A . 1985. Ultrastructural changes in the spleen of the natterjack, Bufo calamita, after antigenic stimulation. Cell Tissue Res 239 : 435 441.[PubMed] [CrossRef]
111. Kroese FG,, Leceta J,, Döpp EA,, Herraez MP,, Nieuwenhuis P,, Zapata A . 1985. Dendritic immune complex trapping cells in the spleen of the snake, Python reticulatus . Dev Comp Immunol 9 : 641 652.[PubMed] [CrossRef]
112. Zapata A,, Leceta J,, Barrutia MG . 1981. Ultrastructure of splenic white pulp of the turtle, Mauremys caspica . Cell Tissue Res 220 : 845 855.[PubMed] [CrossRef]
113. Leceta J,, Zapata AG . 1991. White pulp compartments in the spleen of the turtle Mauremys caspica: a light-microscopic, electron-microscopic, and immune-histochemical study. Cell Tissue Res 266 : 605 613.[CrossRef]
114. Oláh I,, Nagy N . 2013. Retrospection to discovery of bursal function and recognition of avian dendritic cells; past and present. Dev Comp Immunol 41 : 310 315.[PubMed] [CrossRef]
115. Wu Z,, Rothwell L,, Young JR,, Kaufman J,, Butter C,, Kaiser P . 2010. Generation and characterization of chicken bone marrow-derived dendritic cells. Immunology 129 : 133 145.[PubMed] [CrossRef]
116. Wu Z,, Hu T,, Kaiser P . 2011. Chicken CCR6 and CCR7 are markers for immature and mature dendritic cells respectively. Dev Comp Immunol 35 : 563 567.[PubMed] [CrossRef]
117. Del Cacho E,, Gallego M,, Lillehoj HS,, López-Bernard F,, Sánchez-Acedo C . 2009. Avian follicular and interdigitating dendritic cells: isolation and morphologic, phenotypic, and functional analyses. Vet Immunol Immunopathol 129 : 66 75.[PubMed] [CrossRef]
118. Kaiser P . 2012. The long view: a bright past, a brighter future? Forty years of chicken immunology pre- and post-genome. Avian Pathol 41 : 511 518.[PubMed] [CrossRef]
119. Magor KE,, Miranzo Navarro D,, Barber MR,, Petkau K,, Fleming-Canepa X,, Blyth GA,, Blaine AH . 2013. Defense genes missing from the flight division. Dev Comp Immunol 41 : 377 388.[PubMed] [CrossRef]

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error