Chapter 46 : Macrophages and Iron Metabolism

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Macrophages and Iron Metabolism, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819194/9781555819187_Chap46-1.gif /docserver/preview/fulltext/10.1128/9781555819194/9781555819187_Chap46-2.gif


Macrophages perform a vast range of biological functions, including regulation of embryonic development; scavenging and recycling of redundant, aged, or injured cells; modulation of tissue repair; and coordination and effector activity in host defense. By recycling and storing iron from senescent erythrocytes and other damaged cells, the macrophage controls iron homeostasis, supplying most of the iron needed for hemoglobin synthesis in erythrocyte precursors, and for the much smaller but important iron requirements of other cell populations. The macrophages serve a crucial regulatory role by functioning as a regulated storage compartment for iron. In response to systemic iron requirements, the release of iron from macrophages into plasma is negatively regulated by the interaction of the hepatic hormone hepcidin with its receptor/iron exporter ferroportin. In humans, macrophages contribute most of the iron entering the plasma compartment, with the rest of the iron influx into plasma made up from duodenal iron absorption and release of stored iron from hepatocytes. During infection and inflammation, interleukin-6, and to a lesser extent other cytokines, increases hepcidin synthesis. Hepcidin binds to macrophage ferroportin, induces its endocytosis and proteolysis, and thereby causes iron sequestration in macrophages. The resulting decrease in iron availability in other tissues can limit the growth and pathogenicity of invading extracellular microbes and is as an important means of host defense. Finally, bone marrow macrophages also have an important role in supporting efficient and rapid production of erythrocytes. The involvement of macrophages in iron metabolism thus serves both trophic and host defense functions. This review addresses the role of macrophages in iron metabolism in all these contexts, and represents an update and expansion of my previous discussion of the same subject ( ).

Citation: Ganz T. 2017. Macrophages and Iron Metabolism, p 803-812. In Gordon S (ed), Myeloid Cells in Health and Disease. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MCHD-0037-2016
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Ganz T . 2012. Macrophages and systemic iron homeostasis. J Innate Immun 4 : 446 453.
2. Donovan A,, Lima CA,, Pinkus JL,, Pinkus GS,, Zon LI,, Robine S,, Andrews NC . 2005. The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell Metab 1 : 191 200.
3. Nemeth E,, Tuttle MS,, Powelson J,, Vaughn MB,, Donovan A,, Ward DM,, Ganz T,, Kaplan J . 2004. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306 : 2090 2093.
4. Babitt JL,, Huang FW,, Wrighting DM,, Xia Y,, Sidis Y,, Samad TA,, Campagna JA,, Chung RT,, Schneyer AL,, Woolf CJ,, Andrews NC,, Lin HY . 2006. Bone morphogenetic protein signaling by hemojuvelin regulates hepcidin expression. Nat Genet 38 : 531 539.
5. Corradini E,, Rozier M,, Meynard D,, Odhiambo A,, Lin HY,, Feng Q,, Migas MC,, Britton RS,, Babitt JL,, Fleming RE . 2011. Iron regulation of hepcidin despite attenuated Smad1,5,8 signaling in mice without transferrin receptor 2 or Hfe. Gastroenterology 141 : 1907 1914.
6. Johnson EE,, Wessling-Resnick M . 2012. Iron metabolism and the innate immune response to infection. Microbes Infect 14 : 207 216.
7. Barber MF,, Elde NC . 2014. Nutritional immunity. Escape from bacterial iron piracy through rapid evolution of transferrin. Science 346 : 1362 1366.
8. Kim A,, Fung E,, Parikh SG,, Valore EV,, Gabayan V,, Nemeth E,, Ganz T . 2014. A mouse model of anemia of inflammation: complex pathogenesis with partial dependence on hepcidin. Blood 123 : 1129 1136.
9. Rodriguez R,, Jung CL,, Gabayan V,, Deng JC,, Ganz T,, Nemeth E,, Bulut Y,, Roy CR . 2014. Hepcidin induction by pathogens and pathogen-derived molecules is strongly dependent on interleukin-6. Infect Immun 82 : 745 752.
10. Nemeth E,, Rivera S,, Gabayan V,, Keller C,, Taudorf S,, Pedersen BK,, Ganz T . 2004. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Invest 113 : 1271 1276.
11. Barton JC,, Acton RT . 2009. Hemochromatosis and Vibrio vulnificus wound infections. J Clin Gastroenterol 43 : 890 893.
12. Frank KM,, Schneewind O,, Shieh WJ . 2011. Investigation of a researcher’s death due to septicemic plague. N Engl J Med 364 : 2563 2564.
13. Bergmann TK,, Vinding K,, Hey H . 2001. Multiple hepatic abscesses due to Yersinia enterocolitica infection secondary to primary haemochromatosis. Scand J Gastroenterol 36 : 891 895.
14. Höpfner M,, Nitsche R,, Rohr A,, Harms D,, Schubert S,, Fölsch UR . 2001. Yersinia enterocolitica infection with multiple liver abscesses uncovering a primary hemochromatosis. Scand J Gastroenterol 36 : 220 224.
15. Arezes J,, Jung G,, Gabayan V,, Valore E,, Ruchala P,, Gulig PA,, Ganz T,, Nemeth E,, Bulut Y . 2015. Hepcidin-induced hypoferremia is a critical host defense mechanism against the siderophilic bacterium Vibrio vulnificus . Cell Host Microbe 17 : 47 57.
16. Beaumont C,, Delaby C . 2009. Recycling iron in normal and pathological states. Semin Hematol 46 : 328 338.
17. Kondo H,, Saito K,, Grasso JP,, Aisen P . 1988. Iron metabolism in the erythrophagocytosing Kupffer cell. Hepatology 8 : 32 38.
18. Lang F,, Qadri SM . 2012. Mechanisms and significance of eryptosis, the suicidal death of erythrocytes. Blood Purif 33 : 125 130.
19. Buffet PA,, Safeukui I,, Deplaine G,, Brousse V,, Prendki V,, Thellier M,, Turner GD,, Mercereau-Puijalon O . 2011. The pathogenesis of Plasmodium falciparum malaria in humans: insights from splenic physiology. Blood 117 : 381 392.
20. Low PS,, Waugh SM,, Zinke K,, Drenckhahn D . 1985. The role of hemoglobin denaturation and band 3 clustering in red blood cell aging. Science 227 : 531 533.
21. Lee SJ,, Park SY,, Jung MY,, Bae SM,, Kim IS . 2011. Mechanism for phosphatidylserine-dependent erythrophagocytosis in mouse liver. Blood 117 : 5215 5223.
22. Pantaleo A,, Giribaldi G,, Mannu F,, Arese P,, Turrini F . 2008. Naturally occurring anti-band 3 antibodies and red blood cell removal under physiological and pathological conditions. Autoimmun Rev 7 : 457 462.
23. Bosman GJCG,, Werre JM,, Willekens FLA,, Novotný VM . 2008. Erythrocyte ageing in vivo and in vitro: structural aspects and implications for transfusion. Transfus Med 18 : 335 347.
24. Ravichandran KS . 2010. Find-me and eat-me signals in apoptotic cell clearance: progress and conundrums. J Exp Med 207 : 1807 1817.
25. Föller M,, Huber SM,, Lang F . 2008. Erythrocyte programmed cell death. IUBMB Life 60 : 661 668.
26. Mohandas N,, An X . 2012. Malaria and human red blood cells. Med Microbiol Immunol (Berl) 201 : 593 598.
27. Poss KD,, Tonegawa S . 1997. Heme oxygenase 1 is required for mammalian iron reutilization. Proc Natl Acad Sci U S A 94 : 10919 10924.
28. Kovtunovych G,, Eckhaus MA,, Ghosh MC,, Ollivierre-Wilson H,, Rouault TA . 2010. Dysfunction of the heme recycling system in heme oxygenase 1-deficient mice: effects on macrophage viability and tissue iron distribution. Blood 116 : 6054 6062.
29. Korolnek T,, Hamza I . 2015. Macrophages and iron trafficking at the birth and death of red cells. Blood 125 : 2893 2897.
30. Soe-Lin S,, Apte SS,, Mikhael MR,, Kayembe LK,, Nie G,, Ponka P . 2010. Both Nramp1 and DMT1 are necessary for efficient macrophage iron recycling. Exp Hematol 38 : 609 617.
31. White C,, Yuan X,, Schmidt PJ,, Bresciani E,, Samuel TK,, Campagna D,, Hall C,, Bishop K,, Calicchio ML,, Lapierre A,, Ward DM,, Liu P,, Fleming MD,, Hamza I . 2013. HRG1 is essential for heme transport from the phagolysosome of macrophages during erythrophagocytosis. Cell Metab 17 : 261 270.
32. Radhakrishnan N,, Yadav SP,, Sachdeva A,, Pruthi PK,, Sawhney S,, Piplani T,, Wada T,, Yachie A . 2011. Human heme oxygenase-1 deficiency presenting with hemolysis, nephritis, and asplenia. J Pediatr Hematol Oncol 33 : 74 78.
33. Yachie A,, Niida Y,, Wada T,, Igarashi N,, Kaneda H,, Toma T,, Ohta K,, Kasahara Y,, Koizumi S . 1999. Oxidative stress causes enhanced endothelial cell injury in human heme oxygenase-1 deficiency. J Clin Invest 103 : 129 135.
34. Nielsen MJ,, Møller HJ,, Moestrup SK . 2010. Hemoglobin and heme scavenger receptors. Antioxid Redox Signal 12 : 261 273.
35. Kristiansen M,, Graversen JH,, Jacobsen C,, Sonne O,, Hoffman HJ,, Law SK,, Moestrup SK . 2001. Identification of the haemoglobin scavenger receptor. Nature 409 : 198 201.
36. Hvidberg V,, Maniecki MB,, Jacobsen C,, Højrup P,, Møller HJ,, Moestrup SK . 2005. Identification of the receptor scavenging hemopexin-heme complexes. Blood 106 : 2572 2579.
37. Kohyama M,, Ise W,, Edelson BT,, Wilker PR,, Hildner K,, Mejia C,, Frazier WA,, Murphy TL,, Murphy KM . 2009. Role for Spi-C in the development of red pulp macrophages and splenic iron homeostasis. Nature 457 : 318 321.
38. Delaby C,, Pilard N,, Puy H,, Canonne-Hergaux F . 2008. Sequential regulation of ferroportin expression after erythrophagocytosis in murine macrophages: early mRNA induction by haem, followed by iron-dependent protein expression. Biochem J 411 : 123 131.
39. Igarashi K,, Sun J . 2006. The heme-Bach1 pathway in the regulation of oxidative stress response and erythroid differentiation. Antioxid Redox Signal 8 : 107 118.
40. Hintze KJ,, Katoh Y,, Igarashi K,, Theil EC . 2007. Bach1 repression of ferritin and thioredoxin reductase1 is heme-sensitive in cells and in vitro and coordinates expression with heme oxygenase1, β-globin, and NADP(H) quinone (oxido) reductase1. J Biol Chem 282 : 34365 34371.
41. Marro S,, Chiabrando D,, Messana E,, Stolte J,, Turco E,, Tolosano E,, Muckenthaler MU . 2010. Heme controls ferroportin1 (FPN1) transcription involving Bach1, Nrf2 and a MARE/ARE sequence motif at position -7007 of the FPN1 promoter. Haematologica 95 : 1261 1268.
42. Muckenthaler MU,, Galy B,, Hentze MW . 2008. Systemic iron homeostasis and the iron-responsive element/iron-regulatory protein (IRE/IRP) regulatory network. Annu Rev Nutr 28 : 197 213.
43. Sangokoya C,, Doss JF,, Chi JT . 2013. Iron-responsive miR-485-3p regulates cellular iron homeostasis by targeting ferroportin. PLoS Genet 9 : e1003408. doi:10.1371/journal.pgen.1003408.
44. Belcher JD,, Chen C,, Nguyen J,, Milbauer L,, Abdulla F,, Alayash AI,, Smith A,, Nath KA,, Hebbel RP,, Vercellotti GM . 2014. Heme triggers TLR4 signaling leading to endothelial cell activation and vaso-occlusion in murine sickle cell disease. Blood 123 : 377 390.
45. Chiabrando D,, Vinchi F,, Fiorito V,, Mercurio S,, Tolosano E . 2014. Heme in pathophysiology: a matter of scavenging, metabolism and trafficking across cell membranes. Front Pharmacol 5 : 61. doi:10.3389/fphar.2014.00061.
46. Vinchi F,, Costa da Silva M,, Ingoglia G,, Petrillo S,, Brinkman N,, Zuercher A,, Cerwenka A,, Tolosano E,, Muckenthaler MU . 2016. Hemopexin therapy reverts heme-induced proinflammatory phenotypic switching of macrophages in a mouse model of sickle cell disease. Blood 127 : 473 486.
47. Soe-Lin S,, Sheftel AD,, Wasyluk B,, Ponka P . 2008. Nramp1 equips macrophages for efficient iron recycling. Exp Hematol 36 : 929 937.
48. Shi H,, Bencze KZ,, Stemmler TL,, Philpott CC . 2008. A cytosolic iron chaperone that delivers iron to ferritin. Science 320 : 1207 1210.
49. Nandal A,, Ruiz JC,, Subramanian P,, Ghimire-Rijal S,, Sinnamon RA,, Stemmler TL,, Bruick RK,, Philpott CC . 2011. Activation of the HIF prolyl hydroxylase by the iron chaperones PCBP1 and PCBP2. Cell Metab 14 : 647 657.
50. Yanatori I,, Yasui Y,, Tabuchi M,, Kishi F . 2014. Chaperone protein involved in transmembrane transport of iron. Biochem J 462 : 25 37.
51. Taniguchi R,, Kato HE,, Font J,, Deshpande CN,, Wada M,, Ito K,, Ishitani R,, Jormakka M,, Nureki O . 2015. Outward- and inward-facing structures of a putative bacterial transition-metal transporter with homology to ferroportin. Nat Commun 6 : 8545. doi:10.1038/ncomms9545.
52. Marques L,, Auriac A,, Willemetz A,, Banha J,, Silva B,, Canonne-Hergaux F,, Costa L . 2012. Immune cells and hepatocytes express glycosylphosphatidylinositol-anchored ceruloplasmin at their cell surface. Blood Cells Mol Dis 48 : 110 120.
53. Cherukuri S,, Tripoulas NA,, Nurko S,, Fox PL . 2004. Anemia and impaired stress-induced erythropoiesis in aceruloplasminemic mice. Blood Cells Mol Dis 33 : 346 355.
54. Brissot P,, Ropert M,, Le Lan C,, Loréal O . 2012. Non-transferrin bound iron: a key role in iron overload and iron toxicity. Biochim Biophys Acta 1820 : 403 410.
55. Breuer W,, Ronson A,, Slotki IN,, Abramov A,, Hershko C,, Cabantchik ZI . 2000. The assessment of serum nontransferrin-bound iron in chelation therapy and iron supplementation. Blood 95 : 2975 2982.
56. Delaby C,, Rondeau C,, Pouzet C,, Willemetz A,, Pilard N,, Desjardins M,, Canonne-Hergaux F . 2012. Subcellular localization of iron and heme metabolism related proteins at early stages of erythrophagocytosis. PLoS One 7 : e42199. doi:10.1371/journal.pone.0042199.
57. Canonne-Hergaux F,, Donovan A,, Delaby C,, Wang HJ,, Gros P . 2006. Comparative studies of duodenal and macrophage ferroportin proteins. Am J Physiol Gastrointest Liver Physiol 290 : G156 G163.
58. Vidal S,, Gros P,, Skamene E . 1995. Natural resistance to infection with intracellular parasites: molecular genetics identifies Nramp1 as the Bcg/Ity/Lsh locus. J Leukoc Biol 58 : 382 390.
59. Alter-Koltunoff M,, Goren S,, Nousbeck J,, Feng CG,, Sher A,, Ozato K,, Azriel A,, Levi BZ . 2008. Innate immunity to intraphagosomal pathogens is mediated by interferon regulatory factor 8 (IRF-8) that stimulates the expression of macrophage-specific Nramp1 through antagonizing repression by c-Myc. J Biol Chem 283 : 2724 2733.
60. Wessling-Resnick M . 2015. Nramp1 and other transporters involved in metal withholding during infection. J Biol Chem 290 : 18984 18990.
61. Forbes JR,, Gros P . 2003. Iron, manganese, and cobalt transport by Nramp1 (Slc11a1) and Nramp2 (Slc11a2) expressed at the plasma membrane. Blood 102 : 1884 1892.
62. Techau ME,, Valdez-Taubas J,, Popoff JF,, Francis R,, Seaman M,, Blackwell JM . 2007. Evolution of differences in transport function in Slc11a family members. J Biol Chem 282 : 35646 35656.
63. Goswami T,, Bhattacharjee A,, Babal P,, Searle S,, Moore E,, Li M,, Blackwell JM . 2001. Natural-resistance-associated macrophage protein 1 is an H +/bivalent cation antiporter. Biochem J 354 : 511 519.
64. Sindrilaru A,, Peters T,, Wieschalka S,, Baican C,, Baican A,, Peter H,, Hainzl A,, Schatz S,, Qi Y,, Schlecht A,, Weiss JM,, Wlaschek M,, Sunderkötter C,, Scharffetter-Kochanek K . 2011. An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice. J Clin Invest 121 : 985 997.
65. Kaempfer T,, Duerst E,, Gehrig P,, Roschitzki B,, Rutishauser D,, Grossmann J,, Schoedon G,, Vallelian F,, Schaer DJ . 2011. Extracellular hemoglobin polarizes the macrophage proteome toward Hb-clearance, enhanced antioxidant capacity and suppressed HLA class 2 expression. J Proteome Res 10 : 2397 2408.
66. Nix RN,, Altschuler SE,, Henson PM,, Detweiler CS . 2007. Hemophagocytic macrophages harbor Salmonella enterica during persistent infection. PLoS Pathog 3 : e193. doi:10.1371/journal.ppat.0030193.
67. Soares MP,, Weiss G . 2015. The Iron age of host-microbe interactions. EMBO Rep 16 : 1482 1500.
68. Michels K,, Nemeth E,, Ganz T,, Mehrad B . 2015. Hepcidin and host defense against infectious diseases. PLoS Pathog 11 : e1004998. doi:10.1371/journal.ppat.1004998.
69. Du X,, She E,, Gelbart T,, Truksa J,, Lee P,, Xia Y,, Khovananth K,, Mudd S,, Mann N,, Moresco EM,, Beutler E,, Beutler B . 2008. The serine protease TMPRSS6 is required to sense iron deficiency. Science 320 : 1088 1092.
70. Zohn IE,, De Domenico I,, Pollock A,, Ward DM,, Goodman JF,, Liang X,, Sanchez AJ,, Niswander L,, Kaplan J . 2007. The flatiron mutation in mouse ferroportin acts as a dominant negative to cause ferroportin disease. Blood 109 : 4174 4180.
71. Lesbordes-Brion JC,, Viatte L,, Bennoun M,, Lou DQ,, Ramey G,, Houbron C,, Hamard G,, Kahn A,, Vaulont S . 2006. Targeted disruption of the hepcidin 1 gene results in severe hemochromatosis. Blood 108 : 1402 1405.
72. Altamura S,, Kessler R,, Gröne HJ,, Gretz N,, Hentze MW,, Galy B,, Muckenthaler MU . 2014. Resistance of ferroportin to hepcidin binding causes exocrine pancreatic failure and fatal iron overload. Cell Metab 20 : 359 367.
73. Rhodes MM,, Kopsombut P,, Bondurant MC,, Price JO,, Koury MJ . 2008. Adherence to macrophages in erythroblastic islands enhances erythroblast proliferation and increases erythrocyte production by a different mechanism than erythropoietin. Blood 111 : 1700 1708.
74. An X,, Mohandas N . 2011. Erythroblastic islands, terminal erythroid differentiation and reticulocyte maturation. Int J Hematol 93 : 139 143.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error