Chapter 25 : Mechanisms of DNA Transposition

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Mechanisms of DNA Transposition, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819217/9781555819200_Chap25-1.gif /docserver/preview/fulltext/10.1128/9781555819217/9781555819200_Chap25-2.gif


In this chapter, we provide an overview of the fundamental concepts of DNA transposition mechanisms. Our aim is to emphasize basic themes and, in this effort, we will focus on specific illustrative cases rather than attempt an exhaustive review of the literature. We hope that the selected references will point the curious reader towards the landmark studies in the field as well as some of the most exciting recent results. We also direct the reader to other recent reviews ( ).

Citation: Hickman A, Dyda F. 2015. Mechanisms of DNA Transposition, p 531-553. In Craig N, Chandler M, Gellert M, Lambowitz A, Rice P, Sandmeyer S (ed), Mobile DNA III. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MDNA3-0034-2014
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Basic chemical reactions catalyzed by DNA transposases. (A) An RNase H-like active site, based on structures of PFV intasomes ( ). The green DNA represents the cleaved dinucleotide, and orange is the target strand. Spheres indicate bound metal ions. (B) HUH nuclease active site acting on single-stranded DNA (based on PDB ID 2X06 of IS TnpA). Shown is the reaction that occurs at the transposon Left End (LE). After cleavage, the DNA flanking the LE (black) remains in the active site; upon exchange of α-helices between the two active sites of the dimeric transposase, the cleaved LE moves to the other monomer where it is joined to the cleaved RE to form a circular excised transposon (not shown). At the same time, the flanking DNA from the RE of the transposon switches active sites (as shown here in black) and subsequent joining results in a sealed donor backbone. (C) DNA cleavage catalyzed by a serine recombinase. The active serine is surrounded by many Arg residues. Upon 180° rotation of one dimer within a tetramer, one strand rotates out of the active site (green) while another rotates in (orange). (D) DNA cleavage catalyzed by a tyrosine recombinase. Crucial residues within the active site include a conserved RHR triad (for details, see also ( )).

Citation: Hickman A, Dyda F. 2015. Mechanisms of DNA Transposition, p 531-553. In Craig N, Chandler M, Gellert M, Lambowitz A, Rice P, Sandmeyer S (ed), Mobile DNA III. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MDNA3-0034-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Proposed pathway for transposon circle integration into target DNA catalyzed by a serine transposase. At the top, a tetrameric assembly is shown bringing together the abutted Left End (LE; orange) and Right End (RE; red) of an excised circular transposon with a target DNA (green). The reactions in the dashed box show how four cleavage reactions in which each active site serine becomes covalently attached to one strand of DNA, followed by a 180 degree rotation of the left-most dimer, leads to a re-organization of the strands. Resolution of the four covalent intermediates results in an integrated transposon.

Citation: Hickman A, Dyda F. 2015. Mechanisms of DNA Transposition, p 531-553. In Craig N, Chandler M, Gellert M, Lambowitz A, Rice P, Sandmeyer S (ed), Mobile DNA III. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MDNA3-0034-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Pathway of conjugative transposition. Whether catalyzed by a serine or a tyrosine transposase, excision results in a circular intermediate in which the transposon ends are abutted. Only one of the strands of this intermediate is transferred to the recipient cell, and replication (new strands shown in blue) regenerates the double-stranded form in both cells.

Citation: Hickman A, Dyda F. 2015. Mechanisms of DNA Transposition, p 531-553. In Craig N, Chandler M, Gellert M, Lambowitz A, Rice P, Sandmeyer S (ed), Mobile DNA III. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MDNA3-0034-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Proposed pathways of excision and integration by tyrosine transposases. (A) Transposon excision. (B) Transposon integration.

Citation: Hickman A, Dyda F. 2015. Mechanisms of DNA Transposition, p 531-553. In Craig N, Chandler M, Gellert M, Lambowitz A, Rice P, Sandmeyer S (ed), Mobile DNA III. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MDNA3-0034-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Transposition pathways for RNase H-like transposases. Arrows indicate sites of strand cleavage and the black dots indicate 3′-OH groups. Many pathways converge on essentially the same form of the excised transposon (highlighted with grey boxes). This linear intermediate is then integrated into target DNA as shown in (f). Target site duplications (TSDs) are generated when the cell repairs the gaps introduced by staggered strand transfer reactions. Adapted from ( ).

Citation: Hickman A, Dyda F. 2015. Mechanisms of DNA Transposition, p 531-553. In Craig N, Chandler M, Gellert M, Lambowitz A, Rice P, Sandmeyer S (ed), Mobile DNA III. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MDNA3-0034-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Transpososome structures for the RNase H-like DNA transposases. Cartoon representations of five transpososomes containing RNase H-like catalytic domains determined by X-ray crystallography. In all images, the catalytically active protomers acting on the two transposon ends are colored in orange and green, with the green catalytic domain acting on the DNA end shown in blue and the orange domain acting on the DNA end in red. Where target DNA is present, it is shown in grey. Inactive protomers (MuA, PFV IN and Hermes) are colored purple and magenta. The following PDB codes were used: (A) Tn, 1MUH; (B) PFV IN, 4E7J; (C) Mos1, 3HOT; (D) MuA, 4FCY; (E) Hermes, 4D1Q.

Citation: Hickman A, Dyda F. 2015. Mechanisms of DNA Transposition, p 531-553. In Craig N, Chandler M, Gellert M, Lambowitz A, Rice P, Sandmeyer S (ed), Mobile DNA III. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MDNA3-0034-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

Transpososome of the HUH transposase TnpA of IS, modelled as binding one Left End (LE; red) and one Right End (RE; blue). The PDB codes 2VJV and 2VJU were used. The inset shows the step of the reaction in the strand transfer and reset model for IS transposition (see He , this volume) to which the structure corresponds; note that the RE flank has not yet been observed crystallographically.

Citation: Hickman A, Dyda F. 2015. Mechanisms of DNA Transposition, p 531-553. In Craig N, Chandler M, Gellert M, Lambowitz A, Rice P, Sandmeyer S (ed), Mobile DNA III. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MDNA3-0034-2014
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Curcio MJ,, Derbyshire KM . 2003. The outs and ins of transposition: From Mu to kangaroo. Nature Rev Mol Cell Biol 4 : 865 877.[PubMed] [CrossRef]
2. Montaño SP,, Rice PA . 2011. Moving DNA around: DNA transposition and retroviral integration. Curr Opin Struct Biol 21 : 370 378.[PubMed] [CrossRef]
3. Chandler M,, de la Cruz F,, Dyda F,, Hickman AB,, Moncalian G,, Ton-Hoang B . 2013. Breaking and joining single-stranded DNA: the HUH endonuclease superfamily. Nature Rev Microbiol 11 : 525 538.[PubMed] [CrossRef]
4. Yang W . 2011. Nucleases: diversity of structure, function and mechanism. Quart Rev Biophys 44 : 1 93.[PubMed] [CrossRef]
5. Dyda F,, Hickman AB,, Jenkins TM,, Engelman A,, Craigie R,, Davies DR . 1994. Crystal structure of the catalytic domain of HIV-1 integrase: Similarity to other polynucleotidyl transferases. Science 266 : 1981 1986.[PubMed] [CrossRef]
6. Rice P,, Mizuuchi K . 1995. Structure of the bacteriophage Mu transposase core: A common structural motif for DNA transposition and retroviral integration. Cell 82 : 209 220.[PubMed] [CrossRef]
7. Yuan YW,, Wessler SR . 2011. The catalytic domain of all eukaryotic cut-and-paste transposase superfamilies. Proc Natl Acad Sci USA 108 : 7884 7889.[PubMed] [CrossRef]
8. Koonin EV,, Ilyina TV . 1993. Computer-assisted dissection of rolling circle DNA replication. BioSystems 30 : 241 268.[PubMed] [CrossRef]
9. Smith MCM,, Thorpe HM . 2002. Diversity in the serine recombinases. Mol Microbiol 44 : 299 307.[PubMed] [CrossRef]
10. Smith MCM,, Brown WRA,, McEwan AR,, Rowley PA . 2010. Site-specific recombination by ΦC31 integrase and other large serine recombinases. Biochem Soc Trans 38 : 388 394.[PubMed] [CrossRef]
11. Rajeev L,, Malanowska K,, Gardner JF . 2009. Challenging a paradigm: the role of DNA homology in tyrosine recombinase reactions. Microbiol Mol Biol Rev 73 : 300 309.[PubMed] [CrossRef]
12. Beese LS,, Steitz TA . 1991. Structural basis for the 3 -5 exonuclease activity of Escherichia coli DNA polymerase I: a two metal ion mechanism. EMBO J 10 : 25 33.[PubMed]
13. Nowotny M,, Gaidamakov SA,, Crouch RJ,, Yang W . 2005. Crystal structures of RNase H bound to an RNA/DNA hybrid: Substrate specificity and metal-dependent catalysis. Cell 121 : 1005 1016.[PubMed] [CrossRef]
14. Nowotny M,, Yang W . 2006. Stepwise analyses of metal ions in RNase H catalysis from substrate destabilization to product release. EMBO J 25 : 1924 1933.[PubMed] [CrossRef]
15. Rosta E,, Woodcock HL,, Brooks BR,, Hummer G . 2009. Artificial reaction coordinate “tunneling” in free-energy calculations: The catalytic reaction of RNase H. J Comput Chem 30 : 1634 1641.[PubMed] [CrossRef]
16. Rosta E,, Nowotny M,, Yang W,, Hummer G . 2011. Catalytic mechanism of RNA backbone cleavage by ribonuclease H from quantum mechanics/molecular mechanics simulations. J Am Chem Soc 133 : 8934 8941.[PubMed] [CrossRef]
17. Mizuuchi K,, Adzuma K . 1991. Inversion of the phosphate chirality at the target site of Mu DNA strand transfer: evidence for a one-step transesterification mechanism. Cell 66 : 129 140.[PubMed] [CrossRef]
18. Engelman A,, Mizuuchi K,, Craigie R . 1991. HIV-1 DNA integration: mechanism of viral DNA cleavage and DNA strand transfer. Cell 67 : 1211 1221.[PubMed] [CrossRef]
19. Kennedy AK,, Haniford DB,, Mizuuchi K . 2000. Single active site catalysis of the successive phosphoryl transfer steps by DNA transposases: Insights from phosphorothioate stereoselectivity. Cell 101 : 295 305.[PubMed] [CrossRef]
20. Levchenko I,, Luo L,, Baker TA . 1995. Disassembly of the Mu transposase tetramer by the ClpX chaperone. Genes Dev 9 : 2399 2408.[PubMed] [CrossRef]
21. Bolland S,, Kleckner N . 1996. The three chemical steps of Tn10/IS10 transposition involve repeated utilization of a single active site. Cell 84 : 223 233.[PubMed] [CrossRef]
22. Rosta E,, Yang W,, Hummer G . 2014. Calcium inhibition of Ribonuclease H1 two-metal ion catalysis. J Am Chem Soc 136 : 3137 3144.[PubMed] [CrossRef]
23. Savilahti H,, Rice PA,, Mizuuchi K . 1995. The phage Mu transpososome core: DNA requirements for assembly and function. EMBO J 14 : 4893 4903.[PubMed]
24. Steitz TA,, Steitz JA . 1993. A general two-metal-ion mechanism for catalytic RNA. Proc Natl Acad Sci USA 90 : 6498 6502.[PubMed] [CrossRef]
25. Stahley MR,, Strobel SA . 2005. Structural evidence for a two-metal-ion mechanism of group I intron splicing. Science 309 : 1587 1590.[PubMed] [CrossRef]
26. Nowotny M . 2009. Retroviral integrase superfamily: the structural perspective. EMBO Reports 10 : 144 151.[PubMed] [CrossRef]
27. Nakamura T,, Zhao Y,, Yamagata Y,, Hua YJ,, Yang W . 2012. Watching DNA polymerase η make a phosphodiester bond. Nature 487 : 196 201.[PubMed] [CrossRef]
28. Hare S,, Maertens GN,, Cherepanov P . 3′-processing and strand transfer catalysed by retroviral integrase in crystallo . EMBO J 31 : 3020 3028.[PubMed] [CrossRef]
29. Ton-Hoang B,, Guynet C,, Ronning DR,, Cointin-Marty B,, Dyda F,, Chandler M . 2005. Transposition of ISHp 608, member of an unusual family of bacterial insertion sequences. EMBO J 24 : 3325 3338.[PubMed] [CrossRef]
30. Ronning DR,, Guynet C,, Ton-Hoang B,, Perez ZN,, Ghirlando R,, Chandler M,, Dyda F . 2005. Active site sharing and subterminal hairpin recognition in a new class of DNA transposases. Mol Cell 20 : 143 154.[PubMed] [CrossRef]
31. Guynet C,, Hickman AB,, Barabas O,, Dyda F,, Chandler M,, Ton-Hoang B . 2008. In vitro reconstitution of a single-stranded transposition mechanism of IS 608 . Mol Cell 29 : 302 312.[PubMed] [CrossRef]
32. Barabas O,, Ronning DR,, Guynet C,, Hickman AB,, Ton-Hoang B,, Chandler M,, Dyda F . 2008. Mechanism of IS 200/IS 605 family DNA transposases: Activation and transposon-directed target site selection. Cell 132 : 208 220.[PubMed] [CrossRef]
33. Hickman AB,, James JA,, Barabas O,, Pasternak C,, Ton-Hoang B,, Chandler M,, Sommer S,, Dyda F . 2010. DNA recognition and the precleavage state during single-stranded DNA transposition in D. radiodurans . EMBO J 29 : 3840 3852.[PubMed] [CrossRef]
34. He S,, Hickman AB,, Dyda F,, Johnson NP,, Chandler M,, Ton-Hoang B . 2011. Reconstitution of a functional IS 608 single-strand transpososome: role of non-canonical base pairing. Nucl Acids Res 39 : 8503 8512.[PubMed] [CrossRef]
35. He S,, Guynet C,, Siguier P,, Hickman AB,, Dyda F,, Chandler M,, Ton-Hoang B . 2013. IS 200/IS 605 family single-strand transposition: mechanism of IS 608 strand transfer. Nucl Acids Res 41 : 3302 3313.[PubMed] [CrossRef]
36. Hickman AB,, Ronning DR,, Kotin RM,, Dyda F . 2002. Structural unity among viral origin binding proteins: Crystal structure of the nuclease domain of adeno-associated virus Rep. Mol Cell 10 : 327 337.[PubMed] [CrossRef]
37. Guasch A,, Lucas M,, Moncalián G,, Cabezas M,, Pérez-Luque R,, Gomis-Rüth FX,, de la Cruz F,, Coll M . 2003. Recognition and processing of the origin of transfer DNA by conjugative relaxase TrwC. Nature Struct Biol 10 : 1002 1010.[PubMed] [CrossRef]
38. Datta S,, Larkin C,, Schildbach JF . 2003. Structural insights into single-stranded DNA binding and cleavage by F factor TraI. Struct 11 : 1369 1379.[PubMed] [CrossRef]
39. Boer R,, Russi S,, Guasch A,, Lucas M,, Blanco AG,, Pérez-Luque R,, Coll M,, de la Cruz F . 2006. Unveiling the molecular mechanism of a conjugative relaxase: The structure of TrwC complexed with a 27-mer DNA comprising the recognition hairpin and the cleavage site. J Mol Biol 358 : 857 869.[PubMed] [CrossRef]
40. Toleman MA,, Bennett PM,, Walsh TR . 2006. IS CR elements: Novel gene-capturing systems of the 21st century? Microbiol Mol Biol Rev 70 : 296 316.[PubMed] [CrossRef]
41. Ton-Hoang B,, Siguier P,, Quentin Y,, Onillon S,, Marty B,, Fichant G,, Chandler M . 2012. Structuring the bacterial genome: Y1-transposases associated with REP-BIME sequences. Nucl Acids Res 40 : 3596 3609.[PubMed] [CrossRef]
42. Messing SAJ,, Ton-Hoang B,, Hickman AB,, McCubbin AJ,, Peaslee GF,, Ghirlando R,, Chandler M,, Dyda F . 2012. The processing of repetitive extragenic palindromes: the structure of a repetitive extragenic palindrome bound to its associated nuclease. Nucl Acids Res 40 : 9964 9979.[PubMed] [CrossRef]
43. Nunvar J,, Huckova T,, Licha I . 2010. Identification and characterization of repetitive extragenic palindromes (REP)-associated tyrosine transposases: implications for REP evolution and dynamics in bacterial genomes. BMC Genomics 11 : 44. [PubMed] [CrossRef]
44. Kapitonov VV,, Jurka J . 2001. Rolling-circle transposons in eukaryotes. Proc Natl Acad Sci USA 98 : 8714 8719.[PubMed] [CrossRef]
45. Feschotte C,, Wessler SR . 2001. Treasures in the attic: Rolling circle transposons discovered in eukaryotic genomes. Proc Natl Acad Sci USA 98 : 8923 8924.[PubMed] [CrossRef]
46. Pritham EJ,, Feschotte C . 2007. Massive amplification of rolling-circle transposons in the lineage of the bat Myotis lucifugus . Proc Natl Acad Sci USA 104 : 1895 1900.[PubMed] [CrossRef]
47. Kersulyte D,, Mukhopadhyay AK,, Shirai M,, Nakazawa T,, Berg DE . 2000. Functional organization and insertion specificity of IS 607, a chimeric element of Helicobacter pylori . J Bacteriol 182 : 5300 5308.[PubMed] [CrossRef]
48. Boocock MR,, Rice PA . 2013. A proposed mechanism for IS607-family serine transposases. Mobile DNA 4 : 24. [PubMed] [CrossRef]
49. Bannam TL,, Crellin PK,, Rood JI . 1995. Molecular genetics of the chloramphenicol-resistance transposon Tn 4451 from Clostridium perfringens: the TnpX site-specific recombinase excises a circular transposon molecule. Mol Microbiol 16 : 535 551.[PubMed] [CrossRef]
50. Lyras D,, Rood JI . 2000. Transposition of Tn 4451 and Tn 4453 involves a circular intermediate that forms a promoter for the large resolvase, TnpX. Mol Microbiol 38 : 588 601.[PubMed] [CrossRef]
51. Grindley NDF,, Whiteson KL,, Rice PA . 2006. Mechanisms of site-specific recombination. Annu Rev Biochem 75 : 567 605.[PubMed] [CrossRef]
52. Wang H,, Smith MCM,, Mullany P . 2006. The conjugative transposon Tn 5397 has a strong preference for integration into its Clostridium difficile target site. J Bacteriol 188 : 4871 4878.[PubMed] [CrossRef]
53. Kersulyte D,, Kalia A,, Zhang MJ,, Lee HK,, Subramaniam D,, Kiuduliene L,, Chalkauskas H,, Berg DE . 2004. Sequence organization and insertion specificity of the novel chimeric IS Hp609 transposable element of Helicobacter pylori . J Bacteriol 186 : 7521 7528.[PubMed] [CrossRef]
54. Sanderson MR,, Freemont PS,, Rice PA,, Goldman A,, Hatfull GF,, Grindley NDF,, Steitz TA . 1990. The crystal structure of the catalytic domain of the site-specific recombination enzyme γδ resolvase at 2.7 Å resolution. Cell 63 : 1323 1329.[PubMed] [CrossRef]
55. Li W,, Kamtekar S,, Xiong Y,, Sarkis GJ,, Grindley NDF,, Steitz TA . 2005. Structure of a synaptic γδ resolvase tetramer covalently linked to two cleaved DNAs. Science 309 : 1210 1215.[PubMed] [CrossRef]
56. Keenholtz RA,, Rowland SJ,, Boocock MR,, Stark WM,, Rice PA . 2011. Structural basis for catalytic activation of a serine recombinase. Struct 19 : 799 809.[PubMed] [CrossRef]
57. Keenholtz RA,, Mouw KW,, Boocock MR,, Li NS,, Piccirilli JA,, Rice PA . 2013. Arginine as a general acid catalyst in serine recombinase-mediated DNA cleavage. J Biol Chem 288 : 29206 29214.[PubMed] [CrossRef]
58. Hickman AB,, Waninger S,, Scocca JJ,, Dyda F . 1997. Molecular organization in site-specific recombination: The catalytic domain of bacteriophage HP1 integrase at 2.7Å resolution. Cell 89 : 227 237.[PubMed] [CrossRef]
59. Kwon HJ,, Tirumalai R,, Landy A,, Ellenberger T . 1997. Flexibility in DNA recombination: Structure of the lambda integrase catalytic core. Science 276 : 126 131.[PubMed] [CrossRef]
60. Chen Y,, Rice PA . 2003. New insight into site-specific recombination from Flp recombinase-DNA structures. Annu Rev Biophys Biomol Struct 32 : 135 159.[PubMed] [CrossRef]
61. Roberts AP,, Mullany P . 2009. A modular master on the move: the Tn 916 family of mobile genetic elements. Trends Microbiol 17 : 251 258.[PubMed] [CrossRef]
62. Waters JL,, Salyers AA . 2013. Regulation of CTnDOT conjugative transfer is a complex and highly coordinated series of events. mBio 4 : e00569–13.[PubMed] [CrossRef]
63. Brochet M,, Da Cunha V,, Couvé E,, Rusniok C,, Trieu-Cuot P,, Glaser P . 2009. Atypical association of DDE transposition with conjugation specifies a new family of mobile element. Mol Microbiol 71 : 948 959.[PubMed] [CrossRef]
64. Guérillot R,, Siguier P,, Gourbeyre E,, Chandler M,, Glaser P . 2014. The diversity of prokaryotic DDE transposases of the Mutator superfamily, insertion specificity, and association with conjugation machineries. Genome Biol Evol 6 : 260 272.[PubMed] [CrossRef]
65. Harshey RM . 2012. The Mu story: how a maverick phage moved the field forward. Mobile DNA 3 : 21. [PubMed] [CrossRef]
66. Mizuuchi K . 1992. Transpositional recombination: Mechanistic insights from studies of Mu and other elements. Annu Rev Biochem 61 : 1011 1051.[PubMed] [CrossRef]
67. North SH,, Kirtland SE,, Nakai H . 2007. Translation factor IF2 at the interface of transposition and replication by the PriA-PriC pathway. Mol Microbiol 66 : 1566 1578.[PubMed]
68. Jones JM,, Nakai H . 1999. Duplex opening by primosome protein PriA for replisome assembly on a recombination intermediate. J Mol Biol 289 : 503 515.[PubMed] [CrossRef]
69. Duval-Valentin G,, Marty-Cointin B,, Chandler M . 2004. Requirement of IS 911 replication before integration defines a new bacterial transposition pathway. EMBO J 23 : 3897 3906.[PubMed] [CrossRef]
70. Ton-Hoang B,, Polard P,, Chandler M . 1998. Efficient transposition of IS 911 circles in vitro . EMBO J 17 : 1169 1181.[PubMed] [CrossRef]
71. Polard P,, Chandler M . 1995. An in vivo transposase-catalyzed single-stranded DNA circularization reaction. Genes Dev 9 : 2846 2858.[PubMed] [CrossRef]
72. Ton-Hoang B,, Bétermier M,, Polard P,, Chandler M . 1997. Assembly of a strong promoter following IS 911 circularization and the role of circles in transposition. EMBO J 16 : 3357 3371.[PubMed] [CrossRef]
73. Turlan C,, Chandler M . 2000. Playing second fiddle: second-strand processing and liberation of transposable elements from donor DNA. Trends Microbiol 8 : 268 274.[PubMed] [CrossRef]
74. Hickman AB,, Chandler M,, Dyda F . 2010. Integrating prokaryotes and eukaryotes: DNA transposases in light of structure. Crit Rev Biochem Mol Biol 45 : 50 69.[PubMed] [CrossRef]
75. Dawson A,, Finnegan DJ . 2003. Excision of the Drosophila mariner transposon Mos1: Comparison with bacterial transposition and V(D)J recombination. Mol Cell 11 : 225 235.[PubMed] [CrossRef]
76. Claeys Bouuaert C,, Chalmers R . 2010. Transposition of the human Hsmar1 transposon: rate-limiting steps and the importance of the flanking TA dinucleotide in second strand cleavage. Nucl Acids Res 38 : 190 202.[PubMed] [CrossRef]
77. Lampe DJ,, Churchill MEA,, Robertson HM . 1996. A purified mariner transposase is sufficient to mediate transposition in vitro . EMBO J 15 : 5470 5479.[PubMed]
78. Beall EL,, Rio DC . 1997. Drosophila P-element transposase is a novel site-specific endonuclease. Genes Dev 11 : 2137 2151.[PubMed] [CrossRef]
79. Steiniger-White M,, Rayment I,, Reznikoff WS . 2004. Structure/function insights into Tn 5 transposition. Curr Opin Struct Biol 14 : 50 57.[PubMed] [CrossRef]
80. Mitra R,, Fain-Thornton J,, Craig NL . 2008. piggyBac can bypass DNA synthesis during cut and paste transposition. EMBO J 27 : 1097 1109.[PubMed] [CrossRef]
81. Zhou L,, Mitra R,, Atkinson PW,, Hickman AB,, Dyda F,, Craig NL . 2004. Transposition of hAT elements links transposable elements and V(D)J recombination. Nature 432 : 995 1001.[PubMed] [CrossRef]
82. Schatz DG,, Swanson PC . 2011. V(D)J recombination: Mechanisms of initiation. Annu Rev Genet 45 : 167 202.[PubMed] [CrossRef]
83. Kapitonov VV,, Jurka J . 2005. RAG1 core and V(D)J recombination signal sequences were derived from Transib transposons. PLoS Biol 3 : e181. [PubMed] [CrossRef]
84. Tang M,, Cecconi C,, Bustamante C,, Rio DC . 2007. Analysis of P element transposase protein-DNA interactions during the early stages of transposition. J Biol Chem 282 : 29002 29012.[PubMed] [CrossRef]
85. Biery MC,, Lopata M,, Craig NL . 2000. A minimal system for Tn 7 transposition: The transposon-encoded proteins TnsA and TnsB can execute DNA breakage and joining reactions that generate circularized Tn 7 species. J Mol Biol 297 : 25 37.[PubMed] [CrossRef]
86. Choi KY,, Li Y,, Sarnovsky R,, Craig NL . 2013. Direct interaction between the TnsA and TnsB subunits controls the heteromeric Tn 7 transposase. Proc Natl Acad Sci USA 110 : E2038 E2045.[PubMed] [CrossRef]
87. Hickman AB,, Li Y,, Mathew SV,, May EW,, Craig NL,, Dyda F . 2000. Unexpected structural diversity in DNA recombination: The restriction endonuclease connection. Mol Cell 5 : 1025 1034.[PubMed] [CrossRef]
88. May EW,, Craig NL . 1996. Switching from cut-and-paste to replicative Tn7 transposition. Science 272 : 401 404.[PubMed] [CrossRef]
89. Davies DR,, Goryshin IY,, Reznikoff WS,, Rayment I . 2000. Three-dimensional structure of the Tn5 synaptic complex transposition intermediate. Science 289 : 77 85.[PubMed] [CrossRef]
90. Richardson JM,, Colloms SD,, Finnegan DJ,, Walkinshaw MD . 2009. Molecular architecture of the Mos1 paired-end complex: The structural basis of DNA transposition in a eukaryote. Cell 138 : 1096 1108.[PubMed] [CrossRef]
91. Hickman AB , , et al . 2014. Structural basis of hAT transposon end recognition by Hermes, an octameric DNA transposase from Musca domestica . Cell 158 : 353 367. [PubMed] [CrossRef]
92. Dyda F,, Chandler M,, Hickman AB . 2012. The emerging diversity of transpososome architectures. Quart Rev Biophys 45 : 493 521.[PubMed] [CrossRef]
93. Montaño SP,, Pigli YZ,, Rice PA . 2012. The Mu transpososome structure sheds light on DDE recombinase evolution. Nature 491 : 413 417.[PubMed] [CrossRef]
94. Hare S,, Gupta SS,, Valkov E,, Engelman A,, Cherepanov P . 2010. Retroviral intasome assembly and inhibition of DNA strand transfer. Nature 464 : 232 236.[PubMed] [CrossRef]
95. Maertens GN,, Hare S,, Cherepanov P . 2010. The mechanism of retroviral integration from X-ray structures of its key intermediates. Nature 468 : 326 329.[PubMed] [CrossRef]
96. Schumacher S,, Clubb RT,, Cai M,, Mizuuchi K,, Clore GM,, Gronenborn AM . 1997. Solution structure of the Mu end DNA-binding Iβ subdomain of phage Mu transposase: modular DNA recognition by two tethered domains. EMBO J 16 : 7532 7541.[PubMed] [CrossRef]
97. Watkins S,, van Pouderoyen G,, Sixma TK . 2004. Structural analysis of the bipartite DNA-binding domain of Tc3 transposase bound to the transposon DNA. Nucl Acids Res 32 : 4306 4312.[PubMed] [CrossRef]
98. Arciszewska LK,, Craig NL . 1991. Interaction of the Tn7-encoded transposition protein TnsB with the ends of the transposon. Nucl Acids Res 19 : 5021 5029.[PubMed] [CrossRef]
99. Braam LAM,, Reznikoff WS . 1998. Functional characterization of the Tn 5 transposase by limited proteolysis. J Biol Chem 273 : 10908 10913.[PubMed] [CrossRef]
100. Kwon D,, Chalmers RM,, Kleckner N . 1995. Structural domains of IS 10 transposase and reconstitution of transposition activity from proteolytic fragments lacking an interdomain linker. Proc Natl Acad Sci USA 92 : 8234 8238.[PubMed] [CrossRef]
101. Wintjens R,, Rooman M . 1996. Structural classification of HTH DNA-binding domains and protein-DNA interaction modes. J Mol Biol 262 : 294 313.[PubMed] [CrossRef]
102. Aravind L,, Anantharaman V,, Balaji S,, Babu MM,, Iyer LM . 2005. The many faces of the helix-turn-helix domain:Transcription regulation and beyond. FEMS Microbiol Rev 29 : 231 262.[PubMed]
103. Rousseau P,, Gueguen E,, Duval-Valentin G,, Chandler M . 2004. The helix-turn-helix motif of bacterial insertion sequence IS 911 transposase is required for DNA binding. Nucl Acids Res 32 : 1335 1344.[PubMed] [CrossRef]
104. Nagy Z,, Szabó M,, Chandler M,, Olasz F . 2004. Analysis of the N-terminal DNA binding domain of the IS 30 transposase. Mol Microbiol 54 : 478 488.[PubMed] [CrossRef]
105. Feschotte C,, Pritham EJ . 2007. DNA transposons and the evolution of eukaryotic genomes. Annu Rev Genet 41 : 331 368.[PubMed] [CrossRef]
106. Beall EL,, Rio DC . 1998. Transposase makes critical contacts with, and is stimulated by, single-stranded DNA at the P element termini in vitro . EMBO J 17 : 2122 2136.[PubMed] [CrossRef]
107. Aravind L . 2000. The BED finger, a novel DNA-binding domain in chromatin-boundary-element-binding proteins and transposases. Trends Biochem Sci 25 : 421 423.[PubMed] [CrossRef]
108. Braam LAM,, Goryshin IY,, Reznikoff WS . 1999. A mechanism for Tn5 inhibition: Carboxyl-terminal dimerization. J Biol Chem 274 : 86 92.[PubMed] [CrossRef]
109. Richardson JM,, Dawson A,, O’Hagan N,, Taylor P,, Finnegan DJ,, Walkinshaw MD . 2006. Mechanism of Mos1 transposition: insights from structural analysis. EMBO J 25 : 1324 1334.[PubMed] [CrossRef]
110. Cuypers MG,, Trubitsyna M,, Callow P,, Forsyth VT,, Richardson JM . 2013. Solution conformations of early intermediates in Mos1 transposition. Nucl Acids Res 41 : 2020 2033.[PubMed] [CrossRef]
111. Augé-Gouillou C,, Hamelin MH,, Demattei MV,, Periquet M,, Bigot Y . 2001. The wild-type conformation of the Mos-1 inverted terminal repeats is suboptimal for transposition in bacteria. Mol Genet Genomics 265 : 51 57.[PubMed] [CrossRef]
112. Zhang L,, Dawson A,, Finnegan DJ . 2001. DNA-binding activity and subunit interaction of the mariner transposase. Nucl Acids Res 29 : 3566 3575.[PubMed] [CrossRef]
113. Bainton RJ,, Kubo KM,, Feng JN,, Craig NL . 1993. Tn7 transposition: Target DNA recognition is mediated by multiple Tn7-encoded proteins in a purified in vitro system. Cell 72 : 931 943.[PubMed] [CrossRef]
114. Skelding Z,, Sarnovsky R,, Craig NL . 2002. Formation of a nucleoprotein complex containing Tn 7 and its target DNA regulates transposition initiation. EMBO J 21 : 3494 3504.[PubMed] [CrossRef]
115. Holder JW,, Craig NL . 2010. Architecture of the Tn 7 posttransposition complex: an elaborate nucleoprotein structure. J Mol Biol 401 : 167 181.[PubMed] [CrossRef]
116. Kim YJ,, Hice RH,, O’Brochta DA,, Atkinson PW . 2011. DNA sequence requirements for hobo transposable element transposition in Drosophila melanogaster . Genetica 139 : 985 997.[PubMed] [CrossRef]
117. Ivics Z,, Hackett PB,, Plasterk RH,, Izsvák Z . 1997. Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91 : 501 510.[PubMed] [CrossRef]
118. Izsvák Z,, Khare D,, Behlke J,, Heinemann U,, Plasterk RH,, Ivics Z . 2002. Involvement of a bifunctional, paired-like DNA-binding domain and a transpositional enhancer in Sleepy Beauty transposition. J Biol Chem 277 : 34581 34588.[PubMed] [CrossRef]
119. Lohe AR,, Hartl DL . 1996. Autoregulation of mariner transposase activity by overproduction and dominant-negative complementation. Mol Biol Evol 13 : 549 555.[PubMed] [CrossRef]
120. Waddell CS,, Craig NL . 1989. Tn 7 transposition: Recognition of the attTn7 target sequence. Proc Natl Acad Sci USA 86 : 3958 3962.[PubMed] [CrossRef]
121. Chakrabarti A,, Desai P,, Wickstrom E . 2004. Transposon Tn7 protein TnsD binding to Escherichia coli attTn7 DNA and its eukaryotic orthologs. Biochem 43 : 2941 2946.[PubMed] [CrossRef]
122. Peters JE,, Craig NL . 2001. Tn7: Smarter than we thought. Nature Rev Mol Cell Biol 2 : 806 814.[PubMed] [CrossRef]
123. Peters JE,, Craig NL . 2000. Tn7 transposes proximal to DNA double-strand breaks and into regions where chromosomal DNA replication terminates. Mol Cell 6 : 573 582.[PubMed] [CrossRef]
124. Parks AR,, Li Z,, Shi Q,, Owens RM,, Jin MM,, Peters JE . 2009. Transposition into replicating DNA occurs through interaction with the processivity factor. Cell 138 : 685 695.[PubMed] [CrossRef]
125. Plasterk RHA,, Izsvák Z,, Ivics Z . 1999. Resident aliens: the Tc1/ mariner superfamily of transposable elements. Trends Genet 15 : 326 332.[PubMed] [CrossRef]
126. Fraser MJ,, Cary L,, Boonvisudhi K,, Wang HH . 1995. Assay for movement of Lepidopteran transposon IFP2 in insect cells using a baculovirus genome as a target DNA. Virol 211 : 397 407.[PubMed] [CrossRef]
127. Linheiro RS,, Bergman CM . 2008. Testing the palindromic target site model for DNA transposon insertion using the Drosophila melanogaster P-element. Nucl Acids Res 36 : 6199 6208.[PubMed] [CrossRef]
128. Halling SM,, Kleckner N . 1982. A symmetrical six-base-pair target site sequence determines Tn10 insertion specificity. Cell 28 : 155 163.[PubMed] [CrossRef]
129. Davies CJ,, Hutchison CA III . 1995. Insertion site specificity of the transposon Tn3. Nucl Acids Res 23 : 507 514.[PubMed] [CrossRef]
130. Liao GC,, Rehm EJ,, Rubin GM . 2000. Insertion site preferences of the P transposable element in Drosophila melanogaster . Proc Natl Acad Sci USA 97 : 3347 3351.[PubMed] [CrossRef]
131. Shevchenko Y,, Bouffard GG,, Butterfield YSN,, Blakesley RW,, Hartley JL,, Young AC,, Marra MA,, Jones SJM,, Touchman JW,, Green ED . 2002. Systematic sequencing of cDNA clones using the transposon Tn5. Nucl Acids Res 30 : 2469 2477.[PubMed] [CrossRef]
132. Vigdal TJ,, Kaufman CD,, Izsvák Z,, Voytas DF,, Ivics Z . 2002. Common physical properties of DNA affecting target site selection of Sleeping Beauty and other Tc1/ mariner transposable elements. J Mol Biol 323 : 441 452.[PubMed] [CrossRef]
133. Manna D,, Deng S,, Breier AM,, Higgins NP . 2005. Bacteriophage Mu targets the trinucleotide sequence CGG. J Bacteriol 187 : 3586 3588.[PubMed] [CrossRef]
134. Liu S,, Yeh CT,, Ji T,, Ying K,, Wu H,, Tang HM,, Fu Y,, Nettleton D,, Schnable PS . 2009. Mu transposon insertion sites and meiotic recombination events co-localize with epigenetic marks for open chromatin across the maize genome. PLoS Genet 5 : e1000733. [PubMed] [CrossRef]
135. Woodard LE,, Li X,, Malani N,, Kaja A,, Hice RH,, Atkinson PW,, Bushman FD,, Craig NL,, Wilson MH . 2012. Comparative analysis of the recently discovered hAT transposon TcBuster in human cells. PLoS ONE 7 : e42666. [PubMed] [CrossRef]
136. Linheiro RS,, Bergman CM . 2012. Whole genome resequencing reveals natural target site preferences of transposable elements in Drosophila melanogaster . PLoS ONE 7 : e30008. [PubMed] [CrossRef]
137. Guo Y,, Park JM,, Cui B,, Humes E,, Gangadharan S,, Hung S,, FitzGerald PC,, Hoe KL,, Grewal SIS,, Craig NL,, Levin HL . 2013. Integration profiling of gene function with dense maps of transposon integration. Genetics 195 : 599 609.[PubMed] [CrossRef]
138. Kuduvalli PN,, Rao JE,, Craig NL . 2001. Target DNA structure plays a critical role in Tn 7 transposition. EMBO J 20 : 924 932.[PubMed] [CrossRef]
139. Pribil PA,, Haniford DB . 2003. Target DNA bending is an important specificity determinant in target site selection in Tn 10 transposition. J Mol Biol 330 : 247 259.[PubMed] [CrossRef]
140. Pflieger A,, Jaillet J,, Petit A,, Augé-Gouillou C,, Renault S . 2014. Target capture during Mos1 transposition. J Biol Chem 289 : 100 111.[PubMed] [CrossRef]
141. Cherepanov P,, Maertens GN,, Hare S . 2011. Structural insights into the retroviral DNA integration apparatus. Curr Opin Struct Biol 21 : 249 256.[PubMed] [CrossRef]
142. Sakai J,, Kleckner N . 1997. The Tn 10 synaptic complex can capture a target DNA only after transposon excision. Cell 89 : 205 214.[PubMed] [CrossRef]
143. Gradman RJ,, Ptacin JL,, Bhasin A,, Reznikoff WS,, Goryshin IY . 2008. A bifunctional DNA binding region in Tn 5 transposase. Mol Microbiol 67 : 528 540.[PubMed] [CrossRef]
144. Yusa K,, Zhou L,, Li MA,, Bradley A,, Craig NL . 2011. A hyperactive piggyBac transposase for mammalian applications. Proc Natl Acad Sci USA 108 : 1531 1536.[PubMed] [CrossRef]
145. Claeys Bouuaert C,, Chalmers RM . 2010. Gene therapy vectors: the prospects and potentials of the cut-and-paste transposons. Genetica 138 : 473 484.[PubMed] [CrossRef]
146. VandenDriessche T,, Ivics Z,, Izsvák Z,, Chuah MKL . 2009. Emerging potential of transposons for gene therapy and generation of induced pluripotent stem cells. Blood 114 : 1461 1468.[PubMed] [CrossRef]
147. Copeland NG,, Jenkins NA . 2010. Harnessing transposons for cancer gene discovery. Nature Rev Cancer 10 : 696 706.[PubMed] [CrossRef]
148. Adzuma K,, Mizuuchi K . 1988. Target immunity of Mu transposition reflects a differential distribution of Mu B protein. Cell 53 : 257 266.[PubMed] [CrossRef]
149. Greene EC,, Mizuuchi K . 2002. Target immunity during Mu DNA transposition: Transpososome assembly and DNA looping enhance MuA-mediated disassembly of the MuB target complex. Mol Cell 10 : 1367 1378.[PubMed] [CrossRef]
150. Stellwagen AE,, Craig NL . 1997. Avoiding self: two Tn 7-encoded proteins mediate target immunity in Tn 7 transposition. EMBO J 16 : 6823 6834.[PubMed] [CrossRef]
151. Lambin M,, Nicolas E,, Oger CA,, Nguyen N,, Prozzi D,, Hallet B . 2012. Separate structural and functional domains of Tn 4430 transposase contribute to target immunity. Mol Microbiol 83 : 805 820.[PubMed] [CrossRef]
152. Lavoie BD,, Chaconas G . 1993. Site-specific HU binding in the Mu transpososome: conversion of sequence-independent DNA-binding protein into a chemical nuclease. Genes Dev 7 : 2510 2519.[PubMed] [CrossRef]
153. Chalmers R,, Guhathakurta A,, Benjamin H,, Kleckner N . 1998. IHF modulation of Tn10 transposition: Sensory transduction of supercoiling status via a proposed protein/DNA molecular spring. Cell 93 : 897 908.[PubMed] [CrossRef]
154. Haniford DB . 2006. Transpososome dynamics and regulation in Tn10 transposition. Crit Rev Biochem Mol Biol 41 : 407 424.[PubMed] [CrossRef]
155. Whitfield CR,, Wardle SJ,, Haniford DB . 2009. The global bacterial regulator H-NS promotes transpososome formation and transposition in the Tn5 system. Nucl Acids Res 37 : 309 321.[PubMed] [CrossRef]
156. Liu D,, Haniford DB,, Chalmers RM . 2011. H-NS mediates the dissociation of a refractory protein-DNA complex during Tn 10/IS 10 transposition. Nucl Acids Res 39 : 6660 6668.[PubMed] [CrossRef]
157. Zayed H,, Izsvák Z,, Khare D,, Heinemann U,, Ivics Z . 2003. The DNA-bending protein HMGB1 is a cellular cofactor of Sleeping Beauty transposition. Nucl Acids Res 31 : 2313 2322.[PubMed] [CrossRef]
158. van Gent DC,, Hiom K,, Paull TT,, Gellert M . 1997. Stimulation of V(D)J cleavage by high mobility group proteins. EMBO J 16 : 2665 2670.[PubMed] [CrossRef]
159. Little AJ,, Corbett E,, Ortega F,, Schatz DG . 2013. Cooperative recruitment of HMGB1 during V(D)J recombination through interactions with RAG1 and DNA. Nucl Acids Res 41 : 3289 3301.[PubMed] [CrossRef]
160. Ton-Hoang B,, Pasternak C,, Siguier P,, Guynet C,, Hickman AB,, Dyda F,, Sommer S,, Chandler M . 2010. Single-stranded DNA transposition is coupled to host replication. Cell 142 : 398 408.[PubMed] [CrossRef]
161. Mennecier S,, Servant P,, Coste G,, Bailone A,, Sommer S . 2006. Mutagenesis via IS transposition in Deinococcus radiodurans . Mol Microbiol 59 : 317 325.[PubMed] [CrossRef]
162. Mendiola MV,, Bernales I,, de la Cruz F . 1994. Differential roles of the transposon termini in IS 91 transposition. Proc Natl Acad Sci USA 91 : 1922 1926.[PubMed] [CrossRef]
163. Garcillán-Barcia MP,, Bernales I,, Mendiola MV,, de la Cruz F . 2001. Single-stranded DNA intermediates in IS 91 rolling-circle transposition. Mol Microbiol 39 : 494 501.[PubMed] [CrossRef]
164. Kersulyte D,, Akopyants NS,, Clifton SW,, Roe BA,, Berg DE . 1998. Novel sequence organization and insertion specficity of IS 605 and IS 606: chimaeric transposable elements of Helicobacter pylori . Gene 223 : 175 186.[PubMed] [CrossRef]
165. Kersulyte D,, Velapatiño B,, Dailide G,, Mukhopadhyay AK,, Ito Y,, Cahuayme L,, Parkinson AJ,, Gilman RH,, Berg DE . 2002. Transposable element IS Hp608 of Helicobacter pylori: Nonrandom geographic distribution, functional organization, and insertion specificity. J Bacteriol 184 : 992 1002.[PubMed] [CrossRef]
166. Pennisi E . 2013. The CRISPR craze. Science 341 : 833 836.[PubMed] [CrossRef]
167. Garcillán-Barcia MP,, de la Cruz F . 2002. Distribution of IS 91 family insertion sequences in bacterial genomes: evolutionary implications. FEMS Microbiol Ecol 42 : 303 313.[PubMed] [CrossRef]
168. Guynet C,, Achard A,, Ton-Hoang B,, Barabas O,, Hickman AB,, Dyda F,, Chandler M . 2009. Resetting the site: Redirecting integration of an insertion sequence in a predictable way. Mol Cell 34 : 612 619.[PubMed] [CrossRef]
169. Du C,, Fefelova N,, Caronna J,, He L,, Dooner HK . 2009. The polychromatic Helitron landscape of the maize genome. Proc Natl Acad Sci USA 106 : 19916 19921.[PubMed] [CrossRef]
170. Yang L,, Bennetzen JL . 2009. Distribution, diversity, evolution, and survival of Helitrons in the maize genome. Proc Natl Acad Sci USA 106 : 19922 19927.[PubMed] [CrossRef]
171. Hagemann AT,, Craig NL . 1993. Tn 7 transposition creates a hotspot for homologous recombination at the transposon donor site. Genetics 133 : 9 16.[PubMed]
172. Jang S,, Sandler SJ,, Harshey RM . 2012. Mu insertions are repaired by the double-strand break repair pathway of Escherichia coli . PLoS Genet 8 : e1002642. [PubMed] [CrossRef]
173. McBlane JF,, van Gent DC,, Ramsden DA,, Romeo C,, Cuomo CA,, Gellert M,, Oettinger MA . 1995. Cleavage at a V(D)J recombination signal requires only RAG1 and RAG2 proteins and occurs in two steps. Cell 83 : 387 395.[PubMed] [CrossRef]
174. Ma Y,, Pannicke U,, Schwarz K,, Lieber MR . 2002. Hairpin opening and overhang processing by an Artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination. Cell 108 : 781 794.[PubMed] [CrossRef]
175. Malu S,, Malshetty V,, Francis D,, Cortes P . 2012. Role of non-homologous end joining in V(D)J recombination. Immunol Res 54 : 233 246.[PubMed] [CrossRef]
176. Beall EL,, Rio DC . 1996. Drosophila IRBP/Ku p70 corresponds to the mutagen-sensitive mus309 gene and is involved in P-element excision in vivo. Genes Dev 10 : 921 933.[PubMed] [CrossRef]
177. Mhammedi-Alaoui A,, Pato M,, Gama MJ,, Toussaint A . 1994. A new component of bacteriophage Mu replicative transposition machinery: the Escherichia coli ClpX protein. Mol Microbiol 11 : 1109 1116.[PubMed] [CrossRef]
178. Abdelhakim AH,, Sauer RT,, Baker TA . 2010. The AAA+ ClpX machine unfolds a keystone subunit to remodel the Mu transpososome. Proc Natl Acad Sci USA 107 : 2437 2442.[PubMed] [CrossRef]
179. Kruklitis R,, Welty DJ,, Nakai H . 1996. ClpX protein of Escherichia coli activates bacteriophage Mu transposase in the strand transfer complex for initiation of Mu DNA synthesis. EMBO J 15 : 935 944.[PubMed]
180. Burton BM,, Baker TA . 2003. Mu transpososome architecture ensures that unfolding by ClpX or proteolysis by ClpXP remodels but does not destroy the complex. Chem Biol 10 : 463 472.[PubMed] [CrossRef]
181. Gibb B,, Gupta K,, Ghosh K,, Sharp R,, Chen J,, Van Duyne GD . 2010. Requirements for catalysis in the Cre recombinase active site. Nucl Acids Res 38 : 5817 5832.[PubMed] [CrossRef]
182. Marmignon A,, Bischerour J,, Silve A,, Fojcik C,, Dubois E,, Arnaiz O,, Kapusta A,, Malinsky S,, Betermier M . 2014. Ku-mediated coupling of DNA cleavage and repair during programmed genome rearrangements in the ciliate Paramecium tetraurelia. PLoS Genet 10 : e1004552. [PubMed] [CrossRef]


Generic image for table
Table 1

Examples of proteins containing the four types of nuclease catalytic domains found in DNA transposases and other enzymes that rearrange DNA

Citation: Hickman A, Dyda F. 2015. Mechanisms of DNA Transposition, p 531-553. In Craig N, Chandler M, Gellert M, Lambowitz A, Rice P, Sandmeyer S (ed), Mobile DNA III. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MDNA3-0034-2014

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error