Chapter 30 : Tn7

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Tn7, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819217/9781555819200_Chap30-1.gif /docserver/preview/fulltext/10.1128/9781555819217/9781555819200_Chap30-2.gif


The bacterial transposon Tn7 is distinguished by the levels of control it displays over when and where it directs transposition and its capacity to utilize different kinds of target sites. Over the 10 years since the second edition of Mobile DNA there have been many advances in our understanding of Tn7 ( ). This chapter focuses on new findings since the previous edition and on areas not covered in other review articles on Tn7 ( ). One significant finding over the past 10 years is the appreciation of the dissemination of Tn7, and related elements called Tn7-like elements that contain homologs of the Tn7 transposition proteins, in highly diverged bacteria adapted to a remarkable number of different environments ( ). The success of these elements very likely stems from the control they have over the targets they select. The well-studied canonical Tn7 element stands as an important model system for understanding the regulation of transposition and provides insight into how Tn7-like elements and more-distantly related elements may function.

Citation: Peters J. 2015. Tn7, p 647-667. In Craig N, Chandler M, Gellert M, Lambowitz A, Rice P, Sandmeyer S (ed), Mobile DNA III. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MDNA3-0010-2014
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Tn7 encodes two pathways that recognize different types of target site. One pathway is directed by the TnsABC+TnsD proteins and directs insertions into a single site, called , found in bacteria. Insertion into the site does not appear to harm the bacterial host and likely maximizes vertical transmission of the element. A second pathway directed by the TnsABC+TnsE proteins directs insertions into plasmids capable of mobilizing between bacteria when they enter the host. Insertion into mobile plasmids probably facilitates the horizontal transfer of the element. Neither pathway is likely to inactivate host genes. The positions of the five Tn7 genes required for transposition, , and , are shown including the “Variable region” that contains genes likely to benefit the element and/or the bacterial host. The right and left ends are indicated with black triangles and showing the layout of the seven 22-bp TnsB binding sites with black arrows.

Citation: Peters J. 2015. Tn7, p 647-667. In Craig N, Chandler M, Gellert M, Lambowitz A, Rice P, Sandmeyer S (ed), Mobile DNA III. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MDNA3-0010-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Mechanisms of DNA transposition. Canonical cut-and-paste transposition involves two separate reactions (left side). Canonical replicative transposition involves a direct joining reaction to the target DNA and extensive DNA replication, often along with resolution of a co-integrate (right side). Tn7 utilizes a heteromeric transposase that is capable of directly joining the broken ends of the element to a target DNA, but does not require extensive processing after transposition because it has a second protein, the TnsA endonuclease (center). The rectangle indicates the transposon element and the triangles indicate the -acting sequences at the ends of the element. (See the text for details.)

Citation: Peters J. 2015. Tn7, p 647-667. In Craig N, Chandler M, Gellert M, Lambowitz A, Rice P, Sandmeyer S (ed), Mobile DNA III. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MDNA3-0010-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

The relationship between the positions of Tns-protein and host-protein binding relative to the point of insertion and the orientation of the element. In TnsABC+TnsD-mediated transposition into the site, TnsD binds to the very C-terminal coding region of the gene (not shown). Two host proteins, ACP and L29, help in this binding reaction (cross-hatched ovals). Approximately 25 TnsATnsB complexes are recruited to the site by TnsD, which appear to encompass a region across both sides of the point of insertion. Based on the findings with TnsD and the TnsABC+TnsE reaction, a plausible model for TnsE-mediated targeting of the lagging-strand template during DNA replication has the protein to the left of the point of insertion and the orientation of the element. TnsE interacts with the 3′ recessed end structure and the sliding clamp processivity factor protein (cross-hatched ring). TnsE may recruit a similar array of TnsATnsB complexes as found with the TnsABC+TnsD complexes.

Citation: Peters J. 2015. Tn7, p 647-667. In Craig N, Chandler M, Gellert M, Lambowitz A, Rice P, Sandmeyer S (ed), Mobile DNA III. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MDNA3-0010-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

The relevant features of the Tns proteins of Tn7 and their total length. TnsA encodes a conserved N-terminal catalytic domain [77 to 168 amino acids (aa)] as indicated and the amino acids that coordinate the metal are shown (E63, D114, and K132). The conserved C-terminal region of TnsA is shown (170 to 248 aa) as is the region that interacts with TnsB, TnsC, and DNA. TnsB encodes a conserved catalytic domain (266 to 406 aa) and the amino acids that coordinate the metal are shown (D273, D361, and E396). The regions of TnsB that interact with TnsA (440 to 480 aa) and TnsC (662 to 702 aa) are indicated. TnsC contains a conserved domain from the AAA family (126 to 281 aa). The 1 to 293 region of TnsC interacts with TnsD and the 504 to 555 region of TnsC interacts with TnsA. TnsD has a CCCH zinc finger motif (C124, C127, C152, H155) and the region 1 to 309 interacts with TnsC. TnsE contains a sliding clamp interacting motif 121 to 131 aa and may generally act with DnaN across the N-terminus of the protein and DNA with the C-terminus of the protein based on TnsE gain-of-activity and loss-of-activity mutations. (See the text for details.)

Citation: Peters J. 2015. Tn7, p 647-667. In Craig N, Chandler M, Gellert M, Lambowitz A, Rice P, Sandmeyer S (ed), Mobile DNA III. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MDNA3-0010-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

The TnsABC+D pathway directs transposition between and a downstream gene. The downstream genes will differ by the particular genus and species (shown as and ) (A). The TnsD protein recognizes sequences in and directs insertions in one orientation at a single position downstream of and this insertion will have the 5-bp target-site duplication (TSD) associated with this element (B). Additional Tn7-like elements that have diverged from the others can insert in series and can accumulate with new elements always inserting proximal to at the exact same position and with the same target-site duplication (C). Over time the elements will pick up inactivating mutations and deletions that will contribute to the element eroding leading to a mix of functional and nonfunctional elements (D). Genomic islands can result when the transposase genes and ends are lost, but highly selected genes still reside in the site (E). (See the text for details.)

Citation: Peters J. 2015. Tn7, p 647-667. In Craig N, Chandler M, Gellert M, Lambowitz A, Rice P, Sandmeyer S (ed), Mobile DNA III. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MDNA3-0010-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Target immunity inhibits addition copies of the element from occurring in the same site or region where one already exists. The target immunity process is mediated by the Tn7 proteins TnsA, TnsB, and TnsC. TnsB that is bound to the ends of the element, and presumably therefore at a higher concentration in this region, will not allow TnsC to form a productive target complex with TnsD and TnsE. This behavior is modeled to redistribute active TnsC to other sites where stable complexes can form with TnsA and the target-site selection proteins. (See the text for details.)

Citation: Peters J. 2015. Tn7, p 647-667. In Craig N, Chandler M, Gellert M, Lambowitz A, Rice P, Sandmeyer S (ed), Mobile DNA III. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MDNA3-0010-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

Comparison of various transposable elements. Representative transposons that utilize a transposase regulator protein (TnsC/TniB). The Tn5090/Tn5350 element undergoes replicative transposition where a resolvase (TniR) is used to resolve co-integrates at the site after transposition and replication of the element. Tn5090/Tn5350 is compared with the known or putative heteromeric transposase elements Tn7, Tn6022, and Tn6230. (See the text for details.)

Citation: Peters J. 2015. Tn7, p 647-667. In Craig N, Chandler M, Gellert M, Lambowitz A, Rice P, Sandmeyer S (ed), Mobile DNA III. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MDNA3-0010-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8
Figure 8

Phylogenetic tree of TnsA endonuclease transposase found with putative heteromeric transposase elements indicated by their host with Tn7, Tn6230, and a Tn6022 derivative (Tn6022) also indicated. A MUSCLE alignment file of extracted TnsA N-domain sequences ( (PF08722) with eight iterations was used to build the tree using the Jukes-Cantor genetic distance model and a Neighbor-Joining tree-building method ( ) using the following sequences: ATCC 33020 (AAC21667) ( ), ATCC 53993 (YP_002220549), sp. JS42 (WP_011804647), AYE (WP_012300781) ( ), subsp. salmonicida A449 (WP_005317426) ( ), ATCC10987 (WP_001129185) ( ), DAR 81934 pNB4711 (WP_017762552) ( ), DSM 11498 (WP_018123630), Tn7 ( ), LMG 21857 (WP_007103512), sp. HTCC2999 (WP_010179396), DSM 17046 (WP_020406004), L2TR (WP_011235836) ( ), 9715 (WP_009116837), DSM 2380 (WP_011339779) ( ), pv. tabaci str. 6605 (WP_016981931 pv. Maculicola str. ES4326 (WP_007247747), sp. A13L (WP_008897114) ( ), 2-40 (WP_011466674) ( ), subsp. enterica serovar Senftenberg str. A4-543 (EHC89275) ( ), OS155 (WP_011848289) ( ), and SH04 (WP_008315655). (See the text for details.)

Citation: Peters J. 2015. Tn7, p 647-667. In Craig N, Chandler M, Gellert M, Lambowitz A, Rice P, Sandmeyer S (ed), Mobile DNA III. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MDNA3-0010-2014
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Craig NL, . 2002. Tn7, p 423 456. In Craig NL,, Craigie R,, Gellert M,, Lambowitz AM (ed), Mobile DNA II. ASM Press, Washington, DC.
2. Li Z,, Craig NL,, Peters JE, . 2012. Transposon Tn7, p 1 32. In Roberts A,, Mullany P (ed), Bacterial Integrative Mobile Genetic Elements. Landes Bioscience, Austin, TX.
3. Parks AR,, Peters JE . 2009. Tn7 elements: engendering diversity from chromosomes to episomes. Plasmid 61 : 1 14.[PubMed] [CrossRef]
4. Peters JE,, Craig NL . 2001. Tn7: smarter than we thought. Nat Rev Mol Cell Biol 2 : 806 814.[PubMed] [CrossRef]
5. Parks AR,, Peters JE . 2007. Transposon Tn7 is widespread in diverse bacteria and forms genomic islands. J Bacteriol 189 : 2170 2173.[PubMed] [CrossRef]
6. Mitra R,, McKenzie GJ,, Yi L,, Lee CA,, Craig NL . 2010. Characterization of the TnsD- attTn7 complex that promotes site-specific insertion of Tn7 . Mobile DNA 1 : 18. [PubMed] [CrossRef]
7. Gringauz E,, Orle K,, Orle A,, Waddell CS,, Craig NL . 1988. Recognition of Escherichia coliattTn7 by transposon Tn7: lack of specific sequence requirements at the point of Tn7 insertion. J Bacteriol 170 : 2832 2840.[PubMed]
8. McKown RL,, Orle KA,, Chen T,, Craig NL . 1988. Sequence requirements of Escherichia coli attTn7, a specific site of transposon Tn7 insertion. J Bacteriol 170 : 352 358.[PubMed]
9. Lichtenstein C,, Brenner S . 1982. Unique insertion site of Tn7 in E. coli chromosome. Nature 297 : 601 603.[PubMed] [CrossRef]
10. Wolkow CA,, DeBoy RT,, Craig NL . 1996. Conjugating plasmids are preferred targets for Tn7. Genes Dev 10 : 2145 2157.[PubMed] [CrossRef]
11. Waddell CS,, Craig NL . 1988. Tn7 transposition: two transposition pathways directed by five Tn7-encoded genes. Genes Dev 2 : 137 149.[PubMed] [CrossRef]
12. Sarnovsky R,, May EW,, Craig NL . 1996. The Tn7 transposase is a heteromeric complex in which DNA breakage and joining activities are distributed between different gene products. EMBO J 15 : 6348 6361.[PubMed]
13. Gary PA,, Biery MC,, Bainton RJ,, Craig NL . 1996. Multiple DNA processing reactions underlie Tn7 transposition. J Mol Biol 257 : 301 316.[PubMed] [CrossRef]
14. May EW,, Craig NL . 1996. Switching from cut-and-paste to replicative Tn7 transposition. Science 272 : 401 404.[PubMed] [CrossRef]
15. Hickman AB,, Li L,, Mathew SV,, May EW,, Craig NL,, Dyda F . 2000. Unexpected structural diversity in DNA recombination: the restriction endonuclease connection. Mol Cell 5 : 1025 1034.[PubMed] [CrossRef]
16. Haren L,, Ton-Hoang B,, Chandler M . 1999. Integrating DNA: transposases and retroviral integrases. Annu Rev Microbiol 53 : 245 281.[PubMed] [CrossRef]
17. Hickman AB,, Chandler M,, Dyda F . 2010. Integrating prokaryotes and eukaryotes: DNA transposases in light of structure. Crit Rev Biochem Mol Biol 45 : 50 69.[PubMed] [CrossRef]
18. Arciszewska LK,, Craig NL . 1991. Interaction of the Tn7-encoded transposition protein TnsB with the ends of the transposon. Nucleic Acids Res 19 : 5021 5029.[PubMed] [CrossRef]
19. Arciszewska LK,, McKown RL,, Craig NL . 1991. Purification of TnsB, a transposition protein that binds to the ends of Tn7. J Biol Chem 266 : 21736 21744.[PubMed]
20. Bainton R,, Gamas P,, Craig NL . 1991. Tn7 transposition in vitro proceeds through an excised transposon intermediate generated by staggered breaks in DNA. Cell 65 : 805 816.[PubMed] [CrossRef]
21. Stellwagen A,, Craig NL . 1997. Gain-of-function mutations in TnsC, an ATP-dependent transposition protein which activates the bacterial transposon Tn7. Genetics 145 : 573 585.[PubMed]
22. Stellwagen AE,, Craig NL . 1998. Mobile DNA elements: controlling transposition with ATP-dependent molecular switches. Trends Biochem Sci 23 : 486 490.[PubMed] [CrossRef]
23. Barth PT,, Datta N,, Hedges RW,, Grinter NJ . 1976. Transposition of a deoxyribonucleic acid sequence encoding trimethoprim and streptomycin resistances from R483 to other replicons. J Bacteriol 125 : 800 810.[PubMed]
24. Barth P,, Datta N . 1977. Two naturally occurring transposons indistinguishable from Tn7. J Gen Microbiol 102 : 129 134.[PubMed] [CrossRef]
25. Hall RM,, Brookes DE,, Stokes HW . 1991. Site-specific insertion of genes into integrons: role of the 59-base element and determination of the recombination cross-over point. Mol Microbiol 5 : 1941 1959.[PubMed] [CrossRef]
26. Sundstrom L,, Roy PH,, Skold O . 1991. Site-specific insertion of three structural gene cassettes in transposon Tn7. J Gen Microbiol 173 : 3025 3028.[PubMed]
27. Bainton RJ,, Kubo KM,, Feng JN,, Craig NL . 1993. Tn7 transposition: target DNA recognition is mediated by multiple Tn7-encoded proteins in a purified in vitro system. Cell 72 : 931 943.[PubMed] [CrossRef]
28. Biery MC,, Steward F,, Stellwagen AE,, Raleigh EA,, Craig NL . 2000. A simple in vitro Tn7-based transposition system with low target site selectivity for genome and gene analysis. Nucleic Acids Res 28 : 1067 1077.[PubMed] [CrossRef]
29. Parks AR,, Li Z,, Shi Q,, Owens RM,, Jin MM,, Peters JE . 2009. Transposition into replicating DNA occurs through interaction with the processivity factor. Cell 138 : 685 695.[PubMed] [CrossRef]
30. Huisman O,, Kleckner N . 1987. A new generalizable test for detection of mutations affecting Tn10 transposition. Genetics 116 : 185 189.[PubMed]
31. Holder JW,, Craig NL . 2010. Architecture of the Tn7 posttransposition complex: an elaborate nucleoprotein structure. J Mol Biol 401 : 167 181.[PubMed] [CrossRef]
32. Rao JE,, Miller PS,, Craig NL . 2000. Recognition of triple-helical DNA structures by transposon Tn7. Proc Natl Acad Sci USA 97 : 3936 3941.[PubMed] [CrossRef]
33. Kuduvalli P,, Rao JE,, Craig NL . 2001. Target DNA structure plays a critical role in Tn7 transposition. EMBO J 20 : 924 932.[PubMed] [CrossRef]
34. Rao JE,, Craig NL . 2001. Selective recognition of pyrimidine motif triplexes by a protein encoded by the bacterial transposon Tn7. J Mol Biol 307 : 1161 1170.[PubMed] [CrossRef]
35. Choi KY,, Li Y,, Sarnovsky R,, Craig NL . 2013. Direct interaction between the TnsA and TnsB subunits controls the heteromeric Tn7 transposase. Proc Natl Acad Sci USA 110 : E2038 E2045.[PubMed] [CrossRef]
36. Kennedy A,, Guhathakurta A,, Kleckner N,, Haniford DB . 1998. Tn10 transposition via a DNA hairpin intermediate. Cell 95 : 125 134.[PubMed] [CrossRef]
37. Bhasin A,, Goryshin IY,, Reznikoff WS . 1999. Hairpin formation in Tn5 transposition. J Biol Chem 274 : 37021 37029.[PubMed] [CrossRef]
38. Roth DB,, Menetski JP,, Nakajima PB,, Bosma MJ,, Gellert M . 1992. V(D)J recombination: broken DNA molecules with covalently sealed (hairpin) coding ends in scid mouse thymocytes. Cell 70 : 983 981.[PubMed] [CrossRef]
39. Zhou L,, Mitra R,, Atkinson PW,, Hickman AB,, Dyda F,, Craig NL . 2004. Transposition of hAT elements links transposable elements and V(D)J recombination. Nature 432 : 995 1001.[PubMed] [CrossRef]
40. Bainton RJ,, Kubo KM,, Feng J-N,, Craig NL . 1993. Tn7 transposition: target DNA recognition is mediated by multiple Tn7-encoded proteins in a purified in vitro system. Cell 72 : 931 943.[PubMed] [CrossRef]
41. Wiegand TW,, Reznikoff WS . 1992. Characterization of two hypertransposing Tn5 mutants. J Gen Microbiol 174 : 1229 1239.[PubMed]
42. Lampe DJ,, Akerley BJ,, Rubin EJ,, Mekalanos JJ,, Robertson HM . 1999. Hyperactive transposase mutants of the Himar1 mariner transposon. Proc Natl Acad Sci USA 96 : 11428 11433.[PubMed] [CrossRef]
43. Beall EL,, Mahoney MB,, Rio DC . 2002. Identification and analysis of a hyperactive mutant form of Drosophila P-element transposase. Genetics 162 : 217 227.[PubMed]
44. Baus J,, Liu L,, Heggestad AD,, Sanz S,, Fletcher BS . 2005. Hyperactive transposase mutants of the Sleeping Beauty transposon. Mol Ther 12 : 1148 1156.[PubMed] [CrossRef]
45. Yusa K,, Zhou L,, Li MA,, Bradley A,, Craig NL . 2011. A hyperactive piggyBac transposase for mammalian applications. Proc Natl Acad Sci USA 108 : 1531 1536.[PubMed] [CrossRef]
46. Lazarow K,, Du M-L,, Weimer R,, Kunze R . 2012. A hyperactive transposase of the maize transposable element activator (Ac). Genetics 191 : 747 756.[PubMed] [CrossRef]
47. Deboy RT,, Craig NL . 2000. Target site selection by Tn7: attTn7 transcription and target activity. J Bacteriol 182 : 3310 3313.[PubMed] [CrossRef]
48. Skelding Z,, Sarnovsky R,, Craig NL . 2002. Formation of a nucleoprotein complex containing Tn7 and its target DNA regulates transposition initiation. EMBO J 21 : 3494 3504.[PubMed] [CrossRef]
49. Yanagihara K,, Mizuuchi K . 2003. Progressive structural transitions within Mu transpositional complexes. Mol Cell 11 : 215 224.[PubMed] [CrossRef]
50. Gueguen E,, Rousseau P,, Duval-Valentin G,, Chandler M . 2005. The transpososome: control of transposition at the level of catalysis. Trends Microbiol 13 : 543 549.[PubMed] [CrossRef]
51. Levchenko I,, Luo L,, Baker TA . 1995. Disassembly of the Mu transposase tetramer by the ClpX chaperone. Genes Dev 9 : 2399 2408.[PubMed] [CrossRef]
52. Steczkiewicz K,, Muszewska A,, Knizewski L,, Rychlewski L,, Ginalski K . 2012. Sequence, structure and functional diversity of PD-(D/E)XK phosphodiesterase superfamily. Nucleic Acids Res 40 : 7016 7045.[PubMed] [CrossRef]
53. Punta M,, Coggill PC,, Eberhardt RY,, Mistry J,, Tate J,, Boursnell C,, Pang N,, Forslund K,, Ceric G,, Clements J,, Heger A,, Holm L,, Sonnhammer ELL,, Eddy SR,, Bateman A,, Finn RD . 2012. The Pfam protein families database. Nucleic Acids Res 40 : D290 D301.[PubMed] [CrossRef]
54. Lu F,, Craig NL . 2000. Isolation and characterization of Tn7 transposase gain-of-function mutants: a model for transposase activation. EMBO J 19 : 3446 3457.[PubMed] [CrossRef]
55. Biery M,, Lopata M,, Craig NL . 2000. A minimal system for Tn7 transposition: the transposon-encoded proteins TnsA and TnsB can execute DNA breakage and joining reactions that generate circularized Tn7 species. J Mol Biol 297 : 25 37.[PubMed] [CrossRef]
56. Ronning DR,, Li Y,, Perez ZN,, Ross PD,, Hickman AB,, Craig NL,, Dyda F . 2004. The carboxy-terminal portion of TnsC activates the Tn7 transposase through a specific interaction with TnsA. EMBO J 23 : 2972 2981.[PubMed] [CrossRef]
57. Dyda F,, Hickman AB,, Jenkins TM,, Engelman A,, Craigie R,, Davies DR . 1994. Crystal structure of the catalytic domain of HIV-1 integrase: similarity to other polynucleotidyl transferases. Science 266 : 1981 1986.[PubMed] [CrossRef]
58. Skelding Z,, Queen-Baker J,, Craig NL . 2003. Alternative interactions between the Tn7 transposase and the Tn7 target DNA binding protein regulate target immunity and transposition. EMBO J 22 : 5904 5917.[PubMed] [CrossRef]
59. Wu Z,, Chaconas G . 1994. Characterization of a region in phage Mu transposase that is involved in interaction with the Mu B protein. J Biol Chem 269 : 28829 28833.[PubMed]
60. Levchenko I,, Yamauchi M,, Baker TA . 1997. ClpX and MuB interact with overlapping regions of Mu transposase: implications for control of the transposition pathway. Genes Dev 11 : 1561 1572.[PubMed] [CrossRef]
61. Stellwagen A,, Craig NL . 1997. Avoiding self: two Tn7-encoded proteins mediate target immunity in Tn7 transposition. EMBO J 16 : 6823 6834.[PubMed] [CrossRef]
62. Stellwagen AE,, Craig NL . 2001. Analysis of gain of function mutants of an ATP-dependent regulator of Tn7 transposition. J Mol Biol 305 : 633 642.[PubMed] [CrossRef]
63. Van Roey P,, Waddling CA,, Fox KM,, Belfort M,, Derbyshire V . 2001. Intertwined structure of the DNA-binding domain of intron endonuclease I-TevI with its substrate. EMBO J 20 : 3631 3637.[PubMed] [CrossRef]
64. Sharpe P,, Craig NL . 1998. Host proteins can stimulate Tn7 transposition: a novel role for the ribosomal protein L29 and the acyl carrier protein. EMBO J 17 : 5822 5831.[PubMed] [CrossRef]
65. McKenzie GJ,, Craig NL . 2006. Fast, easy and efficient: site-specific insertion of transgenes into enterobacterial chromosomes using Tn7 without need for selection of the insertion event. BMC Microbiol 6 : 39. [PubMed] [CrossRef]
66. Koch B,, Jensen LE,, Nybroe O . 2001. A panel of Tn7-based vectors for insertion of the gfp marker gene or for delivery of cloned DNA into Gram-negative bacteria at a neutral chromosomal site. J Microbiol Methods 45 : 187 195.[PubMed] [CrossRef]
67. Hahn G,, Jarosch M,, Wang JB,, Berbes C,, McVoy MA . 2003. Tn7-mediated introduction of DNA sequences into bacmid-cloned cytomegalovirus genomes for rapid recombinant virus construction. J Virol Methods 107 : 185 194.[PubMed] [CrossRef]
68. Berger I,, Fitzgerald DJ,, Richmond TJ . 2004. Baculovirus expression system for heterologous multiprotein complexes. Nat Biotechnol 22 : 1583 1587.[PubMed] [CrossRef]
69. Laitinen OH,, Airenne KJ,, Hytonen VP,, Peltomaa E,, Mahonen AJ,, Wirth T,, Lind MM,, Makela KA,, Toivanen PI,, Schenkwein D,, Heikura T,, Nordlund HR,, Kulomaa MS,, Yla-Herttuala S . 2005. A multipurpose vector system for the screening of libraries in bacteria, insect and mammalian cells and expression in vivo . Nucleic Acids Res 33 : e42. [PubMed] [CrossRef]
70. Choi KH,, Gaynor JB,, White KG,, Lopez C,, Bosio CM,, Karkhoff-Schweizer RR,, Schweizer HP . 2005. A Tn7-based broad-range bacterial cloning and expression system. Nat Methods 2 : 443 448.[PubMed] [CrossRef]
71. Crepin S,, Harel J,, Dozois CM . 2012. Chromosomal complementation using Tn7 transposon vectors in enterobacteriaceae. Appl Environ Microbiol 78 : 6001 6008.[PubMed] [CrossRef]
72. Damron FH,, McKenney ES,, Schweizer HP,, Goldberg JB . 2012. Construction of a broad-host-range Tn7-based vector for single-copy PBAD-controlled gene expression in Gram-negative bacteria. Appl Environ Microbiol 79 : 718 721.[PubMed] [CrossRef]
73. Richards CA,, Brown CE,, Cogswell JP,, Weiner MP . 2000. The admid system: generation of recombinant adenoviruses by Tn7-mediated transposition in E. coli . BioTechniques 29 : 146 154.[PubMed]
74. Sibley MH,, Raleigh EA . 2012. A versatile element for gene addition in bacterial chromosomes. Nucleic Acids Res 40 : e19. [PubMed] [CrossRef]
75. Kvitko BH,, McMillan IA,, Schweizer HP . 2013. An improved method for oriT-directed cloning and functionalization of large bacterial genomic regions. Appl Environ Microbiol 79 : 4869 4878.[PubMed] [CrossRef]
76. Kuduvalli PN,, Mitra R,, Craig NL . 2005. Site-specific Tn7 transposition into the human genome. Nucleic Acids Res 33 : 857 863.[PubMed] [CrossRef]
77. Kubo KM,, Craig NL . 1990. Bacterial transposon Tn7 utilizes two classes of target sites. J Bacteriol 172 : 2774 2778.[PubMed]
78. Finn JA,, Parks AR,, Peters JE . 2007. Transposon Tn7 directs transposition into the genome of filamentous bacteriophage M13 using the element-encoded TnsE protein. J Bacteriol 189 : 9122 9125.[PubMed] [CrossRef]
79. Peters JE,, Craig NL . 2000. Tn7 transposes proximal to DNA double-strand breaks and into regions where chromosomal DNA replication terminates. Mol Cell 6 : 573 582.[PubMed] [CrossRef]
80. Peters JE,, Craig NL . 2001. Tn7 recognizes target structures associated with DNA replication using the DNA binding protein TnsE. Genes Dev 15 : 737 747.[PubMed] [CrossRef]
81. Ton-Hoang B,, Pasternak C,, Siguier P,, Guynet C,, Hickman AB,, Dyda F,, Sommer S,, Chandler M . Single-stranded DNA transposition is coupled to host replication. Cell 142 : 398 408.[PubMed] [CrossRef]
82. Guynet C,, Hickman AB,, Barabas O,, Dyda F,, Chandler M,, Ton-Hoang B . 2008. In vitro reconstitution of a single-stranded transposition mechanism of IS608. Mol Cell 29 : 302 312.[PubMed] [CrossRef]
83. Hu WY,, Derbyshire KM . 1998. Target choice and orientation preference of the insertion sequence IS903. J Bacteriol 180 : 3039 3048.[PubMed]
84. Zhong J,, Lambowitz AM . 2003. Group II intron mobility using nascent strands at DNA replication forks to prime reverse transcription. EMBO J 22 : 4555 4565.[PubMed] [CrossRef]
85. Yu D,, Ellis HM,, Lee EC,, Jenkins NA,, Copeland NG,, Court DL . 2000. An efficient recombination system for chromosome engineering in Escherichia coli . Proc Natl Acad Sci USA 97 : 5978 5983.[PubMed] [CrossRef]
86. Datsenko KA,, Wanner BL . 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97 : 6640 6645.[PubMed] [CrossRef]
87. van Kessel JC,, Hatfull GF . 2008. Efficient point mutagenesis in mycobacteria using single-stranded DNA recombineering: characterization of antimycobacterial drug targets. Mol Microbiol 67 : 1094 1107.[PubMed] [CrossRef]
88. Fricker A,, Peters JE . 2014. Vulnerabilities on the lagging-stand template: opportunities for mobile elements. Ann Rev Genet 48, in press. [PubMed] [CrossRef]
89. Shi Q,, Parks AR,, Potter BD,, Safir IJ,, Luo Y,, Forster BM,, Peters JE . 2008. DNA damage differentially activates regional chromosomal loci for Tn7 transposition in Escherichia coli . Genetics 179 : 1237 1250.[PubMed] [CrossRef]
90. Hauer B,, Shapiro JA . 1984. Control of Tn7 transposition. Mol Gen Genet 194 : 149 158.[PubMed] [CrossRef]
91. Reyes I,, Beyou A,, Mignotte-Vieux C,, Richaud F . 1987. Mini-Mu transduction: cis-inhibition of the insertion of Mud transposons. Plasmid 18 : 183 192.[PubMed] [CrossRef]
92. Arciszewska LK,, Drake D,, Craig NL . 1989. Transposon Tn7 cis-acting sequences in transposition and transposition immunity. J Mol Biol 207 : 35 52.[PubMed] [CrossRef]
93. Robinson MK,, Bennett PM,, Richmond MH . 1977. Inhibition of TnA translocation by TnA. J Bacteriol 129 : 407 414.[PubMed]
94. Hagemann AT,, Craig NL . 1993. Tn7 transposition creates a hotspot for homologous recombination at the transposon donor site. Genetics 133 : 9 16.[PubMed]
95. Kholodii GYG,, Yurieva OVO,, Lomovskaya OLO,, Gorlenko ZZ,, Mindlin SZS,, Nikiforov VGV . 1993. Tn5053, a mercury resistance transposon with integron’s ends. J Mol Biol 230 : 1103 1107.[PubMed] [CrossRef]
96. Radstrom P,, Skold O,, Swedberg G,, Flensburg F,, Roy PH,, Sundstrom L . 1994. Transposon Tn5090 of plasmid R751, which carries an integron, is related to Tn7, Mu, and the retroelements. J Bacteriol 176 : 3257 3268.[PubMed]
97. Minakhina S,, Kholodii G,, Mindlin S,, Yurieva O,, Nikiforov V . 1999. Tn5053 family transposons are res site hunters sensing plasmidal res sites occupied by cognate resolvases. Mol Microbiol 33 : 1059 1068.[PubMed] [CrossRef]
98. Moreno Switt AI,, den Bakker HC,, Cummings CA,, Rodriguez-Rivera LD,, Govoni G,, Raneiri ML,, Degoricija L,, Brown S,, Hoelzer K,, Peters JE,, Bolchacova E,, Furtado MR,, Wiedmann M . 2012. Identification and characterization of novel Salmonella mobile elements involved in the dissemination of genes linked to virulence and transmission. PLoS One 7 : e41247. [PubMed] [CrossRef]
99. Ahmed SA,, Awosika J,, Baldwin C,, Bishop-Lilly KA,, Biswas B,, Broomall S,, Chain PSG,, Chertkov O,, Chokoshvili O,, Coyne S,, Davenport K,, Detter JC,, Dorman W,, Erkkila TH,, Folster JP,, Frey KG,, George M,, Gleasner C,, Henry M,, Hill KK,, Hubbard K,, Insalaco J,, Johnson S,, Kitzmiller A,, Krepps M,, Lo C-C,, Luu T,, McNew LA,, Minogue T,, Munk CA,, Osborne B,, Patel M,, Reitenga KG,, Rosenzweig CN,, Shea A,, Shen X,, Strockbine N,, Tarr C,, Teshima H,, van Gieson E,, Verratti K,, Wolcott M,, Xie G,, Sozhamannan S,, Gibbons HS , Threat Characterization C . 2012. Genomic comparison of Escherichia coli O104:H4 isolates from 2009 and 2011 reveals plasmid, and prophage heterogeneity, including shiga toxin encoding phage stx2. PloS One 7 : e48228. [PubMed] [CrossRef]
100. Touchon M,, Hoede C,, Tenaillon O,, Barbe V,, Baeriswyl S,, Bidet P,, Bingen E,, Bonacorsi S,, Bouchier C,, Bouvet O,, Calteau A,, Chiapello H,, Clermont O,, Cruveiller S,, Danchin A,, Diard M,, Dossat C,, Karoui ME,, Frapy E,, Garry L,, Ghigo JM,, Gilles AM,, Johnson J,, Le Bouguenec C,, Lescat M,, Mangenot S,, Martinez-Jehanne V,, Matic I,, Nassif X,, Oztas S,, Petit MA,, Pichon C,, Rouy Z,, Ruf CS,, Schneider D,, Tourret J,, Vacherie B,, Vallenet D,, Medigue C,, Rocha EPC,, Denamur E . 2009. Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genetics 5 : e1000344. [PubMed] [CrossRef]
101. Kucerova E,, Clifton SW,, Xia X-Q,, Long F,, Porwollik S,, Fulton L,, Fronick C,, Minx P,, Kyung K,, Warren W,, Fulton R,, Feng D,, Wollam A,, Shah N,, Bhonagiri V,, Nash WE,, Hallsworth-Pepin K,, Wilson RK,, McClelland M,, Forsythe SJ . 2010. Genome sequence of Cronobacter sakazakii BAA-894 and comparative genomic hybridization analysis with other Cronobacter species. PloS One 5 : e9556. [PubMed] [CrossRef]
102. Kholodii GY,, Mindlin SZ,, Bas IA,, Yurieva OV,, Minakhina SV,, Nikiforov VG . 1995. Four genes, two ends, and a res region are involved in transposition of Tn5053: a paradigm for a novel family of transposons carrying either a mer operon or an integron. Mol Microbiol 17 : 1189 1200.[PubMed] [CrossRef]
103. Lewis K . 2010. Persister cells. Annu Rev Microbiol 64 : 357 372.[PubMed] [CrossRef]
104. Johnson TJ,, Wannemeuhler YM,, Scaccianoce JA,, Johnson SJ,, Nolan LK . 2006. Complete DNA sequence, comparative genomics, and prevalence of an IncHI2 plasmid occurring among extraintestinal pathogenic Escherichia coli isolates. Antimicrob Agents Chemother 50 : 3929 3933.[PubMed] [CrossRef]
105. Gilmour MW,, Thomson NR,, Sanders M,, Parkhill J,, Taylor DE . 2004. The complete nucleotide sequence of the resistance plasmid R478: defining the backbone components of incompatibility group H conjugative plasmids through comparative genomics. Plasmid 52 : 182 202.[PubMed] [CrossRef]
106. Fournier P-E,, Vallenet D,, Barbe V,, Audic S,, Ogata H,, Poirel L,, Richet H,, Robert C,, Mangenot S,, Abergel C,, Nordmann P,, Weissenbach J,, Raoult D,, Claverie J-M . 2006. Comparative genomics of multidrug resistance in Acinetobacter baumannii . PLoS Genet 2 : e7. [PubMed] [CrossRef]
107. Rose A . 2010. TnAbaR1: a novel Tn7-related transposon in Acinetobacter baumannii that contributes to the accumulation and dissemination of large repertoires of resistance genes. Biosci Horizons 3 : 40 48.[CrossRef]
108. Adams MD,, Goglin K,, Molyneaux N,, Hujer KM,, Lavender H,, Jamison JJ,, MacDonald IJ,, Martin KM,, Russo T,, Campagnari AA,, Hujer AM,, Bonomo RA,, Gill SR . 2008. Comparative genome sequence analysis of multidrug-resistant Acinetobacter baumannii . J Bacteriol 190 : 8053 8064.[PubMed] [CrossRef]
109. Farrugia DN,, Elbourne LDH,, Hassan KA,, Eijkelkamp BA,, Tetu SG,, Brown MH,, Shah BS,, Peleg AY,, Mabbutt BC,, Paulsen IT . 2013. The complete genome and phenome of a community- acquired Acinetobacter baumannii . PLoS One 8 : e58628. [PubMed] [CrossRef]
110. Lee H-Y,, Chang R-C,, Su L-H,, Liu S-Y,, Wu S-R,, Chuang C-H,, Chen C-L,, Chiu C-H . 2012. Wide spread of Tn2006 in an AbaR4-type resistance island among carbapenem-resistant Acinetobacter baumannii clinical isolates in Taiwan. Int J Antimicrob Agents 40 : 163 167.[PubMed] [CrossRef]
111. Hamidian M,, Hall RM . 2011. AbaR4 replaces AbaR3 in a carbapenem-resistant Acinetobacter baumannii isolate belonging to global clone 1 from an Australian hospital. J Antimicrob Chemother 66 : 2484 2491.[PubMed] [CrossRef]
112. Jukes TH,, Cantor CR . 1969. Evolution of Protein Molecules. Academic Press, New York.
113. Saitou N,, Nei M . 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4 : 406 425.[PubMed]
114. Edgar RC . 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32 : 1792 1797.[PubMed] [CrossRef]
115. Oppon JC,, Sarnovsky RJ,, Craig NL,, Rawlings DE . 1998. A Tn7-like transposon is present in the glmUS region of the obligately hemoautolithotrophic bacterium Thiobacillus ferrooxidans . J Bacteriol 180 : 3007 3012.[PubMed]
116. Vallenet D,, Nordmann P,, Barbe V,, Poirel L,, Mangenot S,, Bataille E,, Dossat C,, Gas S,, Kreimeyer A,, Lenoble P,, Oztas S,, Poulain J,, Segurens B,, Robert C,, Abergel C,, Claverie J-M,, Raoult D,, Médigue C,, Weissenbach J,, Cruveiller S . 2008. Comparative analysis of Acinetobacters: three genomes for three lifestyles. PLoS One 3 : e1805. [PubMed]
117. Reith ME,, Singh RK,, Curtis B,, Boyd JM,, Bouevitch A,, Kimball J,, Munholland J,, Murphy C,, Sarty D,, Williams J,, Nash JH,, Johnson SC,, Brown LL . 2008. The genome of Aeromonas salmonicida subsp. salmonicida A449: insights into the evolution of a fish pathogen. BMC Genomics 9 : 427. [PubMed] [CrossRef]
118. Rasko DA,, Ravel J,, Okstad OA,, Helgason E,, Cer RZ,, Jiang L,, Shores KA,, Fouts DE,, Tourasse NJ,, Angiuoli SV,, Kolonay J,, Nelson WC,, Kolsto AB,, Fraser CM,, Read TD . 2004. The genome sequence of Bacillus cereus ATCC 10987 reveals metabolic adaptations and a large plasmid related to Bacillus anthracis pXO1. Nucleic Acids Res 32 : 977 988.[PubMed] [CrossRef]
119. Wang A,, Pattemore J,, Ash G,, Williams A,, Hane J . 2013. Draft genome sequence of Bacillus thuringiensis strain DAR 81934, which exhibits molluscicidal activity. Genome Announc 1 : e0017512. [PubMed] [CrossRef]
120. Flores C,, Qadri MI,, Lichtenstein C . 1990. DNA sequence analysis of five genes; tnsA, B, C, D and E, required for Tn7 transposition. Nucleic Acids Res 18 : 901 911.[PubMed] [CrossRef]
121. Hou S,, Saw JH,, Lee KS,, Freitas TA,, Belisle C,, Kawarabayasi Y,, Donachie SP,, Pikina A,, Galperin MY,, Koonin EV,, Makarova KS,, Omelchenko MV,, Sorokin A,, Wolf YI,, Li QX,, Keum YS,, Campbell S,, Denery J,, Aizawa S,, Shibata S,, Malahoff A,, Alam M . 2004. Genome sequence of the deep-sea gamma-proteobacterium Idiomarina loihiensis reveals amino acid fermentation as a source of carbon and energy. Proc Natl Acad Sci USA 101 : 18036 18041.[PubMed] [CrossRef]
122. Aklujkar M,, Haveman SA,, DiDonato R Jr,, Chertkov O,, Han CS,, Land ML,, Brown P,, Lovley DR . 2012. The genome of Pelobacter carbinolicus reveals surprising metabolic capabilities and physiological features. BMC Genomics 13 : 690. [PubMed] [CrossRef]
123. Gupta HK,, Gupta RD,, Singh A,, Chauhan NS,, Sharma R . 2011. Genome sequence of Rheinheimera sp. strain A13L, isolated from Pangong Lake, India. J Bacteriol 193 : 5873 5874.[PubMed] [CrossRef]
124. Weiner RM,, Taylor LE 2nd,, Henrissat B,, Hauser L,, Land M,, Coutinho PM,, Rancurel C,, Saunders EH,, Longmire AG,, Zhang H,, Bayer EA,, Gilbert HJ,, Larimer F,, Zhulin IB,, Ekborg NA,, Lamed R,, Richardson PM,, Borovok I,, Hutcheson S . 2008. Complete genome sequence of the complex carbohydrate-degrading marine bacterium, Saccharophagus degradans strain 2-40 T. PLoS Genet 4 : e1000087. [PubMed] [CrossRef]
125. den Bakker HC,, Moreno Switt AI,, Govoni G,, Cummings CA,, Ranieri ML,, Degoricija L,, Hoelzer K,, Rodriguez-Rivera LD,, Brown S,, Bolchacova E,, Furtado MR,, Wiedmann M . 2011. Genome sequencing reveals diversification of virulence factor content and possible host adaptation in distinct subpopulations of Salmonella enterica . BMC Genomics 12 : 425. [PubMed] [CrossRef]
126. Caro-Quintero A,, Auchtung J,, Deng J,, Brettar I,, Hofle M,, Tiedje JM,, Konstantinidis KT . 2012. Genome sequencing of five Shewanella baltica strains recovered from the oxic-anoxic interface of the Baltic Sea. J Bacteriol 194 : 1236. [PubMed] [CrossRef]

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error