1887

Chapter 50 : Site-specific non-LTR retrotransposons

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Site-specific non-LTR retrotransposons, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555819217/9781555819200_Chap50-1.gif /docserver/preview/fulltext/10.1128/9781555819217/9781555819200_Chap50-2.gif

Abstract:

DNA transposons are the mobile elements that move by a “cut and paste” mechanism ( ). In contrast, retrotransposons encode reverse transcriptase, and move by a “copy and paste” mechanism. The process of retrotransposon insertion into genomic locations involves an RNA intermediate. Retrotransposons can be classified into long terminal repeat (LTR) and non-LTR retrotransposons. LTR retrotransposons have LTRs at both ends and resemble retroviruses in both structure and integration mechanisms. Non-LTR retrotransposons comprise two subtypes, long interspersed nuclear elements (LINEs) and short interspersed nuclear elements (SINEs). Non-LTR retrotransposons are in general 4 to 7 kb long and do not carry LTRs, and their retrotransposition mechanism is different from that of LTR retrotransposons. SINEs are nonautonomous retrotransposons of 100 to 500 bp that do not encode proteins. It has been proposed that the proteins encoded by LINEs are the source of the enzymatic retrotransposition machinery of SINEs ( ).

Citation: Fujiwara H. 2015. Site-specific non-LTR retrotransposons, p 1147-1163. In Craig N, Chandler M, Gellert M, Lambowitz A, Rice P, Sandmeyer S (ed), Mobile DNA III. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MDNA3-0001-2014
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Two types of genomic insertion of non-LTR elements.

Citation: Fujiwara H. 2015. Site-specific non-LTR retrotransposons, p 1147-1163. In Craig N, Chandler M, Gellert M, Lambowitz A, Rice P, Sandmeyer S (ed), Mobile DNA III. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MDNA3-0001-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Schematic structure of each clade of site-specific non-LTR retrotransposons. The ORF1 in APE-encoding elements is shown as a short rectangle. An ORF2 in APE-encoding elements or ORF in RLE-encoding elements is shown as a long rectangle. A ZF-like structure is shown as a vertical bold line. A ZF-like structure in ORF1 of APE-encoding elements is shown as a zinc knuckle: Cx2Cx4Hx4Cx5-8Cx2Cx3Hx4C. In R2 clade elements, some elements have an additional ZF-like structure shown as a dotted vertical line. Myb-like (Myb) domains are found in R2 clade-elements and in TRAS families in the R1-clade.

Citation: Fujiwara H. 2015. Site-specific non-LTR retrotransposons, p 1147-1163. In Craig N, Chandler M, Gellert M, Lambowitz A, Rice P, Sandmeyer S (ed), Mobile DNA III. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MDNA3-0001-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

rDNA-specific-elements (R-elements) and telomere-specific-elements. Locations and insertion sites of rDNA-specific non-LTR elements (A) and telomere-specific non-LTR elements (B) are shown schematically. Arrows indicate the 5′ to 3′ orientation of non-LTR element insertion. Three telomere-specific elements, TART, HeT-A, and TAHRE, in are located at extreme ends of chromosome (their locations are in random order).

Citation: Fujiwara H. 2015. Site-specific non-LTR retrotransposons, p 1147-1163. In Craig N, Chandler M, Gellert M, Lambowitz A, Rice P, Sandmeyer S (ed), Mobile DNA III. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MDNA3-0001-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Evolution of target sequences in R1-clade elements. The phylogeny is constructed on the basis of data in K. K. Kojima and H. Fujiwara ( ). Nonsequence-specific elements are shown as dotted lines and asterisks. Target and flanking sequences of each site-specific element are shown on the right. In the TPRT model, the bottom strand is first nicked and then the top strand is cleaved. The SART and TRAS elements target the same (TTAGG/CCATT) telomeric repeats. However, TRAS first cut the TTAGG bottom strand, whereas SART first cut the CCTAA strand. The bottom-to-top strand cleavage in each target sequence is represented by bent lines. Arrows indicate variation of top-strand cleavage. Broken lines between the top and bottom strands, in TRAS, SART, Waldo, and Mino, indicate unidentified exact cleavage sites because they target the tandem repeats TTAGG and ACAY (or AC). Broken boxes indicate homologous sequences near cleavage sites among RT and R7.

Citation: Fujiwara H. 2015. Site-specific non-LTR retrotransposons, p 1147-1163. In Craig N, Chandler M, Gellert M, Lambowitz A, Rice P, Sandmeyer S (ed), Mobile DNA III. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MDNA3-0001-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Evolution of telomere and TERT structure in higher insects. X in indicates the loss of a TERT gene from the genome. In the silkworm () and the flour beetle (), introns and GQ domains are lost from TERT genes (see text). The phylogenetic tree was constructed based on recent reports ( ).

Citation: Fujiwara H. 2015. Site-specific non-LTR retrotransposons, p 1147-1163. In Craig N, Chandler M, Gellert M, Lambowitz A, Rice P, Sandmeyer S (ed), Mobile DNA III. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MDNA3-0001-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Structures of the silkworm TERT gene. (A) The position of upstream ATG in several TERT genes. The numbers of upstream ATG in each 5′ UTR of TERT are shown on the right. (B) Polyadenylation site of TERT. Poly (A) sequences at the 3′ ends of the TERT gene in genomic DNA and cDNA (corresponding to the mRNA sequence) are shown in bold. (C) The schematic model for the generation of a processed TERT gene from the original TERT with introns by reverse transcription. Four exons are shown as Ex-A to Ex-D.

Citation: Fujiwara H. 2015. Site-specific non-LTR retrotransposons, p 1147-1163. In Craig N, Chandler M, Gellert M, Lambowitz A, Rice P, Sandmeyer S (ed), Mobile DNA III. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MDNA3-0001-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

Schematic model for interaction between mRNA of a site-specific non-LTR element and target DNA at the 3′ junction. (A) Interaction between the read-through transcript of a non-LTR element (from copy1) and the target site DNA at the 3′ junction of copy 3. (B) Annealing of R2Ol mRNA with the target DNA (28S rDNA) at the 3′ junction. -transcribed R2Ol with 4 bp of the 28S target sequence at its 3′ end showed the accurate and efficient retrotransposition in the zebrafish embryo. However, the R2Ol mRNA with 3 bp of the 28S target sequence showed insufficient retrotransposition (39%) (H. Mizuno and H. Fujiwara, unpublished data). These observations indicate that annealing of the read-though product of R2Ol to the target DNA at the 3′ junction seems important for its efficient and accurate retrotransposition.

Citation: Fujiwara H. 2015. Site-specific non-LTR retrotransposons, p 1147-1163. In Craig N, Chandler M, Gellert M, Lambowitz A, Rice P, Sandmeyer S (ed), Mobile DNA III. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MDNA3-0001-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8
Figure 8

Main factors involved in the target-site selection of site-specific APE-encoding elements. Four main steps of the retrotransposition of non-LTR elements in the cells (transcription, translation, RNP formation, and nuclear import) are shown schematically. Three factors involved in the target-site selection are indicated.

Citation: Fujiwara H. 2015. Site-specific non-LTR retrotransposons, p 1147-1163. In Craig N, Chandler M, Gellert M, Lambowitz A, Rice P, Sandmeyer S (ed), Mobile DNA III. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MDNA3-0001-2014
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555819217.chap50
1. Craig NL, . 2002. Tn7, p 423 456 In Craig NL,, Cragie R,, Gellert M,, Lambowitz AM (ed), Mobile DNA II. ASM Press, Washington, DC.
2. Rio DC, . 2002. P transposable elements in Drosophila melanogaster , p 484 518. In Craig NL,, Cragie R,, Gellert M,, Lambowitz AM (ed), Mobile DNA II. ASM Press, Washington, DC.
3. Kajikawa M,, Okada N . 2002. LINEs mobilize SINEs in the eel through a shared 3′ sequence. Cell 111 : 433 444.[PubMed] [CrossRef]
4. Dewannieux M,, Heidmann T . 2005. LINEs, SINEs and processed pseudogenes: parasitic strategies for genome modeling. Cytogenet Genome Res 110 : 35 48.[PubMed] [CrossRef]
5. Roy-Engel AM . 2012. A tale of an A-tail: the lifeline of SINE. Mob Genet Elements 2 : 282 286.[PubMed] [CrossRef]
6. Luan DD,, Korman MH,, Jakubczak JL,, Eickbush TH . 1993. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 72 : 595 605.[PubMed] [CrossRef]
7. Eickbush TM, . 2002. R2 and related site-specific non-long terminal repeat retrotransposons, p 813 835. In Craig NL,, Cragie R,, Gellert M,, Lambowitz AM (ed), Mobile DNA II. ASM Press, Washington, DC.
8. Malik HS,, Burke WD,, Eickbush TH . 1999. The age and evolution of non-LTR retrotransposable elements. Mol Biol Evol 16 : 793 805.[PubMed] [CrossRef]
9. Kapitonov VV,, Tempel S,, Jurka J . 2009. Simple and fast classification of non-LTR retrotransposons based on phylogeny of their RT domain protein sequences. Gene 448 : 207 213.[PubMed] [CrossRef]
10. Yang J,, Malik HS,, Eickbush TH . 1999. Identification of the endonuclease domain encoded by R2 and other site-specific, non-long terminal repeat retrotransposable elements. Proc Natl Acad Sci U S A 96 : 7847 7852.[PubMed] [CrossRef]
11. Feng Q,, Moran JV,, Kazazian HH Jr,, Boeke JD . 1996. Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87 : 905 916.[PubMed] [CrossRef]
12. Kojima KK,, Fujiwara H . 2005. An extraordinary retrotransposon family encoding dual endonucleases. Genome Res 15 : 1106 1117.[PubMed] [CrossRef]
13. Huang CR,, Burns KH,, Boeke JD . 2012. Active transposition in genomes. Annu Rev Genet 46 : 651 675.[PubMed] [CrossRef]
14. Cordaux R,, Batzer MA . 2009. The impact of retrotransposons on human genome evolution. Nat Rev Genet 10 : 691 703.[PubMed] [CrossRef]
15. Rodić N,, Burns KH . 2013. Long interspersed element-1 (LINE-1): passenger or driver in human neoplasms? PLoS Genet 9 : e1003402. [PubMed] [CrossRef]
16. Kojima KK,, Fujiwara H . 2003. Evolution of target specificity in R1 clade non-LTR retrotransposons. Mol Biol Evol 20 : 351 361.[PubMed] [CrossRef]
17. Kojima KK,, Fujiwara H . 2004. Cross-genome screening of novel sequence-specific non-LTR retrotransposons: various multicopy RNA genes and microsatellites are selected as targets. Mol Biol Evol 21 : 207 217.[PubMed] [CrossRef]
18. Aksoy S,, Williams S,, Chang S,, Richards FF . 1990. SLACS retrotransposon from Trypanosoma brucei gambiense is similar to mammalian LINEs. Nucleic Acids Res 18 : 785 792.[PubMed] [CrossRef]
19. Gabriel A,, Yen TJ,, Schwartz DC,, Smith CL,, Boeke JD,, Sollner-Webb B,, Cleveland DW . 1990. A rapidly rearranging retrotransposon within the miniexon gene locus of Crithidia fasciculata . Mol Cell Biol 10 : 615 624.[PubMed]
20. Malik HS,, Eickbush TH . 2000. NeSL-1, an ancient lineage of site-specific non-LTR retrotransposons from Caenorhabditis elegans . Genetics 154 : 193 203.[PubMed]
21. Jakubczak JL,, Burke WD,, Eickbush TH . 1991. Retrotransposable elements R1 and R2 interrupt the rRNA genes of most insects. Proc Natl Acad Sci U S A 88 : 3295 3299.[PubMed] [CrossRef]
22. Kojima KK,, Fujiwara H . 2005. Long-term inheritance of the 28S rDNA-specific retrotransposon R2. Mol Biol Evol 22 : 2157 2165.[PubMed] [CrossRef]
23. Luchetti A,, Mantovani B . 2013. Non-LTR R2 element evolutionary patterns: phylogenetic incongruences, rapid radiation and the maintenance of multiple lineages. PLoS One 8 : e57076. [PubMed] [CrossRef]
24. Burke WD,, Müller F,, Eickbush TH . 1995. R4, a non-LTR retrotransposon specific to the large subunit rRNA genes of nematodes. Nucleic Acids Res 23 : 4628 4634.[PubMed] [CrossRef]
25. Xiong Y,, Eickbush TH . 1993. Dong, a non-long terminal repeat (non-LTR) retrotransposable element from Bombyx mori . Nucleic Acids Res 21 : 1318. [PubMed] [CrossRef]
26. Kapitonov VV,, Jurka J . 2014. A family of HERO non-LTR retrotransposons from the Californian leech genome. Repbase Reports 14 : 311.
27. Jurka J . 1997. Sequence patterns indicate an enzymatic involvement in integration of mammalian retroposons. Proc Natl Acad Sci USA 94 : 1872 1877.[PubMed] [CrossRef]
28. Kapitonov VV,, Jurka J . 2009. R5-2_SM, http://www.girinst.org/protected/repbase_extract.php?access=R5-2_SM, Repbase Update (04-Aug-2009)
29. Kojima KK,, Jurka J . 2013. R4, a 28S ribosomal RNA gene-specific non-LTR retrotransposon family from nematodes. Repbase Reports 13 : 821 834.
30. Kapitonov VV,, Jurka J . 2009. First examples of CRE non-LTR retrotransposons in animals. Repbase Reports 9 : 2157 2160.
31. Gilbert N,, Lutz-Prigge S,, Moran JV . 2002. Genomic deletions created upon LINE-1 retrotransposition. Cell 110 : 315 325.[PubMed] [CrossRef]
32. Symer DE,, Connelly C,, Szak ST,, Caputo EM,, Cost GJ,, Parmigiani G,, Boeke JD . 2002. Human l1 retrotransposition is associated with genetic instability in vivo . Cell 110 : 327 338.[PubMed] [CrossRef]
33. Martín F,, Marañón C,, Olivares M,, Alonso C,, López MC . 1995. Characterization of a non-long terminal repeat retrotransposon cDNA (L1Tc) from Trypanosoma cruzi: homology of the first ORF with the ape family of DNA repair enzymes. J Mol Biol 247 : 49 59.[PubMed] [CrossRef]
34. Weichenrieder O,, Repanas K,, Perrakis A . 2004. Crystal structure of the targeting endonuclease of the human LINE-1 retrotransposon. Structure 12 : 975 986.[PubMed] [CrossRef]
35. Kojima KK,, Jurka J . 2013. Telomere-specific Tx1 non-LTR retrotransposons from green anole. Repbase Reports 13 : 843.
36. Garrett JE,, Knutzon DS,, Carroll D . 1989. Composite transposable elements in the Xenopus laevis genome. Mol Cell Biol 9 : 3018 3027.[PubMed]
37. Blackburn EH . 1991. Structure and function of telomeres. Nature 350 : 569 573.[PubMed] [CrossRef]
38. Lundblad V,, Wright WE . 1996. Telomeres and telomerase: a simple picture becomes complex. Cell 87 : 369 375.[PubMed] [CrossRef]
39. Fujiwara H,, Osanai M,, Matsumoto T,, Kojima KK . 2005. Telomere-specific non-LTR retrotransposons and telomere maintenance in the silkworm, Bombyx mori . Chromosome Res 13 : 455 467.[PubMed] [CrossRef]
40. Fujiwara H, . 2014. Accumulation of telomeric-repeat-specific retrotransposons in subtelomere of Bombyx mori and Tribolium castaneum , p 227 241. In Louis EJ,, Becker MM (ed), Subtelomeres. Springer, Berlin. [CrossRef]
41. Biessmann H,, Valgeirsdottir K,, Lofsky A,, Chin C,, Ginther B,, Levis RW,, Pardue ML . 1992. HeT-A, a transposable element specifically involved in “healing” broken chromosome ends in Drosophila melanogaster . Mol Cell Biol 12 : 3910 3918.[PubMed]
42. Levis RW,, Ganesan R,, Houtchens K,, Tolar LA,, Sheen FM . 1993. Transposons in place of telomeric repeats at a Drosophila telomere. Cell 75 : 1083 1093.[PubMed] [CrossRef]
43. Pardue ML,, DeBaryshe PG . 2003. Retrotransposons provide an evolutionarily robust non-telomerase mechanism to maintain telomeres. Annu Rev Genet 37 : 485 511.[PubMed] [CrossRef]
44. Cohn M,, Edström JE . 1992. Telomere-associated repeats in Chironomus form discrete subfamilies generated by gene conversion. J Mol Evol 35 : 114 122.[PubMed] [CrossRef]
45. Roth CW,, Kobeski F,, Walter MF,, Biessmann H . 1997. Chromosome end elongation by recombination in the mosquito Anopheles gambiae . Mol Cell Biol 17 : 5176 5183.[PubMed]
46. Abad JP,, De Pablos B,, Osoegawa K,, De Jong PJ,, Martín-Gallardo A,, Villasante A . 2004. TAHRE, a novel telomeric retrotransposon from Drosophila melanogaster, reveals the origin of Drosophila telomeres. Mol Biol Evol 21 : 1620 1624.[PubMed] [CrossRef]
47. Pardue ML,, DeBaryshe PG, . 2002. Telomeres and transposable elements, p 870 887. In Craig NL,, Cragie R,, Gellert M,, Lambowitz AM (ed), Mobile DNA II, ASM Press, Washington, DC.
48. Pardue ML,, DeBaryshe PG . 2012. Retrotransposons that maintain chromosome ends. Proc Natl Acad Sci U S A 108 : 20317 20324.[PubMed] [CrossRef]
49. Silva-Sousa R,, Casacuberta E . 2013. The JIL-1 kinase affects telomere expression in the different telomere domains of Drosophila . PLoS One 8 : e81543. [PubMed] [CrossRef]
50. Capkova Frydrychova R,, Biessmann H,, Mason JM . 2008. Regulation of telomere length in Drosophila . Cytogenet Genome Res 122 : 356 364.[PubMed] [CrossRef]
51. Raffa GD,, Cenci G,, Ciapponi L,, Gatti M . 2013. Organization and evolution of Drosophila terminin: similarities and differences between Drosophila and human telomeres. Front Oncol 3 : e112. [PubMed] [CrossRef]
52. Zhang L,, Beaucher M,, Cheng Y,, Rong YS . 2014. Coordination of transposon expression with DNA replication in the targeting of telomeric retrotransposons in Drosophila . EMBO J 33 : 1148 1158.[PubMed] [CrossRef]
53. Okazaki S,, Tsuchida K,, Maekawa H,, Ishikawa H,, Fujiwara H . 1993. Identification of a pentanucleotide telomeric sequence, (TTAGG) n , in the silkworm, Bombyx mori and in other insects. Mol Cell Biol 13 : 1424 1432.[PubMed]
54. Okazaki S,, Ishikawa H,, Fujiwara H . 1995. Structural analysis of TRAS1, a novel family of telomeric repeat associated retrotransposons in the silkworm, Bombyx mori . Mol Cell Biol 15 : 4545 4552.[PubMed]
55. Takahashi H,, Okazaki S,, Fujiwara H . 1997. A new family of site-specific retrotransposons, SART1, is inserted into telomeric repeats of the silkworm, Bombyx mori . Nucleic Acids Res 25 : 1578 1584.[PubMed] [CrossRef]
56. Kubo Y,, Okazaki S,, Anzai T,, Fujiwara H . 2001. Structural and phylogenetic analysis of TRAS, telomeric repeat-specific non-LTR retrotransposon families in lepidopteran insects. Mol Biol Evol 18 : 848 857.[PubMed] [CrossRef]
57. Osanai-Futahashi M,, Suetsugu Y,, Mita K,, Fujiwara H . 2008. Genome-wide screening and characterization of transposable elements and their distribution analysis in the silkworm, Bombyx mori . Insect Biochem Mol Biol 38 : 1046 1146.[PubMed] [CrossRef]
58. Anzai T,, Takahashi H,, Fujiwara H . 2001. Sequence-specific recognition and cleavage of telomeric repeat (TTAGG) n by endonuclease of non-LTR retrotransposon, TRAS1. Mol Cell Biol 21 : 100 108.[PubMed] [CrossRef]
59. Maita N,, Anzai T,, Aoyagi H,, Mizuno H,, Fujiwara H . 2004. Crystal structure of the endonuclease domain encoded by the telomere-specific LINE, TRAS1. J Biol Chem 279 : 41067 41076.[PubMed] [CrossRef]
60. Takahashi H,, Fujiwara H . 2002. Transplantation of target site specificity by swapping endonuclease domains of two LINEs. EMBO J 21 : 408 417.[CrossRef]
61. Osanai-Futahashi M,, Fujiwara H . 2011. Coevolution of telomeric repeats and telomeric-repeat-specific non-LTR retrotransposons in insects. Mol Biol Evol 28 : 2983 2986.[PubMed] [CrossRef]
62. Monti V,, Serafini C,, Manicardi GC,, Mandrioli M . 2013. Characterization of non-LTR retrotransposable TRAS elements in the aphids Acyrthosiphon pisum and Myzus persicae (Aphididae, Hemiptera). J Hered 104 : 547 553.[PubMed] [CrossRef]
63. Takahashi H,, Fujiwara H . 1999. Transcription analysis of the telomeric repeat-specific retrotransposons TRAS1 and SART1 of the silkworm Bombyx mori . Nucleic Acids Res 27 : 2015 2021.[PubMed] [CrossRef]
64. Kojima KK,, Matsumoto T,, Fujiwara H . 2005. Eukaryotic translational coupling in UAAUG stop-start codons for the bicistronic RNA translation of the non-long terminal repeat retrotransposon SART1. Mol Cell Biol 25 : 7675 7686.[PubMed] [CrossRef]
65. Osanai M,, Kojima KK,, Futahashi R,, Yaguchi S,, Fujiwara H . 2006. Identification and characterization of the telomerase reverse transcriptase of Bombyx mori (silkworm) and Tribolium castaneum (flour beetle). Gene 376 : 281 289.[PubMed] [CrossRef]
66. Sasaki T,, Fujiwara H . 2000. Detection and distribution patterns of telomerase activity in insects. Eur J Biochem 267 : 3025 3031.[PubMed] [CrossRef]
67. Mitchell M,, Gillis A,, Futahashi M,, Fujiwara H,, Skordalakes E . 2010. Structural basis for telomerase catalytic subunit TERT binding to RNA template and telomeric DNA. Nat Struct Mol Biol 17 : 513 518.[PubMed] [CrossRef]
68. Jin X,, Turcott E,, Englehardt S,, Mize GJ,, Morris DR . 2003. The two upstream open reading frames of oncogene mdm2 have different translational regulatory properties. J Biol Chem 278 : 25716 25721.[PubMed] [CrossRef]
69. Moriarty TJ,, Marie-Egyptienne DT,, Autexier C . 2004. Functional organization of repeat addition processivity and DNA synthesis determinants in the human telomerase multimer. Mol Cell Biol 24 : 3720 3733.[PubMed] [CrossRef]
70. Lue NF . 2005. A physical and functional constituent of telomerase anchor site. J Biol Chem 280 : 26586 26591.[PubMed] [CrossRef]
71. Savard J,, Tautz D,, Richards S,, Weinstock GM,, Gibbs RA,, Werren JH,, Tettelin H,, Lercher MJ . 2006. Phylogenomic analysis reveals bees and wasps (Hymenoptera) at the base of the radiation of holometabolous insects. Genome Res 16 : 1334 1338.[PubMed] [CrossRef]
72. Tribolium Genome Sequencing Consortium . 2008. The genome of the model beetle and pest Tribolium castaneum . Nature 452 : 949955.[PubMed] [CrossRef]
73. Robertson HM,, Gordon KH . 2006. Canonical TTAGG-repeat telomeres and telomerase in the honey bee, Apis mellifera . Genome Res 16 : 1345 1351.[PubMed] [CrossRef]
74. Higashiyama T,, Noutoshi Y,, Fujie M,, Yamada T . 1997. Zepp, a LINE-like retrotransposon accumulated in the Chlorella telomeric region. EMBO J 16 : 3715 3723.[PubMed] [CrossRef]
75. Arkhipova IR,, Morrison HG . 2001. Three retrotransposon families in the genome of Giardia lamblia: two telomeric, one dead. Proc Natl Acad Sci U S A 98 : 14497 14502.[PubMed] [CrossRef]
76. Starnes JH,, Thornbury DW,, Novikova OS,, Rehmeyer CJ,, Farman ML . 2012. Telomere-targeted retrotransposons in the rice blast fungus Magnaporthe oryzae: agents of telomere instability. Genetics 191 : 389 406.[PubMed] [CrossRef]
77. Kojima KK,, Kuma K,, Toh H,, Fujiwara H . 2006. Identification of rDNA-specific non-LTR retrotransposons in Cnidaria . Mol Biol Evol 23 : 1984 1994.[PubMed] [CrossRef]
78. Fujiwara H,, Ogura T,, Takada N,, Miyajima N,, Ishikawa H,, Maekawa H . 1984. Introns and their flanking sequences of Bombyx mori rDNA. Nucleic Acids Res 12 : 6861 6869.[PubMed] [CrossRef]
79. Xiong Y,, Eickbush TH . 1988. The site-specific ribosomal DNA insertion element R1Bm belongs to a class of non-long-terminal-repeat retrotransposons. Mol Cell Biol 8 : 114 123.[PubMed]
80. Burke WD,, Singh D,, Eickbush TH . 2003. R5 retrotransposons insert into a family of infrequently transcribed 28S rRNA genes of Planaria . Mol Biol Evol 20 : 1260 1270.[PubMed] [CrossRef]
81. Gladyshev EA,, Arkhipova IR . 2009. Rotifer rDNA-specific R9 retrotransposable elements generate an exceptionally long target site duplication upon insertion. Gene 448 : 145 150.[PubMed] [CrossRef]
82. Besansky NJ,, Paskewitz SM,, Hamm DM,, Collins FH . 1992. Distinct families of site-specific retrotransposons occupy identical positions in the rRNA genes of Anopheles gambiae . Mol Cell Biol 12 : 5102 5110.[PubMed]
83. Kapitonov VV,, Jurka J . 2009a. A family of R2 non-LTR retrotransposons in the non-segmented roundworm genome. Repbase Reports 9 : 1150.
84. Kapitonov VV,, Jurka J . 2009b. R2 non-LTR retrotransposons in the bird genome. Repbase Reports 9 : 1329.
85. Thompson BK,, Christensen SM . 2011. Independently derived targeting of 28S rDNA by A- and D-clade R2 retrotransposons: plasticity of integration mechanism. Mob Genet Elements 1 : 29 37.[PubMed] [CrossRef]
86. Shivram H,, Cawley D,, Christensen SM . 2011. Targeting novel sites: the N-terminal DNA binding domain of non-LTR retrotransposons is an adaptable module that is implicated in changing site specificities. Mob Genet Elements 1 : 169 178.[PubMed] [CrossRef]
87. Zingler N,, Weichenrieder O,, Schumann GG . 2005. APE-type non-LTR retrotransposons: determinants involved in target site recognition. Cytogenet Genome Res 110 : 250 268.[PubMed] [CrossRef]
88. Olivares M,, Thomas MC,, Alonso C,, López MC . 1999. The L1Tc, long interspersed nucleotide element from Trypanosoma cruzi, encodes a protein with 3′-phosphatase and 3′-phosphodiesterase enzymatic activities. J Biol Chem 274 : 23883 22886.[PubMed] [CrossRef]
89. Cost GJ,, Boeke JD . 1998. Targeting of human retrotransposon integration is directed by the specificity of the L1 endonuclease for regions of unusual DNA structure. Biochemistry 37 : 18081 18093.[PubMed] [CrossRef]
90. Feng Q,, Schumann G,, Boeke JD . 1998. Retrotransposon R1Bm endonuclease cleaves the target sequence. Proc Natl Acad Sci U S A 95 : 2083 2088.[PubMed] [CrossRef]
91. Christensen S,, Pont-Kingdon G,, Carroll D . 2000. Target specificity of the endonuclease from the Xenopus laevis non-long terminal repeat retrotransposon, Tx1L. Mol Cell Biol 20 : 1219 1226.[PubMed] [CrossRef]
92. Maita N,, Aoyagi H,, Osanai M,, Shirakawa M,, Fujiwara H . 2007. Characterization of the sequence specificity of the R1Bm endonuclease domain by structural and biochemical studies. Nucleic Acids Res 35 : 3918 3927.[PubMed] [CrossRef]
93. Anzai T,, Osanai M,, Hamada M,, Fujiwara H . 2005. Functional roles of read-through 28S rRNA sequence in in vivo retrotransposition of non-LTR retrotransposon, R1Bm. Nucleic Acids Res 33 : 1993 2002.[PubMed] [CrossRef]
94. Schumann GG,, Elena V,, Gogvadze EV,, Osanai-Futahashi M,, Kuroki A,, Münk C,, Fujiwara H,, Ivics Z,, Buzdin A . 2010. Unique functions of repetitive transcriptome. Int Rev Cell Mol Biol 285 : 115 188.[PubMed] [CrossRef]
95. Yoshitake K,, Aoyagi H,, Fujiwara H . 2010. Creation of a novel telomere-cutting endonuclease based on the EN domain of telomere-specific non-LTR retrotransposon, TRAS1. Mobile DNA 1 : e13. [PubMed] [CrossRef]
96. Ye J,, Eickbush TH . 2006. Chromatin structure and transcription of the R1- and R2-inserted rRNA genes of Drosophila melanogaster . Mol Cell Biol 26 : 8781 8790.[PubMed] [CrossRef]
97. Eickbush DG,, Eickbush TH . 2010. R2 retrotransposons encode a self-cleaving ribozyme for processing from an rRNA cotranscript. Mol Cell Biol 30 : 3142 3150.[PubMed] [CrossRef]
98. Eickbush DG,, Burke WD,, Eickbush TH . 2013. Evolution of the R2 retrotransposon ribozyme and its self-cleavage site. PLoS One 8 : e66441. [PubMed] [CrossRef]
99. Burch JB,, Davis DL,, Haas NB . 1993. Chicken repeat 1 elements contain a pol-like open reading frame and belong to the non-long terminal repeat class of retrotransposons. Proc Natl Acad Sci U S A 90 : 8199 8203.[PubMed] [CrossRef]
100. Volff JN,, Körting C,, Sweeney K,, Schartl M . 1999. The non-LTR retrotransposon Rex3 from the fish Xiphophorus is widespread among teleosts. Mol Biol Evol 16 : 1427 1438.[PubMed] [CrossRef]
101. Osanai M,, Takahashi H,, Kojima KK,, Hamada M,, Fujiwara H . 2004. Novel motifs in 3′-untranslated region required for precise reverse transcription start of telomere specific LINE, SART1. Mol Cell Biol 24 : 7902 7913.[PubMed] [CrossRef]
102. Moran JV,, Holmes SE,, Naas TP,, DeBerardinis RJ,, Boeke JD,, Kazazian HH Jr . 1996. High frequency retrotransposition in cultured mammalian cells. Cell 87 : 917 927.[PubMed] [CrossRef]
103. Hohjoh H,, Singer MF . 1997. Sequence-specific single-strand RNA binding protein encoded by the human LINE-1 retrotransposon. EMBO J 16 : 6034 6043.[PubMed] [CrossRef]
104. Doucet AJ,, Hulme AE,, Sahinovic E,, Kulpa DA,, Moldovan JB,, Kopera HC,, Athanikar JN,, Hasnaoui M,, Bucheton A,, Moran JV,, Gilbert N . 2010. Characterization of LINE-1 ribonucleoprotein particles. PLoS Genet 6 : e1001150. [PubMed] [CrossRef]
105. Matsumoto T,, Hamada M,, Osanai M,, Fujiwara H . 2006. Essential domains for ribonucleoprotein complex formation required for retrotransposition of a telomere specific non-LTR retrotransposon SART1. Mol Cell Biol 26 : 5168 5179.[PubMed] [CrossRef]
106. Martin SL,, Bushman D,, Wang F,, Li PW,, Walker A,, Cummiskey J,, Branciforte D,, Williams MC . 2008. A single amino acid substitution in ORF1 dramatically decreases L1 retrotransposition and provides insight into nucleic acid chaperone activity. Nucleic Acids Res 36 : 5845 5854.[PubMed] [CrossRef]
107. Martin SL . 2010. Nucleic acid chaperone properties of ORF1p from the non-LTR retrotransposon, LINE-1. RNA Biol 7 : 706 711.[PubMed] [CrossRef]
108. Rashkova S,, Karam SE,, Pardue ML . 2002. Element-specific localization of Drosophila retrotransposon Gag proteins occurs in both nucleus and cytoplasm. Proc Natl Acad Sci U S A 99 : 3621 3626.[PubMed] [CrossRef]
109. Rashkova S,, Karam SE,, Kellum R,, Pardue ML . 2002. Gag proteins of the two Drosophila telomeric retrotransposons are targeted to chromosome ends. J Cell Biol 159 : 397 402.[PubMed] [CrossRef]
110. Fuller AM,, Cook EG,, Kelley KJ,, Pardue ML . 2010. Gag proteins of Drosophila telomeric retrotransposons: collaborative targeting to chromosome ends. Genetics 184 : 629 636.[PubMed] [CrossRef]
111. Matsumoto T,, Takahashi H,, Fujiwara H . 2004. Targeted nuclear import of ORF1 protein is required for in vivo retrotransposition of telomere-specific non-long terminal repeat retrotransposon, SART1. Mol Cell Biol 24 : 105 122.[PubMed] [CrossRef]
112. Williams MC,, Gorelick RJ,, Musier-Forsyth K . 2002. Specific zinc-finger architecture required for HIV-1 nucleocapsid protein’s nucleic acid chaperone function. Proc Natl Acad Sci U S A 99 : 8614 8619.[PubMed] [CrossRef]
113. D’Souza V,, Summers MF . 2004. Structural basis for packaging the dimeric genome of Moloney murine leukaemia virus. Nature 431 : 586 590.[PubMed] [CrossRef]
114. Kajikawa M,, Ohshima K,, Okada N . 1997. Determination of the entire sequence of turtle CR1: the first open reading frame of the turtle CR1 element encodes a protein with a novel zinc finger motif. Mol Biol Evol 14 : 1206 1217.[PubMed] [CrossRef]
115. König P,, Fairall L,, Rhodes D . 1998. Sequence-specific DNA recognition by the Myb-like domain of the human telomere binding protein TRF1: a model for the protein–DNA complex. Nucleic Acids Res 26 : 1731 1740.[PubMed] [CrossRef]
116. Mandal PK,, Bagchi A,, Bhattacharya A,, Bhattacharya S . 2004. An Entamoeba histolytica LINE/SINE pair inserts at common target sites cleaved by the restriction enzyme-like LINE-encoded endonuclease. Eukaryot Cell 3 : 170 179.[PubMed] [CrossRef]
117. Volff JN,, Körting C,, Froschauer A,, Sweeney K,, Schartl M . 2001. Non-LTR retrotransposons encoding a restriction enzyme-like endonuclease in vertebrates. J Mol Evol 52 : 351 360.[PubMed]
118. Christensen SM,, Ye J,, Eickbush TH . 2006. RNA from the 5′ end of the R2 retrotransposon controls R2 protein binding to and cleavage of its DNA target site. Proc Natl Acad Sci U S A 103 : 17602 17607.[PubMed] [CrossRef]
119. Christensen SM,, Eickbush TH . 2005. R2 target-primed reverse transcription: ordered cleavage and polymerization steps by protein subunits asymmetrically bound to the target DNA. Mol Cell Biol 25 : 6617 6628.[PubMed] [CrossRef]
120. Christensen SM,, Bibillo A,, Eickbush TH . 2005. Role of the Bombyx mori R2 element N-terminal domain in the target-primed reverse transcription (TPRT) reaction. Nucleic Acids Res 33 : 6461 6468.[PubMed] [CrossRef]
121. Sun N,, Abil Z,, Zhao H . 2012. Recent advances in targeted genome engineering in mammalian systems. Biotechnol J 7 : 1074 1087.[PubMed] [CrossRef]
122. Gaj T,, Gersbach CA,, Barbas CF III . 2013. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31 : 397 405.[PubMed] [CrossRef]
123. Ammar I,, Gogol-Döring A,, Miskey C,, Chen W,, Cathomen T,, Izsvák Z,, Ivics Z . 2012. Retargeting transposon insertions by the adeno-associated virus Rep protein. Nucleic Acids Res 40 : 6693 6712.[PubMed] [CrossRef]
124. Airenne KJ,, Hu YC,, Kost TA,, Smith RH,, Kotin RM,, Ono C,, Matsuura Y,, Wang S,, Ylä-Herttuala S . 2013. Baculovirus: an insect-derived vector for diverse gene transfer applications. Mol Ther 21 : 739 749.[PubMed] [CrossRef]
125. Kawashima T,, Osanai M,, Futahashi R,, Kojima T,, Fujiwara H . 2007. A novel target-specific gene delivery system combining baculovirus and sequence-specific LINEs. Virus Res 127 : 49 60.[PubMed] [CrossRef]
126. Ando T,, Fujiyuki T,, Kawashima T,, Morioka M,, Kubo T,, Fujiwara H . 2007. In vivo gene transfer into the honeybee using a nucleopolyhedrovirus vector. Biochem Biophys Res Commun 352 : 335 340.[PubMed] [CrossRef]

Tables

Generic image for table
TABLE 1

Targets of site-specific non-LTR retrotransposons

Citation: Fujiwara H. 2015. Site-specific non-LTR retrotransposons, p 1147-1163. In Craig N, Chandler M, Gellert M, Lambowitz A, Rice P, Sandmeyer S (ed), Mobile DNA III. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MDNA3-0001-2014

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error